интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор). 220 вольт диоды


Простейшие схемы подключения светодиодов в 220 вольт без драйвера (самое простое питание светодиода от сети напряжением 220В)

Потому что нужно грамотно решить сразу две задачи:

  1. Ограничить прямой ток через светодиод, чтобы он не сгорел.
  2. Обеспечить защиту светодиода от пробоя обратным током.

Если проигнорировать любой из этих пунктов, светодиод моментально накроется медным тазом.

В самом простейшем случае ограничить ток через светодиод можно резистором и/или конденсатором. А предотвратить пробой от обратного напряжения можно с помощью обычного диода или еще одного светодиода.

Поэтому самая простая схема подключения светодиода к 220В состоит всего из нескольких элементов:Схема подключения светодиода к 220 вольт

Защитный диод может быть практически любым, т.к. его обратное напряжение никогда не будет превышать прямого напряжения на светодиоде, а ток ограничен резистором.

Сопротивление и мощность ограничительного (балластного) резистора зависит от рабочего тока светодиода и рассчитывается по закону Ома:

R = (Uвх - ULED) / I

А мощность рассеивания резистора рассчитывается так:

P = (Uвх - ULED)2 / R

где Uвх = 220 В,ULED - прямое (рабочее) напряжение светодиода. Обычно оно лежит в пределах 1.5-3.5 В. Для одного-двух светодиодов им можно пренебречь и, соответственно, упростить формулу до R=Uвх/I,I - ток светодиода. Для обычных индикаторных светодиодов ток будет 5-20 мА.

Пример расчета балластного резистора

Допустим, нам нужно получить средний ток через светодиод = 20 мА, следовательно, резистор должен быть:

R = 220В/0.020А = 11000 Ом (берем два резистора: 10 + 1 кОм)

P = (220В)2/11000 = 4.4 Вт (берём с запасом: 5 Вт)

Необходимое сопротивление резистора можно взять из таблицы ниже.

Таблица 1. Зависимость тока светодиода от сопротивления балластного резистора.

Сопротивление резистора, кОм Амплитудное значение тока через светодиод, мА Средний ток светодиода, мА Средний ток резистора, мА Мощность резистора, Вт
43 7.2 2.5 5 1.1
24 13 4.5 9 2
22 14 5 10 2.2
12 26 9 18 4
10 31 11 22 4.8
7.5 41 15 29 6.5
4.3 72 25 51 11.3
2.2 141 50 100 22

Другие варианты подключения

В предыдущих схемах защитный диод был включен встречно-параллельно, однако его можно разместить и так:Как включить светодиод в розетку

Это вторая схема включения светодиодов на 220 вольт без драйвера. В этой схеме ток через резистор будет в 2 раза меньше, чем в первом варианте. А, следовательно, на нем будет выделяться в 4 раза меньше мощности. Это несомненный плюс.

Но есть и минус: к защитному диоду прикладывается полное (амплитудное) напряжение сети, поэтому любой диод здесь не прокатит. Придется подобрать что-нибудь с обратным напряжением 400 В и выше. Но в наши дни это вообще не проблема. Отлично подойдет, например, вездесущий диод на 1000 вольт - 1N4007 (КД258).

Не смотря на распространенное заблуждение, в отрицательные полупериоды сетевого напряжения, светодиод все-таки будет находиться в состоянии электрического пробоя. Но благодаря тому, что сопротивление обратносмещенного p-n-перехода защитного диода очень велико, ток пробоя будет недостаточен для вывода светодиода из строя.

Внимание! Все простейшие схемы подключения светодиодов в 220 вольт имеют непосредственную гальваническую связь с сетью, поэтому прикосновение к ЛЮБОЙ точке схемы - ЧРЕЗВЫЧАЙНО ОПАСНО!

Для уменьшения величины тока прикосновения нужно располовинить резистор на две части, чтобы получилось как показано на картинках:Гальваническая связь с сетьюУменьшение тока прикосновения

Благодаря такому решению, даже поменяв местами фазу и ноль, ток через человека на "землю" (при случайном прикосновении) никак не сможет превысить 220/12000=0.018А. А это уже не так опасно.

Как быть с пульсациями?

В обеих схемах светодиод будет светиться только в положительный полупериод сетевого напряжения. То есть он будет мерцать с частой 50 Гц или 50 раз в секунду, причём размах пульсаций будет равен 100% (10 мс горит, 10 мс не горит и так далее). Это будет заметно глазу.

К тому же, при подсветке мерцающими светодиодами каких-либо движущихся объектов, например, лопастей вентилятора, колес велосипеда и т.п., неизбежно будет возникать стробоскопический эффект. В некоторых случаях данный эффект может быть неприемлем или даже опасен. Например, при работе за станком может показаться, что фреза неподвижна, а на самом деле она вращается с бешенной скоростью и только и ждет, чтобы вы сунули туда пальцы.

Чтобы сделать пульсации менее заметными, можно удвоить частоту включения светодиода с помощью двухполупериодного выпрямителя (диодного моста):Как включить светодиод в розетку

Обратите внимание, что по сравнению со схемой #2 при том же самом сопротивлении резисторов, мы получили в два раза больший средний ток. И, соответственно, в четыре раза большую мощность рассеивания резисторов.

К диодному мосту при этом не предъявляется каких-либо особых требований, главное, чтобы диоды, из которых он состоит, выдерживали половину рабочего тока светодиода. Обратное напряжение на каждом из диодов будет совсем ничтожным.

Еще, как вариант, можно организовать встречно-параллельное включение двух светодиодов. Тогда один из них будет гореть во время положительной полуволны, а второй - во время отрицательной.Встречно-параллельное включение светодиодов

Фишка в том, что при таком включении максимальное обратное напряжение на каждом из светодиодов будет равно прямому напряжению другого светодиода (несколько вольт максимум), поэтому каждый из светодиодов будет надежно защищен от пробоя.

Светодиоды следует разместить как можно ближе друг к другу. В идеале - попытаться найти сдвоенный светодиод, где оба кристалла размещены в одном корпусе и у каждого свои выводы.

Вообще говоря, для светодиодов, выполняющих индикаторную функцию, величина пульсаций не очень-то и важна. Для них самое главное - это максимально заметная разница между включенным и выключенным состоянием (индикация вкл/выкл, воспроизведение/запись, заряд/разряд, норма/авария и т.п.)

А вот при создании светильников, всегда нужно стараться свести пульсации к минимуму. И не столько из-за опасностей стробоскопического эффекта, сколько из-за их вредного влияния на организм.

Какие пульсации считаются допустимыми?

Все зависит от частоты: чем она ниже, тем заметнее пульсации. На частотах выше 300 Гц пульсации становятся совершенно невидимыми и вообще никак не нормируются, то есть даже 100%-ные считаются нормой.

Не смотря на то, что пульсации освещенности на частотах 60-80 Гц и выше визуально не воспринимаются, тем не менее, они способны вызывать повышенную усталость глаз, общую утомляемость, тревожность, снижение производительности зрительной работы и даже головные боли.

Для предотвращения вышеперечисленных последствий, международный стандарт IEEE 1789-2015 рекомендует максимальный уровень пульсаций яркости для частоты 100 Гц - 8% (гарантированно безопасный уровень - 3%). Для частоты 50 Гц - это будут 1.25% и 0.5% соответственно. Но это для перфекционистов.

На самом деле, для того, чтобы пульсации яркости светодиода перестали хоть как-то досаждать, достаточно, чтобы они не превышали 15-20%. Именно таков уровень мерцания ламп накаливания средней мощности, а ведь на них никто и никогда не жаловался. Да и наш российский СНиП 23-05-95 допускает мерцание света в 20% (и только для особо кропотливых и ответственных работ требование повышено до 10%).

В соответствии с ГОСТ 33393-2015 "Здания и сооружения. Методы измерения коэффициента пульсации освещенности" для оценки величины пульсаций вводится специальный показатель - коэффициент пульсаций (Кп).

Коэфф. пульсаций в общем рассчитывается по сложной формуле с применением интегральной функции, но для гармонических колебаний формула упрощается до следующей:

Кп = (Еmax - Emin) / (Emax + Emin) ⋅ 100%,

где Емах - максимальное значение освещенности (амплитудное), а Емин - минимальное.Расчет коэффициента пульсаций освещенности

Мы будем использовать эту формулу для расчета емкости сглаживающего конденсатора.

