интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Ошибка 404. Страница не найдена. Как измерить фазное и линейное напряжение


Линейные и фазные токи, схема звезда и треугольник

Линейные и фазные токи 1 Трехфазной системой переменного электрического тока называют связную совокупность 3-х цепей, в которых имеются синусоидальные ЭДС равной частоты, сдвинутые на одну треть периода по фазе (или 120 градусов), и сформированные одним источником энергии.

В качестве источника, обычно выступает генераторная установка. Практически абсолютное большинство генераторных установок, установленных на современных электростанциях, являются источниками 3-х-фазного тока.

Отдельную цепь данной системы именуют фазой, а систему 3-х сдвинутых по фазе электрических токов принято называть трехфазным.

Так, токи, протекающие в каждой фазе, именуют фазными и условно обозначают IА, IB, IC либо условно Iф. Токи в ветвях нагрузки именуют линейными. Их величина обуславливается величиной фазных напряжений, типом нагрузки. При сугубо активной нагрузке токи идентичны с напряжениями по фазе, а при индуктивной либо емкостной нагрузке, токи могут опережать или отставать от напряжения.

В традиционных электросетях имеет место 2 метода соединения:

— треугольник;

— звезда.

Линейные и фазные токи 2

При соединении ветвей схемы треугольником конец одной обмотки подключается к началу другой, т.е. получается замкнутый контур. Для каждого узла схемы выполняется баланс – сумма входящих токов равна сумме исходящих. При таком подключении и симметричной нагрузке выполняется соотношение:

Iл = v3 Iф.

При соединении ветвей элементов схемы звездой все окончания обмоток фаз подключают в один узел 0. Ввиду того, что фазы генератора соединяются последовательно с фазами электроприемников (нагрузки), то линейные токи по величине равны фазным:

Iф = Iл.

Как видим, при соединении фаз, используя метод треугольника, токи разнятся между собой в в 1,72 раза, а при подключении звездой остаются одинаковыми. При этом следует помнить, что соединении фаз генератора может быть выполнено звездой, а приемников – треугольником, и, следовательно, имеет место обратная зависимость. Вследствие чего, в зависимости от требующегося значения напряжения используется та либо иная схема подключения фаз генератора, нагрузки.

pue8.ru

Извините такой страницы Wp-content Uploads 2014 03 Trehfaznye-tsepi-na-ladoni Pdf не существует!