Очень точно определить пульсации любого источника света можно при помощи солнечной панели и осциллографа:Измерение пульсаций освещенности с помощью осциллографа

Как уменьшить пульсации?

Посмотрим, как включить светодиод в сеть 220 вольт, чтобы снизить пульсации. Для этого проще всего подпаять параллельно светодиоду накопительный (сглаживающий) конденсатор:Светодиодный драйвер со сниженными пульсациями

Из-за нелинейного сопротивления светодиодов, расчет емкости этого конденсатора является довольно нетривиальной задачей.

Однако, эту задачу можно упростить, если сделать несколько допущений. Во-первых, представить светодиод в виде эквивалентного постоянного резистора:Эквивалентная схема с резистором вместо светодиода

А во-вторых, сделать вид, что яркость светодиода (а, следовательно, и освещенность) имеет линейную зависимость от тока.

Давайте попробуем приблизительно рассчитать емкость конденсатора на конкретном примере.

Расчет емкости сглаживающего конденсатора

Допустим, мы хотим получить коэфф. пульсаций 2.5% при токе через светодиод 20 мА. И пусть в нашем распоряжении оказался светодиод, на котором при токе в 20 мА падает 2 В. Частота сети, как обычно, 50 Гц.

Так как мы решили, что яркость линейно зависит от тока через светодиод, а сам светодиод мы представили в виде простого резистора, то освещенность в формуле расчета коэффициента пульсаций можем спокойно заменить на напряжение на конденсаторе:

Кп = (Umax - Umin) / (Umax + Umin) ⋅ 100%

Подставляем исходные данные и вычисляем Umin:

2.5% = (2В - Umin) / (2В + Umin) ⋅ 100% => Umin = 1.9В

Период колебаний напряжения в сети равен 0.02 с (1/50).

Таким образом, осциллограмма напряжения на конденсаторе (а значит и на нашем упрощенном светодиоде) будет выглядеть примерно вот так:Напряжение на светодиоде

Вспоминаем тригонометрию и считаем время заряда конденсатора (для простоты не будем учитывать сопротивление балластного резистора):

tзар = arccos(Umin/Umax) / 2πf = arccos(1.9/2) / (2⋅3.1415⋅50) = 0.0010108 с

Весь остальной остаток периода кондер будет разряжаться. Причем, период в данном случае нужно сократить в два раза, т.к. у нас используется двухполупериодный выпрямитель:

tразр = Т - tзар = 0.02/2 - 0.0010108 = 0.008989 с

Осталось вычислить емкость:

C = ILED⋅ dt/dU = 0.02 ⋅ 0.008989/(2-1.9) = 0.0018 Ф (или 1800 мкФ)

На практике вряд ли кто-то будет ставить такой большой кондер ради одного маленького светодиодика. Хотя, если стоит задача получить пульсации в 10%, то нужно всего 440 мкФ.

Повышаем КПД

Обратили внимание, насколько большая мощность выделяется на гасящем резисторе? Мощность, которая тратится впустую. Нельзя ли ее как-нибудь уменьшить?

Оказывается, еще как можно! Достаточно вместо активного сопротивления (резистора) взять реактивное (конденсатор или дроссель).

Дроссель мы, пожалуй, сразу откинем из-за его громоздкости и возможных проблем с ЭДС самоиндукции. А насчет конденсаторов можно подумать.

Как известно, конденсатор любой емкости обладает бесконечным сопротивлением для постоянного тока. А вот сопротивление переменному току рассчитывается по этой формуле:

Rc = 1 / 2πfC

то есть, чем больше емкость C и чем выше частота тока f - тем ниже сопротивление.

Прелесть в том, что на реактивном сопротивлении и мощность тоже реактивная, то есть ненастоящая. Она как бы есть, но ее как бы и нет. На самом деле эта мощность не совершает никакой работы, а просто возвращается назад к источнику питания (в розетку). Бытовые счетчики ее не учитывают, поэтому платить за нее не придется. Да, она создает дополнительную нагрузку на сеть, но вас, как конечного потребителя, это вряд ли сильно обеспокоит =)

Таким образом, наша схема питания светодиодов от 220В своими руками приобретает следующий вид:Схема подключения светодиода к 220 В через балластный конденсатор

Но! Именно в таком виде ее лучше не использовать, так как в этой схеме светодиод уязвим для импульсных помех.

Включение или выключение распложенных на одной с вами линии мощной индуктивной нагрузки (двигатель кондиционера, компрессор холодильника, сварочный аппарат и т.п.) приводит к появлению в сети очень коротких выбросов напряжения. Конденсатор С1 представляет для них практически нулевое сопротивление, следовательно мощный импульс направится прямиком к С2 и VD5.

К сожалению, электролитические конденсаторы, из-за своей большой паразитной индуктивности, плохо справляются с ВЧ-помехами, поэтому большая часть энергии импульса пойдет через p-n-переход светодиода.

Еще один опасный момент возникает в случае включения схемы в момент пучности напряжения в сети (т.е. в тот самый момент, когда напряжение в розетке находится на пике своего значения). Т.к. С1 в этот момент полностью разряжен, то возникает слишком большой бросок тока через светодиод.

Все это со временем это приводит к прогрессирующей деградации кристалла и падению яркости свечения.

Во избежание таких печальных последствий, схему нужно дополнить небольшим гасящим резистором на 47-100 Ом и мощностью 1 Вт. Кроме того, резистор R1 будет выступать в роли предохранителя на случай пробоя конденсатора С1.

Получается, что схема включения светодиода в сеть 220 вольт должна быть такой:Схема с защитой светодиода от разрушения скачком напряжения

И остается еще один маленький нюанс: если выдернуть эту схему из розетки, то на конденсаторе С1 останется какой-то заряд. Остаточное напряжение будет зависеть от того, в какой момент была разорвана цепь питания и в отдельных случаях может превышать 300 вольт.

А так как конденсатору некуда разряжаться, кроме как через свое внутреннее сопротивление, то заряд может сохраняться очень долго (сутки и более). И все это время кондер будет ждать вас или вашего ребенка, через которого можно будет как следует разрядиться. Причем, для того, чтобы получить удар током, не нужно лезть в недра схемы, достаточно просто прикоснуться к обоим контактам штепсельной вилки.

Чтобы помочь кондеру избавиться от ненужного заряда, подключим параллельно ему любой высокоомный резистор (например, на 1 МОм). Этот резистор не будет оказывать никакого влияния на расчетный режим работы схемы. Он даже греться не будет.

Таким образом, законченная схема подключения светодиода к сети 220В (с учетом всех нюансов и доработок) будет выглядеть так:Схема включения светодиода в 220 вольт с балластным гасящим конденсатором

Значение емкости конденсатора C1 для получения нужного тока через светодиод можно сразу взять из Таблицы 2, а можно рассчитать самостоятельно.

Вот здесь можно посмотреть, как еще сильнее усовершенствовать данную схему, добавив в нее стабилизатор тока на одном транзисторе и стабилитроне. Это существенно понизит пульсации и продлит срок службы светодиодов.

Расчет гасящего конденсатора для светодиода

Не буду приводить утомляющие математические выкладки, дам сразу готовую формулу емкости (в Фарадах):

C = I / (2πf√(U2вх - U2LED)) [Ф],

где I - ток через светодиод, f - частота тока (50 Гц), Uвх - действующее значение напряжения сети (220В), ULED - напряжение на светодиоде.

Если расчет ведется для небольшого числа последовательно включенных светодиодов, то выражение √(U2вх - U2LED) приблизительно равно Uвх, следовательно формулу можно упростить:

C ≈ 3183 ⋅ ILED / Uвх [мкФ]

а, раз уж мы делаем расчеты под Uвх = 220 вольт, то:

C ≈ 15 ⋅ ILED [мкФ]

Таким образом, при включении светодиода на напряжение 220 В, на каждые 100 мА тока потребуется примерно 1.5 мкФ (1500 нФ) емкости.

Кто не в ладах с математикой, заранее посчитанные значения можно взять из таблицы ниже.

Таблица 2. Зависимость тока через светодиоды от емкости балластного конденсатора.

C1 ILED
15 nF 68 nF 100 nF 150 nF 330 nF 680 nF 1000 nF
1 mA 4.5 mA 6.7 mA 10 mA 22 mA 45 mA 67 mA

Немного о самих конденсаторах

В качестве гасящих рекомендуется применять помехоподавляющие конденсаторы класса Y1, Y2, X1 или X2 на напряжение не менее 250 В. Они имеют прямоугольный корпус с многочисленными обозначениями сертификатов на нем. Выглядят так:Помехоподавляющие конденсаторы X2

Если вкратце, то:

  • X1 – используются в промышленных устройствах, подключаемых к трехфазной сети. Эти конденсаторы гарантированно выдерживают всплеск напряжения в 4 кВ;
  • X2 – самые распространенные. Используются в бытовых приборах с номинальным напряжением сети до 250 В, выдерживают всплеск до 2.5 кВ;
  • Y1 – работают при номинальном сетевом напряжении до 250 В и выдерживают импульсное напряжение до 8 кВ;
  • Y2 – довольно-таки распространенный тип, может быть использован при сетевом напряжении до 250 В и выдерживает импульсы в 5 кВ.

Допустимо применять отечественные пленочные конденсаторы К73-17 на 400 В (а лучше - на 630 В).Гасящий конденсатор для светодиода К73-17

Сегодня широкое распространение получили китайские "шоколадки" (CL21), но в виду их крайне низкой надежности, очень рекомендую удержаться от соблазна применять их в своих схемах. Особенно в качестве балластных конденсаторов.Китайские пленочные конденсаторы

Внимание! Полярные конденсаторы ни в коем случае нельзя использовать в качестве балластных!

Итак, мы рассмотрели, как подключать светодиод к 220В (схемы и их расчет). Все приведенные в данной статье примеры хорошо подходят для одного или нескольких маломощных светодиодов, но совершенно нецелесообразны для мощных светильников, например, ламп или прожекторов - для них лучше использовать полноценные схемы, которые называются драйверами.

electro-shema.ru

Какой диод поставить на лампочку 220 вольт

Расскажем вам о том, как подключить обычную лампу накаливания через диод. Такую лампочку можно использовать, например, для освещения коридоров, подъездов или любых других помещений, в которых не требуется очень яркий свет. В этом процессе возникает вопрос: какой диод нужно купить, чтобы поставить на лампочку 220 вольт.  Это зависит от мощности лампочки, ниже в статье приведен пример диода для лампы на 100 ватт, даны формулы для расчета параметров диода.

Увлекательные электронные вещицы продаются в этом китайском магазине.

Для начала немножко теории. Отнюдь не секрет, что для передачи напряжения на большие расстояния без потерь, используется переменный ток, которым питаются наши лампочки. Чобы понять, что такое переменный ток, достаточно обратить внимание на график зависимости напряжения от времени для переменного тока. Как вы могли заметить, ток меняет свое направление с некоторой частотой. Если исключить один период колебаний, то можно уменьшить их амплитуду вдвое, что на практике даст нам понижение питающего напряжения в 2 раза и, свою очередь, позволит лампочке работает намного дольше, чем обычно, а также защитит лампочку от скачков напряжения и снизит риск для перегорания в момент включения.

Такая лампа не привлечет к себе внимание тех, кто ворует энергосберегающие а также обычные лампочки на лестничных площадках.

Самым простым способом отсечки полупериода колебаний сетевого напряжения является установка последовательно с нагрузкой полупроводникового диода, который будет пропускать ток только в одном направлении. В нашем случае необходимо подбирать диод по трем основным параметрам: максимальный прямой ток, максимальный прямой ток в импульсе и максимальное обратное напряжение.

4

Максимальный прямой ток можно найти, разделив мощность лампочки на величину питающего напряжения. Максимальный прямой ток в импульсе должен быть минимум в 20 раз больше максимального прямого тока, чтобы диод не выбило при включении лампочки. Значение максимального обратного напряжения должно быть в 3 корня из двух раз больше питающего напряжения.

В нашем случае, поскольку диод будет ставится внутрь дополнительного накладного цоколя, не стоит забывать, что его длина должна быть меньше его длины. Например, в данном случае используется диод 1N5399, который стоит около 8 центов. Он идеально подходит по всем параметрам для 220 вольтовой лампы накаливания мощностью 100 Ватт.

6

Для того, чтобы сделать вечную лампочку, нам понадобится:

Старая лампочка или цоколь.Новая лампочка мощностью до 100 Вт.Диод.Паяльник мощностью не менее 20 Вт.Припой.Бокорезы или кусачки.Плоскогубцы.Молоток.Целлофановый пакет.Игла или разогнутая скрепка.

Как подключить лампочку через диод

Нам нужно взять диод, откусить у него одну из ножек, припаять его к контакту на цоколе лампы. Для удобства работы лампу можно оставить на это время в упаковке, чтобы она держалась на столе.

Далее готовим второй накладной цоколь из старой лампочки. Если цоколь погнулся, используем плоскогубцы. Дальше на необходимо ее пристроить к основному цоколю, припаяв второй контакт диода к накладному цоколю точнее, к его центральному контакту.

Кстати, если вы решили сделать лампочку вечной и вам не так уж интересно сделать отдельную лампочку эксклюзивной, более простым выходом будет не трогать ее, а просто прикрутить диод в провода внутри выключателя. Делается это намного быстрее и проще.

Лайфхаки с электричеством в другой статье.

izobreteniya.net

Схема включения светодиода в сеть 220 вольт

Сейчас стало очень популярным освещение светодиодными лампами. Все дело в том, что это освещение не только достаточно мощное, но и экономически выгодное. Светодиоды - это полупроводниковые диоды в эпоксидной оболочке.

Изначально они были достаточно слабыми и дорогими. Но позднее в производство были выпущены очень яркие белые и синие диоды. К тому времени их рыночная цена снизилась. На данный момент существуют светодиоды практически любого цвета, что послужило причиной использования их в различных сферах деятельности. К ним относится освещение различных помещений, подсветка экранов и вывесок, использование на дорожных знаках и светофорах, в салоне и фарах автомобилей, в мобильных телефонах и т. д.

схема включения светодиода

Описание

Светодиоды потребляют мало электроэнергии, в результате чего такое освещение постепенно вытесняет ранее существовавшие источники света. В специализированных магазинах можно приобрести различные предметы, в основе которых светодиодное освещение, начиная от обычного светильника и светодиодной ленты, заканчивая светодиодными панелями. Их всех объединяет то, что для их подключения необходимо наличие тока в 12 или 24 В.

В отличие от других источников освещения, которые используют нагревательный элемент, здесь применяется полупроводниковый кристалл, который генерирует оптическое излучение под воздействием тока.

Чтобы понять схемы включения светодиодов в сеть 220В, нужно для начала сказать о том, что напрямую от такой сети он питаться не сможет. Поэтому для работы со светодиодами нужно соблюдать определенную последовательность подключения их к сети высокого напряжения.

Электрические свойства светодиода

Вольтамперная характеристика светодиода - это крутая линия. То есть, если напряжение увеличится хотя бы немного, то ток резко возрастет, это повлечет за собой перегрев светодиода с последующим его перегоранием. Чтобы этого избежать, необходимо включить в цепь ограничительный резистор.

Но важно не забывать о максимально допустимом обратном напряжении светодиодов в 20 В. И в случае его подключения в сеть с обратной полярностью он получит амплитудное напряжение в 315 вольт, то есть в 1,41 раза больше, чем действующее. Дело в том, что ток в сети на 220 вольт переменный, и он изначально пойдет в одну сторону, а затем обратно.

Для того чтобы не дать току двигаться в противоположном направлении, схема включения светодиода должна быть следующей: в цепь включается диод. Он не пропустит обратное напряжение. При этом подключение обязательно должно быть параллельным.

Еще одна схема включения светодиода в сеть 220 вольт заключается в установке двух светодиодов встречно-параллельно.

Что касается питания от сети с гасящим резистором, то это не самый лучший вариант. Потому что резистор будет выделять сильную мощность. К примеру, если использовать резистор 24 кОм, то мощность рассеивания составит примерно 3 Вт. При включении последовательно диода мощность снизится вдвое. Обратное напряжение на диоде должно равняться 400 В. Когда включаются два встречных светодиода, можно поставить два двухваттных резистора. Их сопротивление должно быть в два раза меньше. Это возможно, когда в одном корпусе два кристалла разных цветов. Обычно один кристалл красный, другой зелёный.