Выбор статьи по меткам03 (1)9 класс (3)10 класс (1)11 класс (2)12 (1)13 (С1) (3)14 февраля (1)15 задание ЕГЭ (2)16 задача профиль (1)18 (С5) (2)18 задача ЕГЭ (2)23 марта (1)2016 (2)C5 (1)А9 (1)Александрова (2)Архимед (1)Бернулли (1)Бойля-Мариотта (1)В8 (1)В12 (1)В13 (1)В15 (1)ВК (1)ВШЭ (1)ГИА физика задания 5 (1)Герона (1)Герцшпрунга-Рассела (1)Гринвич (1)ДВИ (1)ДПТ (1)Десятичные приставки (1)Дж (1)Диэлектрические проницаемости веществ (1)ЕГЭ 11 (2)ЕГЭ 14 (1)ЕГЭ 15 (2)ЕГЭ 18 (1)ЕГЭ С1 (1)ЕГЭ по математике (24)ЕГЭ по физике (18)ЕГЭ профиль (6)Европа (1)Задача 17 ЕГЭ (6)Задачи на движение (1)Закон Архимеда (2)Законы Ньютона (1)Земля (1)Ио (1)КПД (8)Каллисто (1)Кельвин (1)Кирхгоф (1)Койпера (1)Колебания (1)Коэффициенты поверхностного натяжения жидкостей (1)Ломоносов (2)Луна (1)МГУ (1)МКТ (7)Максвелл (2)Максвелла (1)Максимальное удаление тела от точки бросания (1)Менделеева-Клапейрона (1)Менелая (3)Метод наложения (2)Метод узловых потенциалов (1)Метод эквивалентных преобразований (1)НОД (1)ОГЭ (11)ОГЭ (ГИА) по математике (27)ОГЭ 3 (ГИА В1) (1)ОГЭ 21 (3)ОГЭ 21 (ГИА С1) (4)ОГЭ 22 (2)ОГЭ 25 (3)ОГЭ 26 (1)ОГЭ 26 (ГИА С6) (1)ОГЭ по физике 5 (1)ОДЗ (12)Обыкновенная дробь (1)Оорта (1)Основные физические константы (1)Отношение объемов (1)Показатели преломления (1)Показательные неравенства (1)Противо-эдс (1)Работа выхода электронов (1)Радиус кривизны траектории (1)Релятивистское замедление времени (1)Релятивистское изменение массы (1)С1 (1)С1 ЕГЭ (1)С2 (2)С3 (1)С4 (3)С6 (5)СУНЦ МГУ (2)Синхронная машина (1)Снеллиуса (2)Солнечной системы (1)Солнце (1)Средняя кинетическая энергия молекул (1)Таблица Менделеева (1)Текстовые задачи (8)ФИПИ (1)Фазовые переходы (1)Фаренгейт (1)Френеля (1)Цельсий (1)ЭДС (4)Электрохимические эквиваленты (1)абсолютная (1)абсолютная влажность (2)абсолютная звездная величина (1)абсолютная температура (1)абсолютный ноль (1)адиабаты (1)аксиомы (1)алгоритм Евклида (1)алгоритм Робертса (1)аморфное (1)амплитуда (3)аналитическое решение (1)анекдоты (1)апериодический переходной процесс (2)аргумент (1)арифметическая прогрессия (3)арифметической прогрессии (1)арки (1)арккосинус (1)арккотангенс (1)арксинус (1)арктангенс (1)архимеда (2)асинхронный (1)атмосферное (1)атомная масса (2)афелий (2)база (1)без калькулятора (1)белого карлика (1)бензин (1)бесконечная периодическая дробь (1)бесконечный предел (1)биквадратные уравнения (1)бипризма (1)биссектриса (2)биссектрисы (2)благоприятный исход (1)блеск (3)блок (1)боковой поверхности (1)большая полуось (1)бригада (2)бросили под углом (2)бросили со скоростью (2)броуновское движение (1)брошенного горизонтально (2)брусок (2)брусок распилили (1)быстрый способ извлечения (1)введение дополнительного угла (1)вектор (5)векторное произведение (2)велосипедисты (1)вероятность (1)вертикальная составляющая (1)вертикально вверх (1)вертикальные углы (1)вес (3)вес тела (1)ветви (1)ветвь (2)ветер (1)взаимодействие зарядов (1)видимая звездная величина (1)виртуальный банк (1)виртуальных перемещений (1)витка (1)виток (1)вклад (1)влажность (2)влажность воздуха (1)влетает (1)вневписанная окружность (2)внутреннее сопротивление (1)внутреннее сопротивление источника (1)внутреннюю энергию (1)внутренняя энергия (7)воды (1)возведение в квадрат (1)возвратные уравнения (2)воздушный шар (1)возрастающая (1)возрастет (1)волны (1)вписанная окружность (3)вписанной окружности (1)вписанный угол (4)в правильной пирамиде (1)вращение (1)времени (1)время (21)время в минутах (1)время выполнения (1)время движения (2)время падения (1)в стоячей воде (1)встретились (1)вступительный (1)вторая половина пути (1)вторичная (1)вторичная обмотка (1)вторичные изображения (1)второй закон Ньютона (3)выбор двигателя (1)выборка корней (4)выколотая точка (1)выразить вектор (1)высота (4)высота Солнца (1)высота столба (1)высота столба жидкости (1)высоте (3)высоту (1)высоты (3)выталкивающая сила (2)вычисления (1)газ (3)газа (1)галочка (1)гамма-лучей (1)гармоника (2)гвоздя (1)геометрическая вероятность (1)геометрическая прогрессия (3)геометрические высказывания (1)геометрический смысл (2)геометрическую прогрессию (1)геометрия (6)гигрометр (1)гидродинамика (1)гидростатика (3)гипербола (2)гипотенуза (3)гистерезисный двигатель (1)главный период (1)глубина (1)глухозаземленная нейтраль (1)гомотетия (2)горизонтальная сила (1)горизонтальную силу (1)гравитационная постоянная (1)градус (1)грани (1)график (1)графики функций (5)графически (1)графический способ (1)графическое решение (2)груз (2)группа (1)давление (23)давление жидкости (3)давление пара (1)дальность полета (1)двигатель с активным ротором (1)движение под углом (1)движение под углом к горизонту (3)движение по кругу (1)движение по течению (1)движение с постоянной скоростью (2)двойной фокус (1)двугранный угол при вершине (1)действительная часть (1)действующее значение (2)деление (1)деление многочленов (2)деление уголком (1)делимость (2)делимость чисел (1)делитель (1)демонстрационный варант (1)деталей в час (1)диаграмма (1)диаметр (2)динамика (4)диод (1)диск (1)дискриминант (4)дифракционная решетка (2)дифференцированный платеж (1)диффузия (1)диэлектрик (1)диэлектрическая проницаемость (1)длина (2)длина вектора (1)длина волны (7)длина отрезка (1)длина пружины (1)длина тени (1)длиной волны (2)длину нити (1)длительность разгона (1)длительный режим (1)добротность (1)догнал (1)догоняет (1)докажите (1)доля (1)дополнительный угол (1)досрочный (2)досрочный вариант (1)дптр (1)дуга (1)единицы продукции (1)единичный источник (1)единичных кубов (1)единственный корень (1)ежесекундно (1)емкость (7)емкость заряженного шара (1)естественная область определения (1)жесткость (4)жеткость (1)живая математика (2)жидкости (1)жидкость (1)завод (1)загадка (2)задание 13 (2)задание 15 (3)задание 23 (1)задания 1-14 ЕГЭ (1)задача 13 профиль (1)задача 14 профиль (3)задача 16 (1)задача 16 профиль (3)задача 18 (1)задача 26 ОГЭ (1)задача с параметром (6)задачи на доказательство (4)задачи на разрезание (4)задачи на совместную работу (3)задачи про часы (1)задерживающее напряжение (1)заземление (1)заказ (1)закон Гука (1)закон Ома (3)закон Снеллиуса (1)закона сохранения (1)закон движения (1)закон кулона (7)закон сложения классических скоростей (1)закон сохранения импульса (4)закон сохранения энергии (2)законы Кирхгофа (6)законы коммутации (1)закрытым концом (1)замена переменной (2)замкнутая система (2)зануление (1)запаянная (2)заряд (8)заряда (1)заряд конденсатора (1)защитная характеристика (1)звездочка (1)звезды (1)зенит (1)зенитное расстояние (1)зеркало (1)знак неравенства (1)знаменатель прогрессии (4)значение выражения (1)идеальный газ (5)извлечение в столбик (1)излом (1)излучение (2)изменение длины (2)изобара (1)изобаричесикй (1)изобарический (2)изобарный (1)изобарный процесс (1)изображение (2)изолированная нейтраль (1)изопроцессы (1)изотерма (2)изотермический (2)изотермический процесс (1)изотоп (1)изохора (1)изохорический (1)изохорный процесс (1)импульс (7)импульса (1)импульс силы (1)импульс системы (1)импульс системы тел (4)импульс тела (4)импульс частицы (1)индуктивно-связанные цепи (1)индуктивное сопротивление (1)индуктивность (1)индукцией (1)индукция (5)интеграл Дюамеля (1)интервал (1)интересное (3)интерференционных полос (1)иррациональность (2)испарение (2)исследование функции (4)источник (1)источник света (1)исход (1)камень (1)камешек (1)капилляр (1)карлик (1)касательная (4)касательные (1)касаются (1)катет (3)катушка (2)качаний (2)квадлратичная зависимость (1)квадрант (1)квадрат (3)квадратичная функция (3)квадратное уравнение (4)квадратную рамку (1)квант (1)квантов (1)кинематика (2)кинетическая (11)кинетическая энергия (4)кинетической (1)кинетической энергии (1)кинетическую энегрию (1)классический метод (3)классический метод расчета (1)ключ (1)кодификатор (1)колене (1)количество вещества (1)количество теплоты (8)коллектор (1)кольцо (1)комбинаторика (1)коммутация (1)комплексное сопротивление (1)комплексное число (1)комплексные числа (1)компонент (1)конвекция (3)конденсатор (10)конденсаторы (1)конечная температура (1)конечная температура смеси (1)конечный предел (1)консоль (1)контрольная (1)контрольные (1)контур (5)конус (3)концентрация (6)координата (5)координаты (3)координаты вектора (1)координаты середины отрезка (1)корабля (1)корень (2)корень квадратный (1)корень кубический (1)корни (2)корни иррациональные (1)корни квадратного уравнения (3)корни уравнения (1)корпоративных (1)косинус (2)косинусы (1)котангенс (1)коэффициент (1)коэффициент жесткости (1)коэффициент наклона (3)коэффициент поверхностного натяжения (3)коэффициент подобия (5)коэффициент трансформации (1)коэффициент трения (5)коэффициенты (1)красной границы (1)красный (1)кратковременный режим (1)кратные звезды (1)кредит (8)кредитная ставка (4)криволинейная трапеция (2)кристаллизация (1)критерии оценки (1)кружок (1)кулонова сила (1)кульминация (1)кусочная функция (1)левом колене (1)лед (1)лет (1)линейная скорость (2)линейное напряжение (1)линейное уравнение (2)линейный размер (1)линза (2)линии излома (1)линиями поля (1)линия отвеса (1)лифт (1)лифта (1)лифте (1)логарифм (7)логарифмические неравенства (3)логарифмические уравнения (1)логарифмическое неравенство (2)логарифмы (1)льда (1)магнитное поле (1)магнитном поле (1)магнитные цепи (1)максимальная высота (1)максимальная скорость (1)малых колебаний (1)масса (23)массе (1)массивная звезда (1)массовое содержание (1)массой (1)массу (1)математика (4)математический маятник (1)маятник (3)мгновенный центр вращения (1)медиана (1)меридиан (1)метод внутреннего проецирования (1)метод замены переменной (4)метод интервалов (3)метод комплексных амплитуд (3)метод контурных токов (1)метод координат (1)метод линий (1)методом внутреннего проецирования (1)метод переменных состояния (1)метод подстановки (4)метод рационализации (4)метод решетки (1)метод следов (5)метод сложения (4)метод телескопирования (1)метод узловых напряжений (1)методы расчета цепей (2)методы расчета цепей постоянного тока (1)метод эквивалентного генератора (2)механика (1)механическая характеристика (1)механическое напряжение (1)минимальная скорость (1)минимальной скоростью (1)минимум (1)мнимая единица (1)мнимая часть (1)многоугольник (1)многочлены (1)мода (2)модули (1)модуль (10)модуль Юнга (1)модуль средней скорости (1)молекулярно-кинетическая теория (2)моль (1)молярная масса (5)момент (5)момент инерции двигателя (1)момент нагрузки (1)момент сил (1)монотонная (1)монотонность функции (1)монохроматического (1)мощности силы тяжести (1)мощность (8)мощностью (1)мяч (1)наблюдатель (1)нагревание (1)нагреватель (1)нагревателя (1)нагрели (1)наибольшее (1)наивысшая точка (1)наименьшее (1)наименьшее общее кратное (1)наклон (1)наклонная плоскость (2)направление (1)направление обхода (3)направлении (1)направляющий вектор (1)напряжение (9)напряжение на зажимах (1)напряжение смещения нейтрали (2)напряженность (4)напряженность поля (6)насос (1)насоса (1)насыщенный пар (1)натяжение нити (5)натяжения (1)находился в полете (2)начальная температура (1)начальной скоростью (1)недовозбуждение (1)незамкнутая система (2)нелинейное сопротивление (1)неопределенность типа бесконечность на бесконечность (1)неопределенность типа ноль на ноль (1)непериодическая дробь (1)неравенства (8)неравенство (18)нерастяжимой нити (1)нерастянутой резинки (1)несимметричная нагрузка (1)несинусоидальный ток (3)нестандартные задачи (1)нестрогое (1)нечетная функция (2)нечетное (1)нечетность (1)неявнополюсный (1)нити (1)нити паутины (1)нить (1)новости (1)нормаль (1)нормальное ускорение (11)нулевой ток (2)обкладками (1)обкладках (1)обкладки (1)область допустимых значений (8)область значений (1)область определения (8)область определения функции (4)оборот (1)обратные тригонометрические функции (1)обратные функции (1)общая хорда (1)общее сопротивление (1)общее сопротивление цепи (1)объем (35)объемный расход (1)объемом (1)объем параллелепипеда (1)объем пирамиды (1)одинаковые части (1)окружность (12)окружность описанная (1)олимпиада (2)олимпиады по физике (2)они встретятся (1)операторный метод (4)оптика (1)оптическая разность хода (1)оптический центр (1)орбитам (1)орбитой (1)оригинал (1)осевое сечение (1)основание (2)основание логарифма (2)основания трапеции (1)основное тригонометрическое тождество (1)основное уравнение МКТ (2)основной газовый закон (1)основной период (1)основной уровень (1)основные углы (1)остаток (1)отбор корней (5)ответ (1)относительная (1)относительная влажность (3)относительно (2)относительность движениия (1)относительность движения (2)отношение (4)отношение времен (1)отношение длин (1)отношение площадей (3)отношение скоростей (2)отрезок (1)отсечение невидимых граней (1)очки (1)падает (1)падает луч (1)падает под углом (1)падение (2)падение напряжения (2)пар (2)парабола (5)параллакс (3)параллелепепед (2)параллелепипед (2)параллелограмм (4)параллелограмм Виньера (1)параллельно (1)параллельное соединение (3)параллельные прямые (1)параллельными граням (1)параметр (26)парообразование (1)парсек (1)парциальное (1)парциальное давление (1)паскаль (1)первичная (1)перевозбуждение (1)перегородка (1)перегрузок (1)переменное основание (2)перемещение (6)пересекает (1)пересечение (1)пересечения (1)переходная проводимость (1)переходное сопротивление (1)переходной процесс (1)переходные процессы (9)перигелий (2)периметр (2)период (12)периодическая дробь (1)период колебаний (1)период малых колебаний (1)период обращения (2)период функции (1)периоды (1)пион (1)пипетка (1)пирамида (7)пирамида шестиугольная (1)пирамиды (2)пирсона (1)плавание (1)плавкие предохранители (1)плавление (1)план (1)планете (1)планеты (3)планиметрия (9)планиметрия профиль (1)пластинами (1)пластинка (1)платеж (6)плечо (2)плоского зеркала (1)плоскопараллельная (1)плоскость (1)плоскость сечения (1)плотности веществ (1)плотность (21)плотность пара (3)плотность сосуда (1)плотность энергии (1)площади (2)площади фигур на клетчатой бумаге (1)площадь (21)площадь круга (1)площадь пластин (1)площадь поверхности (1)площадь под кривой (2)площадь проекции (1)площадь проекции сечения (1)площадь сектора (1)площадь сечения (5)площадь треугольника (1)поверхностная плотность заряда (1)поворот (1)повторно-кратковременный режим (1)погрешность (1)погружено (1)подготовка к контрольным (3)под каким углом (1)подмодульное (1)подмодульных выражений (1)подобен (1)подобие (6)подобия треугольников (1)подобны (1)подпереть (1)под углом (2)под углом к горизонту (1)показателем преломления (1)показатель преломления (4)поле (1)полезной работы (1)полезную мощность (1)полигон частот (1)по линиям сетки (1)полное ускорение (1)половина времени (1)половинный угол (1)полония (1)полость (1)полуокружность (1)полупроводник (1)по окружности (1)поправка часов (1)поршень (4)порядок решетки (2)последовательно (1)последовательное соединение (3)последовательность (1)посторонние корни (4)постоянная Авогадро (1)постоянная времени (1)постоянная скорость (1)постоянная составляющая (2)постоянный ток (5)построение (2)построение графика функции (1)потенциал (4)потенциал шара (1)потенциальная (12)потенциальная энергия (3)потенциальной (1)потери в стали (2)потеря корней (4)поток (4)по физике (1)правило левой (1)правило моментов (2)правильную пирамиду (1)правильный многоугольник (1)правом колене (1)предел функции (1)преломляющий угол (1)преобразование графиков функций (1)преобразования (1)преподаватели (2)пресс (2)призма (6)призмы (3)признаки подобия (4)признаки равенства треугольников (3)пробник (5)пробный вариант (2)провода (1)проводник (1)проводник с током (1)проводящего шара (1)проволоки (1)прогрессия (2)проекции ускорения (2)проекция (6)проекция перемещения (1)проекция скорости (4)проекция ускорения (2)производительность (2)производная (2)промежуток (1)промежуток знакопостоянства (1)пропорциональны (1)проскальзывает (1)проскальзывания (1)противоположное событие (1)противостояние (1)протона (1)прототипы (1)профиль (2)профильный ЕГЭ (1)процент (3)процентная ставка (6)процентное отношение (1)процентное содержание (2)проценты (1)пружин (1)пружина (2)пружинный маятник (1)прямая (6)прямое восхождение (2)прямой (1)прямоугольник (1)пузырек (1)путь (24)работа (12)работа газа (5)работа тока (1)работу выхода (2)рабочее тело (1)рабочие (1)равнобедренный (1)равновесие (3)равновесия (1)равновесное (1)равнодействующая (1)равноускоренное (3)равные (1)равные фигуры (1)радиальную ось (1)радикал (1)радиус (8)радиус колеса (1)радиус кривизны (1)радиус описанной сферы (1)радиус темного кольца в отраженном свете (1)разбор (1)разложение на множители (2)размах (1)разности температур (1)разность потенциалов (1)разность прогрессии (3)разность хода (1)разрежьте (1)разрезание (3)разрыв функции (1)рамка (2)рамка с током (1)раскрытие модуля (1)расписание (1)расположение корней квадратного трехчлена (1)распределение частот (1)рассеивающая (1)расстояние (17)расстояние между зарядами (1)расстояние на карте (1)расстояние от точки (1)раствор (2)растяжение (1)расходуется (1)расцепители (1)расчеты по формулам (1)рационализация (4)рациональные неравенства (1)реактивные элементы (1)реактивный двигатель (1)реакция опоры (2)реакция якоря (1)ребра (1)ребус (2)резервуар (1)резистор (1)рентгеновскую трубку (1)репетитор (1)решебник (1)решение тригонометрических уравнений (1)решение уравнений (2)решение уравнений больших степеней (1)розетка (1)ромб (1)ряд Фурье (1)сарай с покатой крышей (1)сближаются (1)сближения (1)сбрасывают с высоты (1)сверхгигант (2)светимость (2)свободно (1)свободного падения (1)свободно падает (1)свойства (2)свойства отрезков (1)свойства степени (1)свойства функции (1)свойства функций (1)свойства чисел (1)свойство биссектрисы (2)свойству биссектрисы (1)сдвинуть (1)сектор (1)секущая (2)серия решений (1)сертификация (6)сессия (1)сечение (13)сечение наклонной плоскостью (1)сидерический (1)сила (7)сила Архимеда (5)сила Лоренца (1)сила ампера (4)сила взаимодействия (4)сила на дно (1)сила натяжения (5)сила натяжения нити (4)сила поверхностного натяжения (3)сила реакции опоры (1)сила трения (3)сила тяготения (1)сила тяжести (3)сила упругости (1)силой (2)силу (1)силу натяжения (1)силы трения (1)символический метод (3)симметричная нагрузка (1)симметрия (2)синодический (1)синус (2)синусоида (1)синусоидальный закон (1)синусоидальный ток (5)синусы (1)синхронный компенсатор (1)система (2)система неравенств (7)система отсчета (1)система счисления (1)система уравнений (3)системы уравнений (3)скалярное произведение (3)склонение (1)скольжение (2)скоросмть (1)скоростей (1)скорости (2)скорости течения (1)скорость (34)скорость сближения (3)скорость света (1)скорость теплохода (1)скорость удаления (1)скорость частицы (1)скоростью (1)сложение векторов (1)сложная функция (1)смежные углы (1)смешанное число (1)смещение (1)снаряд (1)собирающая (2)событие (1)соединение звездой (1)соединение треугольником (1)сокращение (1)сокращение дробей (1)соленоид (1)солнечная система (1)сообщающиеся сосуды (2)соприкосновения (1)сопротивление (9)сопряженное (3)составляющая скорости (1)составляющие (1)составляющие скорости (3)сосудах (1)сосуде (1)сохранение энергии (1)спектра (2)спектральный класс (2)спецификация (1)спирт (1)сплава (1)сплавы (1)справочные данные (3)справочные материалы (12)сравнение чисел (2)среднее (1)среднее значение (1)среднюю линию (1)средняя квадратичная скорость (1)средняя скорость (5)срок (1)срок кредитования (1)стакан (1)статград (4)статика (1)стенка (1)степенная функция (1)степенные уравнения (1)степень (2)стереометрия (4)стержень (1)столб жидкости (2)столбик (3)столбик жидкости (2)столбчатая диаграмма (1)стрелки поравняются (1)строгое (1)студенты (2)сумма прогрессии (1)суммарный импульс (1)сумма ряда (1)сумма углов (2)суммирование (2)сумму (1)суперпозиция (1)сутки (1)сфера (4)сферы (2)таблица (1)таблица частот (1)тангенс (2)тангенциальное ускорение (1)твердое тело (1)телескопирование (1)тело (1)температура (20)температурный коэффициент сопротивления (1)тени (1)теорема Пифагора (3)теорема виета (5)теорема косинусов (3)теорема синусов (2)теореме косинусов (1)теоремы (1)теория вероятности (1)тепловое действие (1)тепловое равновесие (2)тепловой баланс (1)тепловой двигатель (1)теплоемкость (1)теплообмен (1)теплопередача (4)теплопроводность (2)теплота (1)теплота сгорания (1)теплоты (4)техника быстрого счета (1)ток (10)ток насыщения (1)топливо (1)точечный источник (1)точка касания (1)точка росы (1)точки перемены знака (1)траектории (1)траекторию (1)траектория (1)транзистор (1)трансформатор (1)трапеция (4)трение (1)тренировочная работа (1)тренировочные работы (1)трения (1)треугольная пирамида (1)треугольник (3)треугольник Паскаля (1)треугольника (1)треугольники (2)трехфазные цепи (2)тригонометрические выражения (2)тригонометрические уравнения (1)тригонометрия (9)троса (1)трубка (4)угловая скорость (2)угловая частота (2)угловой скоростью (2)углом (1)углы (1)угол между боковыми ребрами (1)угол между векторами (1)угол между плоскостями (2)угол между прямой и плоскостью (1)угол между прямыми (1)угол наклона (1)уголь (10)удельная (1)удельная теплоемкость (2)удельная теплота (1)удельная теплота парообразования (2)удельное сопротивление (1)удержать (1)удлинение (3)узел (2)умножение (1)умножение вектора на число (1)умножение на пальцах (1)упрощение (3)упрощение выражений (1)упругий удар (1)уравнение (4)уравнение Менделеева-Клапейрона (5)уравнение окружности (2)уравнение плоскости (1)уравнение теплового баланса (1)уравнению (1)уравнения (2)уравнения высоких степеней (1)уравнения высших степеней (1)урана (1)ускорение (22)ускорением (1)ускорение свободного падения (4)ускорений (1)ускоряющая разность потенциалов (1)условие плавания (1)условие равновесия (1)фазное напряжение (1)фигуры (1)физика (27)фиолетовый (1)фокальная плоскость (1)фокус (4)формула (1)формула Герона (1)формула Пика (1)формулы сокращенного умножения (2)фотон (4)фотонов (1)функции (1)функция (1)холодильник (1)холодильнику (1)хорда (3)целые числа (1)цель (1)центральный угол (4)центр вращения (1)центр масс системы (1)центробежная сила (1)центр тяжести (1)центр тяжести системы (1)цепи постоянного тока (13)цепь второго порядка (1)цепь первого порядка (4)цикл Карно (1)циклическая частота (2)цилиндр (1)часовой угол (1)части (4)частица (1)частных клиентов (1)частота (9)частота излучения (1)часть объема (1)человека (1)черная дыра (1)четная функция (3)четность (1)числовая пряма%D (1)число витков (1)шайбы (1)шар (1)шарик на нитке (1)шестерня (1)широта (1)широте (1)эволюция звезд (1)эквивалентная емкость (1)эквивалентная синусоида (1)экзамен (1)экспонента (2)экстремум (1)эксцентриситет (2)электрические цепи (8)электрического поля (1)электрон (3)электрона (1)электрон влетает (1)электростатика (2)электротехника (8)элонгация (1)энергия (8)энергия покоя (1)энергия поля (1)эскалатору (1)юмор (6)явнополюсный (1)ядерная физика (1)якорь (1)яма (1)