схема плавного включения светодиодов

В том случае, когда используется резистор 200 кОм, наличие защитного диода не требуется, так как ток на обратном ходу маленький и не будет вызывать разрушение кристалла. Эта схема включения светодиодов в сеть имеет один минус - маленькая яркость лампочки. Она может применяться, например, для подсветки комнатного выключателя.

Из-за того, что ток в сети переменный, это позволяет избежать лишних трат электричества на нагрев воздуха с помощью ограничительного резистора. С этой задачей справляется конденсатор. Ведь он пропускает переменный ток и при этом не нагревается.

Важно помнить, что через конденсатор должны проходить оба полупериода сети, для того чтобы он смог пропускать переменный ток. А так как светодиод проводит ток только в одну сторону, то необходимо поставить обычный диод (либо еще дополнительный светодиод) встречно-параллельно светодиоду. Тогда он и будет пропускать второй полупериод.

Когда схема включения светодиода в сеть 220 вольт будет отключена, на конденсаторе останется напряжение. Иногда даже полное амплитудное в 315 В. Это грозит ударом тока. Чтобы этого избежать, нужно предусмотреть помимо конденсатора еще и разрядный резистор большого номинала, который в случае отсоединения от сети моментально разрядит конденсатор. Через этот резистор, при нормальной его работе, течет незначительный ток, не нагревающий его.

Для защиты от импульсного зарядного тока и в качестве предохранителя ставим низкоомный резистор. Конденсатор должен быть специальный, который рассчитан на цепь с переменным током не меньше 250 В, либо на 400 В.

Схема последовательного включения светодиодов предполагает установку лампочки из нескольких светодиодов, включенных последовательно. Для этого примера достаточно одного встречного диода.

Так как падение напряжения тока на резисторе будет меньше, то от источника питания нужно отнять суммарное падение напряжения на светодиодах.

Необходимо, чтобы устанавливаемый диод был рассчитан на ток, аналогичный току, проходящему через светодиоды, а обратное напряжение должно быть равно сумме напряжений на светодиодах. Лучше всего использовать чётное количество светодиодов и подключать их встречно-параллельно.

В одной цепочке может быть больше десяти светодиодов. Чтобы рассчитать конденсатор, нужно отнять от амплитудного напряжения сети 315 В сумму падения напряжения светодиодов. В результате узнаем число падения напряжения на конденсаторе.

схема плавного включения и выключения светодиодов

Ошибки подключения светодиодов

  • Первая ошибка - это когда подключают светодиод без ограничителя, напрямую к источнику. В этом случае светодиод очень быстро выйдет из строя, по причине отсутствия контроля над величиной тока.
  • Вторая ошибка - это подключение к общему резистору светодиодов, установленных параллельно. Из-за того, что происходит разброс параметров, яркость горения светодиодов будет разной. К тому же, в случае выхода одного из светодиодов из строя, произойдет возрастание тока второго светодиода, из-за чего он может сгореть. Так что, когда используется один резистор, необходимо последовательно подключать светодиоды. Это позволяет оставить ток прежним при расчёте резистора и сложить напряжения светодиодов.
  • Третья ошибка - это когда светодиоды, которые рассчитаны на разный ток, включают последовательно. Это становится причиной того, что один из них будет гореть слабо, либо наоборот - работать на износ.
  • Четвертая ошибка - это использование резистора, у которого недостаточное сопротивление. Из-за этого ток, текущий через светодиод, будет слишком большим. Некоторая часть энергии, при завышенном напряжении тока, превращается в тепло, в результате чего происходит перегрев кристалла и значительное уменьшение его срока службы. Причина этому - дефекты кристаллической решетки. Если напряжение тока еще больше возрастет, и р-n-переход нагреется, это приведет к снижению внутреннего квантового выхода. В результате этого упадет яркость светодиода, и кристалл будет подвергаться разрушению.
  • Пятая ошибка - включение светодиода в 220В, схема которой очень проста, при отсутствии ограничения обратного напряжения. Максимально допустимое обратное напряжение у большинства светодиодов - примерно 2 В, а напряжение обратного полупериода влияет на падение напряжения, которое равняется напряжению питания при запертом светодиоде.
  • Шестая причина - это использование резистора, мощность которого недостаточна. Это провоцирует сильный нагрев резистора и процесс плавления изоляции, которая касается его проводов. Затем начинает обгорать краска и под влиянием высоких температур наступает разрушение. Все по причине того, что резистор рассеивает только ту мощность, на которую он был рассчитан.

Схема включения мощного светодиода

Для подключения мощных светодиодов нужно использовать AC/DC-преобразователи, у которых стабилизированный выход тока. Это поможет отказаться от применения резистора или интегральной схемы драйвера светодиодов. В то же время мы сможем добиться простого подключения светодиодов, комфортного использования системы и снижения стоимости.

Прежде чем включить в электросеть мощные светодиоды, убедитесь в надежности подключения их к источнику тока. Не подключайте систему к блоку питания, который находится под напряжением, иначе это приведет к выходу из строя светодиодов.

Светодиоды 5050. Характеристики. Схема включения

К маломощным светодиодам относятся также светодиоды поверхностного монтажа (SMD). Чаще всего их используют для подсветки кнопок в мобильном телефоне или для декоративной светодиодной ленты.

Светодиоды 5050 (размер типокорпуса: 5 на 5 мм) - это полупроводниковые источники света, прямое напряжение которых 1,8-3,4 В, а сила прямого тока на каждый кристалл - до 25 мА. Особенность светодиодов SMD 5050 состоит в том, что их конструкция состоит из трех кристаллов, которые позволяют светодиоду излучать несколько цветов. Их называют RGB-светодиодами. Корпус их выполнен из термоустойчивого пластика. Линза рассеивания прозрачная и залита эпоксидной смолой.

Для того чтобы светодиоды 5050 работали как можно дольше, их необходимо подключать к номиналам сопротивлений последовательно. Для максимальной надежности схемы на каждую цепочку лучше подключить отдельный резистор.

Схемы включения мигающих светодиодов

Мигающий светодиод - это светодиод, в который встроен интегральный генератор импульсов. Частота вспышек у него составляет от 1,5 до 3 Гц.

Несмотря на то что мигающий светодиод достаточно компактный, в него вмещен полупроводниковый чип генератора и дополнительные элементы.

Что касается напряжения мигающего светодиода, то оно универсально и может варьироваться. Например, для высоковольтных это З-14 вольт, а для низковольтных 1,8-5 вольт.

Соответственно, к положительным качествам мигающего светодиода можно отнести, помимо маленького размера и компактности устройства световой сигнализации, еще и широкий диапазон допустимого напряжения тока. К тому же он может излучать различные цвета.

В отдельные виды мигающих светодиодов встраивают около трех разноцветных светодиодов, у которых разная периодичность вспышек.

схема включения светодиода в сеть 220 вольт

Мигающие светодиоды еще и достаточно экономичны. Дело в том, что электронная схема включения светодиода сделана на МОП-структурах, благодаря чему мигающим диодом можно заменить отдельный функциональный узел. По причине маленьких габаритов мигающие светодиоды часто применяются в компактных устройствах, требующих наличия маленьких радиоэлементов.

На схеме мигающие светодиоды обозначаются так же, как и обычные, исключение лишь в том, что линии стрелок не просто прямые, а пунктирные. Тем самым они символизируют мигание светодиода.

Через прозрачный корпус мигающего светодиода видно, что он состоит из двух частей. Там на отрицательном выводе катодного основания находится кристалл светоизлучающего диода, а на анодном выводе расположен чип генератора.

Соединены все составляющие данного устройства с помощью трех золотистых проволочных перемычек. Чтобы отличить мигающий светодиод от обычного, достаточно просмотреть прозрачный корпус на свету. Там можно увидеть две подложки одинаковой величины.

На одной подложке находится кристаллический кубик светоизлучателя. Он состоит из редкоземельного сплава. Для того чтобы увеличить световой поток и фокусировку, а также для формирования диаграммы направленности используют параболический алюминиевый отражатель. Этот отражатель в мигающем светодиоде по размеру меньше, чем в обычном. Это по причине того, что во второй половине корпуса находится подложка с интегральной микросхемой.

схемы включения мигающих светодиодов

Между собой эти две подложки сообщаются при помощи двух золотистых проволочных перемычек. Что касается корпуса мигающего светодиода, то он может быть выполнен либо из светорассеивающей матовой пластмассы, либо из прозрачного пластика.

Из-за того, что излучатель в мигающем светодиоде находится не на оси симметрии корпуса, то для функционирования равномерной засветки необходимо применение монолитного цветного диффузного световода.

Наличие прозрачного корпуса можно встретить лишь у мигающих светодиодов большого диаметра, которые обладают узкой диаграммой направленности.

Из высокочастотного задающего генератора состоит генератор мигающего светодиода. Его работа постоянна, а частота составляет около 100 кГц.

Наравне с высокочастотным генератором также функционирует делитель на логических элементах. Он, в свою очередь, осуществляет деление высокой частоты до 1,5-3 Гц. Причиной совместного применения высокочастотного генератора с делителем частоты является то, что для работы низкочастотного генератора необходимо наличие конденсатора с наибольшей ёмкостью для времязадающей цепи.

Доведение высокой частоты до 1-3 Гц требует наличия делителей на логических элементах. А их достаточно легко можно применить на небольшом пространстве полупроводникового кристалла. На полупроводниковой подложке, помимо делителя и задающего высокочастотного генератора, находится защитный диод и электронный ключ. Ограничительный резистор встраивается в мигающие светодиоды, которые рассчитаны на напряжение тока от 3 до 12 вольт.

простая схема плавного включения светодиода

Низковольтные мигающие светодиоды

Что касается низковольтных мигающих светодиодов, то у них отсутствует ограничительный резистор. При переполюсовке питания требуется наличие защитного диода. Он необходим для того, чтобы не допустить выхода микросхемы из строя.

Чтобы работа высоковольтных мигающих светодиодов была долговременной и шла бесперебойно, напряжение питания не должно превышать 9 вольт. Если напряжение тока возрастет, то рассеиваемая мощность мигающего светодиода увеличится, что приведет к нагреву полупроводникового кристалла. Впоследствии из-за чрезмерного нагрева начнется деградация мигающего светодиода.

Когда необходимо проверить исправность мигающего светодиода, то для того, чтобы это сделать безопасно, можно использовать батарейку на 4,5 вольта и включенный последовательно со светодиодом резистор сопротивлением 51 Ом. Мощностью резистора должна быть не менее 0,25 Вт.

Монтаж светодиодов

Монтаж светодиодов - очень важный вопрос по той причине, что это непосредственно связано с их жизнеспособностью.

Так как светодиоды и микросхемы не любят статику и перегрев, то паять детали необходимо как можно быстрее, не больше пяти секунд. При этом нужно использовать паяльник малой мощности. Температура жала не должна превышать 260 градусов.

При пайке дополнительно можно использовать медицинский пинцет. Пинцетом светодиод зажимается ближе к корпусу, благодаря чему при пайке создается дополнительный отвод тепла от кристалла. Чтобы ножки светодиода не сломались, их необходимо гнуть не сильно. Они должны оставаться параллельно друг другу.

Для того чтобы избежать перегрузки либо замыкания, устройство нужно снабдить предохранителем.

Схема плавного включения светодиодов

Схема плавного включения и выключения светодиодов - популярная среди других, ею интересуются автовладельцы, желающие тюнинговать свои машины. Данная схема применяется для подсветки салона автомобиля. Но это не единственное ее применение. Она используется и в других сферах.

Простая схема плавного включения светодиода должна состоять из транзистора, конденсатора, двух резисторов и светодиодов. Необходимо подобрать такие токоограничивающие резисторы, которые смогут пропускать ток в 20 мА через каждую цепочку светодиодов.

Схема плавного включения и выключения светодиодов не будет полноценной без наличия конденсатора. Именно он позволяет ее собрать. Транзистор должен быть p-n-p-структуры. А ток на коллекторе не должен быть меньше 100 мА. Если схема плавного включения светодиодов собрана правильно, то на примере салонного освещения автомобиля за 1 секунду будет проходить плавное включение светодиодов, а после закрытия дверей - плавное выключение.

схема включения мощного светодиода

Поочередное включение светодиодов. Схема

Одним из световых эффектов с применением светодиодов является поочередное их включение. Он именуется бегущим огнем. Работает такая схема от автономного питания. Для ее конструкции применяется обычный переключатель, который подает напряжение питания поочередно на каждый из светодиодов.

Рассмотрим устройство, состоящее из двух микросхем и десяти транзисторов, которые вкупе составляют задающий генератор, управление и саму индексацию. С выхода задающего генератора импульс передается на блок управления, он же десятичный счетчик. Затем напряжение поступает на базу транзистора и открывает его. Анод светодиода оказывается подключен к плюсу источника питания, что приводит к свечению.

Второй импульс формирует логическую единицу на следующем выходе счетчика, а на предыдущем появится низкое напряжение и закроет транзистор, в результате чего светодиод погаснет. Далее все происходит в той же последовательности.

fb.ru

Как подключить светодиоды к 220 В используя простые схемы

как подключить светодиоды к 220 в

Достаточно часто нам приходится сталкиваться с таким вопросом - как подключить светодиоды к 220 В, или попросту к электрической сети переменного напряжения. Как таковое, прямое подключение диода напрямую к сети не несет никакой смысловой нагрузки. Даже при использовании определенных схем мы не получим необходимого эффекта.

Если нам необходимо подключить светодиод к сети постоянного напряжения, то такая задача решается очень просто - ставим ограничительный резистор и забываем. Светодиод как работал "в прямом направлении" так и будет работать.

Если же нам необходимо использовать сеть 220 В для подключения LED, то на него будет уже воздействовать обратная полярность. Это хорошо видно, взглянув на график синусоиды, где каждый полупериод синусоида имеет свойство менять свой знак на противоположный.Синусоида переменного тока при подключении светодиода к 220 В

В данном случае мы не получим свечение в этом полупериоде. В принципе, ничего страшного))), но светодиод выйдет из строя очень быстро.

Вообще гасящий резистор стоит выбирать из условия расчетного напряжения в 310 В. Объяснять почему так - муторное занятие, но стоит просто это запомнить, т.к. действующее значение напряжения составляет 220 В, а амплитудное уже увеличивается на корень из двух от действующего. Т.е. таким образом мы получаем приложенное прямое и обратное напряжение к светодиоду. Резистор подбирается на 310В обратной полярности, дабы защитить светодиод. Каким образом можно произвести защиту мы посмотрим ниже.

к оглавлению ↑

Как подключить светодиоды к 220 В по простой схеме, используя резисторы и диод - вариант 1

Первая схема работает по принципу гашения обратного полупериода. Подавляющее большинство полупроводников отрицательно относятся к обратному напряжение. Для блокировки его нам нужен диод. Как правило, в большинстве случаев используют диоды типа IN4004, рассчитанный на напряжение больше 300 В.Простая схема подключения светодиода к 220 В переменного напряжения

к оглавлению ↑

Подключение LED по простой схеме с резистором и диодом - вариант 2

Другая простая схема показывает, как подключить светодиоды к 220 В переменного напряжения не намного сложнее и ее также можно отнести к простым схемам.Другая простая схема подключения светодиода к сети 220 В

Рассмотрим принцип работы. При положительной полуволне ток идет сквозь резисторы 1 и 2, а также сам светодиод. В данном случае стоит помнить, что падение напряжения на светодиоде будет обратным для обычного диода - VD1. Как только в схему "попадает" отрицательная полуволна 220 В, ток пойдет через обычный диод и резисторы. В этом случае уже прямое падение напряжение на VD1 будет обратным по отношению к светодиоду. Все просто.

При положительной полуволне сетевого напряжения ток протекает через резисторы R1, R2 и светодиод HL1 (при этом прямое падение напряжения на светодиоде HL1 является обратным напряжением для диода VD1). При отрицательной полуволне сетевого напряжения ток протекает через диод VD1 и резисторы R1, R2 (при этом прямое падение напряжения на диоде VD1 является обратным напряжением для светодиода HL1).