easy-physic.ru

Содержание кр

Содержание

Введение 4

1 Трехфазная электрическая цепь 5

1.1 Определение фазных и линейных токов 6

1.2. Определение напряжения между точками а и b 8

1.3 Определение активной мощности трехфазной цепи 9

1.4 Построение векторной диаграммы токов и топографической

диаграммы напряжений 10

Заключение 15

Список использованных источников 16

Введение

Все методы расчета цепей переменного тока разделяются на две группы: расчет по мгновенным значениям и расчет по действующим значениям токов и напряжений.

При расчете по мгновенным значениям составляются уравнения по законам Кирхгофа для мгновенных значений. При этом получается система дифференциальных уравнений. Рассчитываем мгновенные значения токов и напряжений для отдельных моментов времени, отстающих друг от друга на временной интервал t.

При расчете по действующим значениям сводят форму напряжений и токов к синусоидальной. Выражают синусоидальную величину в комплексном виде и составляют систему уравнений в комплексном виде. Получается алгебраическая система уравнений с комплексными коэффициентами, которая решается в общем виде через определители.

Наиболее часто применяется расчет по действующим значениям токов и напряжений методом комплексных амплитуд (символическим методом).

В настоящее время существует ряд программ для ЭВМ, с помощью которых легко выполняется расчет во временной области. Например, Micro-Cap.

1 Трехфазная электрическая цепь

На рисунок 1 приведена схема трехфазной цепи. В ней имеется трехфазный генератор (создающий трехфазную симметричную синусоидальную систему ЭДС) и симметричная нагрузка. Действующее значение ЭДС фазы генератора EA, период Т, параметры R1, L, C1 приведены в таблице 1. Начальную фазу ЭДС eAпринять нулевой.