к оглавлению ↑

Расчетная часть схемы

Номинальное напряжение сети:

UС.НОМ = 220 В

Принимается минимальное и максимальное напряжение сети (опытные данные):

UС.МИН = 170 ВUС.МАКС = 250 В

Принимается к установке светодиод HL1, имеющий максимально допустимый ток:

IHL1.ДОП = 20 мА

Максимальный расчетный амплитудный ток светодиода HL1:

IHL1.АМПЛ.МАКС = 0,7*IHL1.ДОП = 0,7*20 = 14 мА

Падение напряжения на светодиоде HL1 (опытные данные):

UHL1 = 2 В

Минимальное и максимальное действующее напряжение на резисторах R1, R2:

UR.ДЕЙСТВ.МИН = UС.МИН = 170 ВUR.ДЕЙСТВ.МАКС = UС.МАКС = 250 В

Расчетное эквивалентное сопротивление резисторов R1, R2:

RЭКВ.РАСЧ = UR.АМПЛ.МАКС/IHL1.АМПЛ.МАКС = 350/14 = 25 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ.РАСЧ = 2502/25 = 2500 мВт = 2,5 Вт

Расчетная суммарная мощность резисторов R1, R2:

PR.РАСЧ = PR.МАКС/0,7 = 2,5/0,7 = 3,6 Вт

Принимается параллельное соединение двух резисторов типа МЛТ-2, имеющих суммарную максимально допустимую мощность:

PR.ДОП = 2·2 = 4 Вт

Расчетное сопротивление каждого резистора:

RРАСЧ = 2*RЭКВ.РАСЧ = 2*25 = 50 кОм

Принимается ближайшее большее стандартное сопротивление каждого резистора:

R1 = R2 = 51 кОм

Эквивалентное сопротивление резисторов R1, R2:

RЭКВ = R1/2 = 51/2 = 26 кОм

Максимальная суммарная мощность резисторов R1, R2:

PR.МАКС = UR.ДЕЙСТВ.МАКС2/RЭКВ = 2502/26 = 2400 мВт = 2,4 Вт

Минимальный и максимальный амплитудный ток светодиода HL1 и диода VD1:

IHL1.АМПЛ.МИН = IVD1.АМПЛ.МИН = UR.АМПЛ.МИН/RЭКВ = 240/26 = 9,2 мАIHL1.АМПЛ.МАКС = IVD1.АМПЛ.МАКС = UR.АМПЛ.МАКС/RЭКВ = 350/26 = 13 мА

Минимальный и максимальный средний ток светодиода HL1 и диода VD1:

IHL1.СР.МИН = IVD1.СР.МИН = IHL1.ДЕЙСТВ.МИН/КФ = 3,3/1,1 = 3,0 мАIHL1.СР.МАКС = IVD1.СР.МАКС = IHL1.ДЕЙСТВ.МАКС/КФ = 4,8/1,1 = 4,4 мА

Обратное напряжение диода VD1:

UVD1.ОБР = UHL1.ПР = 2 В

Расчетные параметры диода VD1:

UVD1.РАСЧ = UVD1.ОБР/0,7 = 2/0,7 = 2,9 ВIVD1.РАСЧ = UVD1.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимается диод VD1 типа Д9В, имеющий следующие основные параметры:

UVD1.ДОП = 30 ВIVD1.ДОП = 20 мАI0.МАКС = 250 мкА

к оглавлению ↑

Минусы использования схемы подключения светодиодов к 220 В по варианту 2

Главные недостатки подключения светодиодов по этой схеме - малая яркость светодиодов, за счет малого тока. IHL1.СР = (3,0-4,4) мА и большая мощность на резисторах: R1, R2: PR.МАКС = 2,4 Вт.

к оглавлению ↑

Вариант 3 подключения LEDs к электрической сети переменного напряжения 220 В

При положительном полупериоде ток протекает через резистор R1, диод и светодиод. При отрицательном ток не протекает, т.к. диод в этом случае включается в обратное направление.Вриант схемы подключения

Расчет параметров схемы аналогичен второму варианту. Кому надо - посчитает и сравнит. Разница небольшая.

к оглавлению ↑

Минусы подключения по 3 варианту

Если самые "пытливые умы" уже посчитали, то могут сравнить данные со вторым вариантом. Кому лень - придется поверить на слово. Минус такого подключения - также низкая яркость светодиода, т.к. ток протекающий через полупроводник составляет всего IHL1.СР = (2,8-4,2) мА.

Зато при такой схеме мы получаем заметное снижение мощности резистора: РR1.МАКС = 1,2 Вт вместо 2,4 Вт полученных ранее.

к оглавлению ↑

Подключение светодиода на 220 В с использованием диодного моста - 4 вариант

4 схема подключения диодов

Как видно на графической картинке, в данном случае для подключения на 220 мы используем резисторы и диодный мост.

В данном случае ток через 2 резистора и светодиод ток будет протекать как при положительной, так и при отрицательной полуволне синусоиды за счет использования выпрямительного моста на диодах VD1-VD4.

UVD.РАСЧ = UVD.ОБР/0,7 = 2,6/0,7 = 3,7 ВIVD.РАСЧ = UVD.АМПЛ.МАКС/0,7 = 13/0,7 = 19 мА

Принимаются диоды VD1-VD4 типа Д9В, имеющие следующие основные параметры:

UVD.ДОП = 30 ВIVD.ДОП = 20 мАI0.МАКС = 250 мкА

к оглавлению ↑

Недостатки схемы подключения по 4 варианту

Если все рассчитать по приведенным выше формулам, то можно провести аналогию со 2 вариантом подключения. Минусом будет большая мощность на резисторах: PR.МАКС = 2,4 Вт.

Однако при такой схеме мы получим заметное увеличение яркости светодиода: HL1: IHL1.СР = (5,9-8,7) мА вместо (2,8-4,2) мА

В принципе, это самые распространенные схемы, которые нам показывают как подключить светодиоды к 220 В с применением обычного диода и резисторов. Для простоты понимания были приведены расчеты. Не для всех, может быть понятные, но кому надо, тот найдет, прочитает и разберется. Ну а если нет, то достаточно будет простой графической части.

к оглавлению ↑

Как подключить светодиод к 220 В используя конденсатор

Выше мы посмотрели, как легко, используя только диоды и резисторы, подключить к сети 220 В любой светодиод. Это были простые схемы. Сейчас посмотрим на более сложные, но лучшие в плане реализации и долговечности. Для этого нам понадобится уже конденсатор.

Токоограничивающий элемент - конденсатор. На схеме - C1. Конденсатор должен быть рассчитан на работу с напряжением не менее 400 В. После зарядки последнего ток через него будет ограничивать резистор.Схема подключения светодиода через конденсатор

к оглавлению ↑

 Подключение светодиода к сети 220 В на примере выключателя с подсветкой

Сейчас уже никого не удивишь выключателем с интегрированной подсветкой в виде светодиода. Разобрав его и разобравшись мы получим еще один способ, благодаря которому можем подключить любой светодиод к сети 220 В.Светодиодная подсветка в выключателе

Во всех выключателях с подсветкой используется резистор с номиналом не менее 20 кОм. Ток в этом случае ограничивается порядка 1А. При включении в сеть такой светодиод будет светиться. Ночью его легко можно различить на стене. Обратный же ток в этом случае будет очень маленьким и не сможет повредить полупроводник. В принципе, такая схема также имеет право на существование, но свет от такого диода будет все-таки ничтожно маленьким. И стоит ли овчинка выделки - не понятно.

к оглавлению ↑

Видео на тему подключения светодиода к сети 220 В

Ну и в конце всего длинного поста посмотрим видео на тему : "как подключить светодиоды к 220 В". Для тех, кому лень все читать было.

leds-test.ru

Как подключить светодиод к 220 В ⋆ diodov.net

У многих начинающих радиолюбителей возникает мысль, как подключить светодиод к 220 В без применения трансформатора. Ведь габариты даже самого маломощного трансформатора сравнительно велики. Это в первую очередь вызвано высоким сетевым напряжением, в результате чего первичная обмотка трансформатора имеет большое число витков.

Основной проблемой подключения светодиода к 220 вольтам на прямую, без трансформатора является ограничение ток, протекающего через него вследствие проложенного напряжения. Оценим его величину для понимания сети происходящего.

Упрощенная схема подключения светодиода к 220 В

Светодиод – это светоизлучающий полупроводниковый прибор, как и «обычный» диод пропускает ток лишь в одном направлении. Поскольку переменное напряжение изменяет свое направление дважды за период, то в один полупериод ток протекает, а во второй – нет. Поэтому, чтобы определить средний ток, протекающий через светодиод, следует действующее напряжения 220 В разделить на два. Получим 110 В. Эту величину возьмем за основу при дальнейших расчетах.

Сопротивление любого полупроводника нелинейное, т.е. нелинейно зависит от величины приложенного напряжения. Не вникая в подробности, с приемлемой точностью примем 1,7 Ом. Тогда ток, протекающий через полупроводниковый кристалл равен 110/1,7 = 65 А! Естественно, такой огромный ток сожжёт полупроводниковый прибор. Поэтому обязательно нужно последовательно со светодиодом включать какое-либо сопротивление.

Если в цепи постоянного напряжения в качестве сопротивления можно использовать только резистор, то на переменном напряжении есть возможность применять еще и конденсатор или катушку индуктивности. Их еще называют реактивными элементами. В один полупериод времени они накапливают энергию (в виде электрического или магнитного поля), а в следующий полупериод возвращают ее в направлении источника питания. При этом электрическая энергия практически не потребляется.

Применение катушки индуктивности не рассматривается, по ряду причин, связанных с ее нагревом.

Как подключить светодиод к 220 В с помощью резистора

Для большей наглядности изобразим расчетную схему.

Схема подключения светодиода к 220 В через резистор

Такая схема очень распространена в цепях индикации работы электротехнических устройств, например, подсветки выключателя или кнопки электрического чайника. Главным достоинством данной схемы является ее простота, а отсюда и надежность.

С целью сравнения полученных результатов возьмем два светодиода. Один индикаторного типа, а второй более мощный.

Определим сопротивление R1, необходимое для первого светодиода:

Формула расчета сопротивления резистора для светодиода

Сетевое напряжение делим на два по уже указанной выше причине.

Мощность рассеивания резистор равна:

Мощность рассеивания резистора для светодиода

Принимаем 2 ватта, поскольку такой номинал является ближайшим в сторону увеличения из стандартного ряда мощностей.

Теперь определим сопротивление резистора, соединенного последовательно со вторым светодиодом:

Сопротивление резистора для мощного светодиода

Мощность рассеивания равна:

Мощность рассеивания резистора для мощного светодиода

Резисторы с такой мощностью рассеивания имеют значительные размеры и немалую стоимость, поэтому не рационально их применение в цепи с мощными светодиодами. Более эффективным будет замена его конденсатором.

Для защиты полупроводникового прибора встречно-параллельно подсоединяют диод.

Схема защиты светодиода от пробоя

Его назначение состоит в следующем. В проводящий полупериод на светодиоде падает напряжения порядка 2…3 В. В не проводящий полупериод он заперт и к его выводам прикладывается обратное полное действующее напряжение 220 В, амплитуда которого достигает 310 В. Поэтому существует вероятность пробоя полупроводникового прибора. Однако если создать путь для протекания тока в этот непроводящий полупериод времени, то снизится амплитуда опасного обратного напряжения. Именно это достигается за счет применения шунтирующего диода.

Кстати, вместо него можно применять еще один светодиод, желательно со схожими параметрами.

Схема включения двух светодиодов в противофазе

Визуально нам будет казаться, что оба они светят все время, но на самом деле они мерцают с частотой 50 Гц. Причем, когда первый светит, второй гаснет и наоборот, т.е. работают в противофазе.

В этом случае необходимо учесть, что через резистор ток протекает в оба полупериода времени, поэтому его сопротивление нужно снизить вдвое. Далее в последующих расчетах мы будем пользоваться схемой без шунтирующего диода.

Как подключить светодиод к 220 В с помощью конденсатора

Выше уже было сказано, что конденсатор обладает реактивным сопротивлением переменному току, т.е. он не потребляет активную мощность, как резистор, поэтому практически не нагревается. Постоянный ток он не пропускает и является для него огромным сопротивлением, которое можно приравнять к разрыву цепи.

Как подключить светодиод к 220 В с помощью конденсатора

Если же на конденсатор подать переменное напряжение, то через него будет, упрощенно говоря протекать ток. Причем сопротивление этого реактивного элемента обратно пропорционально зависит от частоты f, т.е. с ростом f оно снижается. Таким же образом сопротивление зависит и от емкости:

Формула емкостного сопротивления конденсатора

Расшифровка формулы емкостного сопротивления конденсатора

Из приведенной формулы нам необходимо найти значение емкости:

Формула емкости конденсатора

Сопротивления Xс мы принимаем аналогично ранее найденным для резисторов: XС1 = R1 = 11000 Ом; XС2 = R2 = 306 Ом.

Подставляем данные значения и находим емкости:

Емкость конденсатора для светодиода

Внимание! Все конденсаторы, подключаемые в сеть 220 В, должны быть рассчитаны на напряжение не менее 400 В!!!

Главным и очень существенным недостатком такой схемы является протекание значительного тока в момент подключения к сети. При этом величина его может превышать в несколько раз номинальный ток светодиода, в результате последний может выйти из строя.

Следует учитывать, что чем больше емкость конденсатора, тем выше значение тока в момент включения. Поэтому для защиты полупроводникового прибора рекомендуется последовательно с конденсатором включать резистор.

Как подключить светодиод к 220 В

Исходя из тех соображений, что резистор с мощностью рассеивания P = 5 Вт имеет небольшие габариты, то рассчитаем величину его сопротивления при данных ограничениях для схемы с более мощным светодиодом:

Формула определения сопротивления резистора через мощность и ток

Из номинального ряда сопротивлений выбираем ближайшее значение 39 Ом.

Конечно, коэффициент полезного действия данной схемы очень снизится, поскольку для питания светодиода мощностью 1 Вт необходимо затратить 6 Вт с источника питания. 5 ватт будут попросту греть резистор.

 

 

diodov.net

Схема питания светодиода от 220 вольт, как подключить. Светодиод индикатор 220 В.

 

 

 

Тема: рабочий вариант электрической схемы запитки светового диода от 220 V.

 

Порой возникает необходимость подключить обычный светодиод к сетевому переменному напряжению величиной 220 вольт. Например, это может быть нужно при установке светодиодного индикатора на переднюю панель какого-либо электроприбора, который будет сигнализировать об определенном режиме работы той или иной функции устройства. Допустим это индикатор наличия сетевого питания, или сигнальная лампа аварии и т.д. Как известно, большинство обычных индикаторных светодиодов изначально рассчитаны на постоянное низковольтное напряжение величиной от 1,5 до 4 вольт. Сила тока, которую могут потреблять такие светодиоды около 5 - 20 миллиампер. Следовательно, чтобы запитать такой световой диод от более высокого напряжения, да к тому же переменного типа, нужна специальная схема.

 

 

Данная схема, по моему мнению, является наилучшим вариантом подключения индикаторного светодиода к переменному, сетевому напряжению 220 вольт. Она имеет, пожалуй, всего один недостаток, это относительно большое количество деталей. Во всем остальном она хороша (ее элементы не нагреваются, светодиод защищен от пробоя высоким обратным напряжением, имеющиеся незначительные пульсации света не заметны человеческому глазу, путем изменения емкости конденсатора можно подбирать нужную силу тока, которую будет потреблять светодиод, возможность подключения множества световых диодов в схему).

 

 

Теперь давайте разберем саму электрическую схему, ее работу, назначение функциональных элементов. Итак, в начале схемы стоит конденсатор C1, который является ограничителем тока. Как известно конденсаторы не пропускают через себя постоянный ток, тем самым являясь для него бесконечно большим сопротивлением. Переменный же ток конденсаторы могут весьма хорошо пропускать, и величина этого тока будет зависеть от частоты и от емкости конденсатора. Поскольку в обычной электросети частота стандартизирована и равна 50 герцам, то силу тока в схеме мы можем менять только за счет подбора соответствующей емкости.

 

Стоит заметить, что конденсатор C1 не должен быть электролитом (иметь полюса)! Поскольку в этом случае он попросту может взорваться. В схему ставится емкость пленочного типа. Величина напряжения данного токоограничительного конденсатора должна быть более 250 вольт (можно и 250 В, но лучше 400 В или 600 В). В данной схеме питания индикаторного светодиода от напряжения 220 вольт емкость конденсатора равна 220 nF (220 нанофарад, они же 0,22 микрофарад). Данная емкость соответствует силе тока около 15 миллиампер, что является вполне оптимальным вариантом питания обычного индикаторного светодиода. Напряжение же на световом диоде осядет ровно столько, сколько ему требуется для своей нормальной работы (в схеме питающая энергия контролируется силой тока, а нужное постоянное напряжение возникает вследствии падения напряжения на светодиоде).