Требуется:

1.1 Определить фазные и линейные токи;

1.2 Определить напряжение между точками a и b;

1.3 Определить активную мощность трехфазной цепи;

1.4 Построить векторную диаграмму токов и топографическую диаграмму напряжения;

Таблица 1 - Исходные данные к задаче

Вариант

Рисунок

EA, B

T, c

L, мГн

С1, мкФ

С2, мкФ

R1, Ом

R2, Ом

Определить

39

1.19

60

0,02

31,85

31,85

-

17,32

-

Uab

Рисунок 1 - Схема 1.19

    1. Определение фазных и линейных токов

Чтобы найти любое напряжение, нужно знать токи. При соединении звездой линейные токи равны фазным токам. Нагрузка симметрична, поэтому нулевой провод можно не включать, т. к. его ток все равно будет равен нулю. Модули токов фаз будут равны, а сдвиг по фазе между ними равен 120 градусов. В связи с этим можно провести расчет только одной фазы, например фазы А.

Применяем символический метод расчета, при котором сопротивления, токи и напряжения нужно представить в комплексном виде. Предварительно рассчитаем сопротивления реактивных элементов. Частота источника питания f = 1/T = 1/0,02 = 50 Гц. Угловая частота ω = 2πf = 314 c-1.

Сопротивление провода линии (см. рисунок 2)

Рисунок 2 – Трехфазная линейная схема

Найдем комплекс полного сопротивления фазы А

Комплекс действующего значения тока первой фазы равен

Здесь комплекс действующего значения ЭДС фазы А равен

ЭДС и токи двух других фаз отличаются друг от друга только углами сдвига фаз 120о.

1.2 Определение напряжения между точками a и b

Чтобы найти напряжение Uab, нужно составить контур, в который войдет это напряжение, и применить второй закон Кирхгофа (см. рисунок 3).

Рисунок 3 - Участок цепи

Мгновенное значение напряжения равно

314t+1190) B.

1.3 Определение активной мощности трехфазной цепи

Определим активную мощность в фазе А как

PA = I2A*R1= 2 *17,32 =146,66 Вт.

Активная мощность всей трехфазной цепи равна

P = 3*PA= 3*146,66 = 439,98 Вт.

1.4 Построение векторной диаграммы токов и топографической диаграммы напряжений

Выбираем масштабы токов и напряжений. Число вольт и ампер в единице длины должно быть кратно числам 1, 2, 5, умноженным на 10±n, где n – любое целое число. Выбор масштаба зависит от значений токов и напряжений, которые нужно изобразить на диаграмме. Записываем комплексы тока и напряжений фазы А:

На топографической диаграмме (рисунок 4) требуется показать потенциалы всех точек, указанных на схеме рисунке 1.

Рисунок4 - Диаграмма токов и топографическая диаграмма напряжения

Заключение

В данной курсовой работе дана трехфазная электрическая цепь, представленная на рисунке 1. По этой схеме я определил фазные и линейные токи, напряжение между точками а и b, активную мощность трехфазной цепи, построил векторную диаграмму токов и топографическую диаграмму напряжения.

Список использованных источников

  1. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. Высшая школа. М:- 1984-559 с.

  2. Некрасова Н.Р., Панфилов С. А. Компьютерные технологии лабораторных, расчетно-графических и курсовых работ по электротехнике. МГУ. Саранск:-2004-102 с.

studfiles.net

Расчет трехфазных цепей (Лекция №17)

Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между переменными. Однако определенная специфика многофазных цепей вносит характерные особенности в их расчет, что, в первую очередь, касается анализа их работы в симметричных режимах.

Расчет симметричных режимов работы трехфазных систем

Многофазный приемник и вообще многофазная цепь называются симметричными, если в них комплексные сопротивления соответствующих фаз одинаковы, т.е. если . В противном случае они являются несимметричными. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например трехфазный приемник на рис. 1,а является симметричным, а на рис. 1,б – нет даже при условии: .

Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора, то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным. В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол . Вследствие указанного расчет таких цепей проводится для одной – базовой – фазы, в качестве которой обычно принимают фазу А. При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига при сохранении неизменным ее модуля.

Так для симметричного режима работы цепи на рис. 2,а при известных линейном напряжении и сопротивлениях фаз можно записать

,

где определяется характером нагрузки .

Тогда на основании вышесказанного

;

.

 

Комплексы линейных токов можно найти с использованием векторной диаграммы на рис. 2,б, из которой вытекает:

При анализе сложных схем, работающих в симметричном режиме, расчет осуществляется с помощью двух основных приемов:

Все треугольники заменяются эквивалентными звездами. Поскольку треугольники симметричны, то в соответствии с формулами преобразования «треугольник-звезда» .

Так как все исходные и вновь полученные звезды нагрузки симметричны, то потенциалы их нейтральных точек одинаковы. Следовательно, без изменения режима работы цепи их можно (мысленно) соединить нейтральным проводом. После этого из схемы выделяется базовая фаза (обычно фаза А), для которой и осуществляется расчет, по результатам которого определяются соответствующие величины в других фазах.

Пусть, например, при заданном фазном напряжении необходимо определить линейные токи и в схеме на рис. 3, все сопротивления в которой известны.

В соответствии с указанной методикой выделим расчетную фазу А, которая представлена на рис. 4. Здесь , .

Тогда для тока можно записать

,

и соответственно .

Расчет несимметричных режимов работы трехфазных систем

Если хотя бы одно из условий симметрии не выполняется, в трехфазной цепи имеет место несимметричный режим работы. Такие режимы при наличии в цепи только статической нагрузки и пренебрежении падением напряжения в генераторе рассчитываются для всей цепи в целом любым из рассмотренных ранее методов расчета. При этом фазные напряжения генератора заменяются соответствующими источниками ЭДС. Можно отметить, что, поскольку в многофазных цепях, помимо токов, обычно представляют интерес также потенциалы узлов, чаще других для расчета сложных схем применяется метод узловых потенциалов. Для анализа несимметричных режимов работы трехфазных цепей с электрическими машинами в основном применяется метод симметричных составляющих, который будет рассмотрен далее.

При заданных линейных напряжениях наиболее просто рассчитываются трехфазные цепи при соединении в треугольник. Пусть в схеме на рис. 2,а . Тогда при известных комплексах линейных напряжений в соответствии с законом Ома

; ; .

По найденным фазным токам приемника на основании первого закона Кирхгофа определяются линейные токи:

.

Обычно на практике известны не комплексы линейных напряжений, а их модули. В этом случае необходимо предварительное определение начальных фаз этих напряжений, что можно осуществить, например, графически. Для этого, приняв , по заданным модулям напряжений, строим треугольник (см. рис.5), из которого (путем замера) определяем значения углов a и b.

Тогда

Искомые углы a и b могут быть также найдены аналитически на основании теоремы косинусов:

При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям на фазах источника. В этом случае фазные токи легко определяются по закону Ома, т.е. путем деления известных напряжений на фазах потребителя на соответствующие сопротивления. Однако, если сопротивление нейтрального провода велико или он отсутствует, требуется более сложный расчет.

Рассмотрим трехфазную цепь на рис. 6,а. При симметричном питании и несимметричной нагрузке ей в общем случае будет соответствовать векторная диаграмма напряжений (см. рис. 6,б), на которой нейтральные точки источника и приемника занимают разные положения, т.е. .

Разность потенциалов нейтральных точек генератора и нагрузки называется напряжением смещения нейтральной точки (обычно принимается, что ) или просто напряжением смещения нейтрали. Чем оно больше, тем сильнее несимметрия фазных напряжений на нагрузке, что наглядно иллюстрирует векторная диаграмма на рис. 6,б.

Для расчета токов в цепи на рис. 6,а необходимо знать напряжение смещения нейтрали. Если оно известно, то напряжения на фазах нагрузки равны:

.

 

Тогда для искомых токов можно записать:

.

Соотношение для напряжения смещения нейтрали, записанное на основании метода узловых потенциалов, имеет вид

. (1)

При наличии нейтрального провода с нулевым сопротивлением , и из (1) . В случае отсутствия нейтрального провода . При симметричной нагрузке с учетом того, что , из (1) вытекает .

В качестве примера анализа несимметричного режима работы цепи с использованием соотношения (1) определим, какая из ламп в схеме на рис. 7 с прямым чередованием фаз источника будет гореть ярче, если .

Запишем выражения комплексных сопротивлений фаз нагрузки:

Тогда для напряжения смещения нейтрали будем иметь

Напряжения на фазах нагрузки (здесь и далее индекс N у фазных напряжений источника опускается)

Таким образом, наиболее ярко будет гореть лампочка в фазе С.

В заключение отметим, что если при соединении в звезду задаются линейные напряжения (что обычно имеет место на практике), то с учетом того, что сумма последних равна нулю, их можно однозначно задать с помощью двух источников ЭДС, например, и . Тогда, поскольку при этом , соотношение (1) трансформируется в формулу

. (2)

Литература

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Какой многофазный приемник является симметричным?
  2. Какой режим работы трехфазной цепи называется симметричным?
  3. В чем заключается специфика расчета симметричных режимов работы трехфазных цепей?
  4. С помощью каких приемов трехфазная симметричная схема сводится к расчетной однофазной?
  5. Что такое напряжение смещения нейтрали, как оно определяется?
  6. Как можно определить комплексы линейных напряжений, если заданы их модули?
  7. Что обеспечивает нейтральный провод с нулевым сопротивлением?
  8. В цепи на рис. 6,а ; ; ; . Линейное напряжение равно 380 В.
  9. Определить ток в нейтральном проводе.

    Ответ: .

  10. В схеме предыдущей задачи ; . Остальные параметры те же.
  11. Определить ток в нейтральном проводе.

    Ответ: .

  12. В задаче 8 нейтральный провод оборван.
  13. Определить фазные напряжения на нагрузке.

    Ответ: ; ; .

  14. В задаче 9 нейтральный провод оборван.
  15. Определить фазные напряжения на нагрузке.

    Ответ: ; ; .

www.toehelp.ru


Каталог товаров
    .