 

Вот таблица зависимости емкости конденсатора C1 от силы тока светодиода:

 

 

Параллельно конденсатору C1 стоит резистор R1. Его функция заключается в разряде конденсатора, после отключения схемы от питающего напряжения. То есть, данная схема питания индикаторного светового диода будет работать и без R1, но тогда существует большая вероятность, что Вас может ударить небольшим током (при случайном соприкосновении с токопроводящими частями схемы) даже после отключения питания от этой схемы. Этот резистор просто снимает накопленный электрический заряд с конденсатора, и все. Его можно поставить небольшой мощности, величиной около 1 мегаома (от 500 килоом до 2 мегаом).

 

На схеме можно увидеть еще один резистор R2, который является токоограничительным. Для переменного тока фиксированной частоты и напряжения конденсатор будет иметь свое определенное реактивное сопротивления, которое нам и ограничивает силу тока для питания светодиода. Но вот для случайных всплесков напряжения, что возникают в электросети по причине включения и выключения различных, мощных индуктивных нагрузок (сварочные аппараты, мощные трансформаторные блоки питания, индукционные электроплиты, обогреватели и т.д.) наш конденсатор будет иметь практически нулевое сопротивление.

 

То есть, если Ваш сосед часто включает и выключает такие мощные индуктивные нагрузки, то возникающие всплески напряжения легко пройдут через конденсатор и осядут на индикаторном светодиоде, что с большой вероятностью его может вывести из строя. Именно силу тока таких всплесков призван ограничивать резистор R2. В схеме номинал этого резистора может быть от 68 ом до 150 ом (мощность 0,5 ватт).

 

Ну и последней, важной функциональной частью схемы питания индикаторного светодиода от напряжения 220 вольт является выпрямительный диодный мост. Его роль заключается в преобразовании переменного напряжения в постоянное (хотя и скачкообразное). Этот мост все полуволны переменного напряжения переводит в одну полуволну, частота которой уже будет 100 герц. Именно эта частота уже не воспринимается как мерцающая. То есть, раздражающих световых мерцаний мы не заметим.

 

При подборе этого диодного моста важно чтобы его диоды (или готовый мост в виде целостной сборки) были рассчитаны на обратное напряжение более 400 вольт, и силу прямого тока более того, что будет потребляться индикаторным светодиодом. В схеме я поставил на диодный мост диоды типа 1N4007, у которых обратное напряжение равно 1000 вольт, и прямой ток они выдерживают до 1 ампера. Стоят они недорого! Имеют маленькие размеры. Широко распространены, легко доступны.

 

Ну вот и все, что касается элементов данной электрической схемы питания светодиода индикатора от переменного, сетевого напряжения 220 вольт. Как я уже говорил выше, единственный недостаток этой схемы заключается в том, что она содержит относительно много элементов. Во всем остальном она хороша. Так что если кому нужно, берите и собирайте ее.

 

P.S. На просторах интернета можно найти множество более простых схем для питания световых диодов от 220 В. Они имеют, как свои достоинства, так и свои недостатки. Среди них я выбрал наиболее оптимальный и рабочий вариант, чем собственно с вами и поделился в этой статье.

electrohobby.ru

Подключение светодиода к 220 вольтам, схемы, примеры (видео, калькулятор)

 При конструировании радиоаппаратуры часто встает вопрос о индикации питания. Век ламп накаливания для индикации уже давно прошел, современным и надежным радиоэлементом индикации на настоящий момент является светодиод. В данной статье будет предложена схема подключения светодиода к 220 вольтам, то есть рассмотрена возможность запитать светодиод от бытовой сети переменного тока - розетки, которая есть в любой благоустроенной квартире. Если вам необходимо будет запитать несколько светодиодов одновременно, то об этом мы также упомянем в нашей статье. Фактически такие схемы применяются для светодиодных гирлянд или ламп, это немного другое. Фактически здесь необходимо реализовать так называемый драйвер для светодиодов. Итак, давайте не будем все валить в одну кучу. Попробуем разобраться по порядку.

Принцип понижения напряжения питания для светодиода

 Для питания низковольтной нагрузки может быть выбрана два пути питания. Первый, это так скажем классический вариант, когда питание снижается за счет резистора. Второй, вариант, который часто используется для зарядных устройств, это гасящий конденсатор. В этом случае напряжение и ток идут словно импульсами, и эти самые импульсы и должны быть точно подобраны, дабы светодиод, нагрузка не сгорела. Здесь необходимо более детальный расчет чем с резистором. Третий вариант, это комбинированное питание, когда применяется и тот и другой способ понижения напряжения. Что же, теперь обо всех этих вариантах по порядку.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор)

 Схема подключения светодиода к 220 вольтам на вид не сложная, принцип ее работы прост. Алгоритм следующий. При подаче напряжения начинает заряжаться конденсатор С1, при этом фактически с одной стороны он заряжается напрямую, а со второй через стабилитрон. Стабилитрон должен соответствовать напряжению свечения светодиода. Так в итоге полностью заряжается конденсатор. Далее приходит вторая полуволна, когда конденсатор начинает разряжаться. В этом случае напряжение также идет через стабилитрон, который теперь работает в своем штатном режиме и через светодиод. В итоге на светодиод в это время подается напряжение равное напряжению стабилизации стабилитрона. Здесь важно подобрать стабилитрон с тем же номиналом, что и светодиод.

 

схема подключения светодиода к сети 220 вольт переменного тока

Здесь все вроде как просто и теоретически реализуется нормально. Однако точные расчеты не столь просты. Ведь по сути надо рассчитать емкость конденсатора, который будет являться в данном случае гасящим. Делается это по формуле.

Прикинем: 3200*0,02/√(220*220-3*3)=0,29 мКФ. Вот какой должен быть конденсатор при напряжении для светодиода 3 вольта, а токе 0,02 А. Вы же можете подставить свои значения и рассчитать свой вариант.

Радиодетали для подключения светодиода к 220 вольтам

Мощность резистора может быть минимальной вполне подойдет 0.25 Вт (номинал на схеме в омах).Конденсатор (емкость указана в микрофарадах) лучше подобрать с запасом, то есть с рабочим напряжением в 300 вольт. Светодиод может быть любой, например с напряжением свечения от 2 вольт АЛ307 БМ или АЛ 307Б и до 5.5 воль - это КЛ101А или КЛ101Б.Стабилитрон как мы уже упоминали должен соответствовать напряжению питания светодиода, так для 2 вольт это КС130Д1 или КС133А (напряжение стабилизации 3 и 3.3 вольта соответственно), а для 5.5 вольт КС156А или КС156Г

Такой способ имеет свои недостатки, так как при незначительном скачке напряжения или отклонении в работе конденсатора, можем получить напряжения куда более высокое нежели 3 вольта. Светодиод сгорит в один момент. Плюсом является экономичность схемы, так как она импульсная. Скажем так, не высокая надежность, но экономичность. Теперь о варианте комбинированном.

Схема подключения светодиода к напряжению 220 вольт (гасящий конденсатор + резистор)

Здесь все тоже самое, за исключением того, что в цепочку добавили резистор. В целом влияние резистора способно сделать всю схему более предсказуемое, более надежной. Здесь будет меньше импульсных токов с высоким напряжением. Это хорошо!

 

(...как и н на схеме выше использован гасящий конденсатор + резистор)

Все плюсы и минусы сродни варианту с гасящим конденсатором, но надежности здесь тоже нет. Даже более, того, использование диода, а не  стабилитрона, скажется на защите светодиода при разрядке конденсатора. То есть весь ток потечет именно через светодиод, а не как в предыдущем случае через светодиод и стабилитрон. Вариант этот так себе. И вот последний случай, с применением резистора.

Схема подключения светодиода к напряжению 220 вольт (резистор)

Именно эти схемы мы вам рекомендуем к сборке. Здесь все по классическим принципам, закону Ома и формуле расчета мощности. Первое, рассчитаем сопротивление. При расчете сопротивления будет пренебрегать внутренним сопротивлением светодиода и падением напряжения на нем. В этом случае получим небольшой запас, так как фактическое падение напряжения на нем, позволит ему работать в режиме чуть более щадящем, нежели предписано характеристиками. Итак, скажем у нас ток светодиода 0,01 А и 3 вольта.

R=U/I=220/0,01=22000 Ом=22 кОм. В схеме же 15 кОм, то есть ток приняли 0,014666 А, что вполне допустимо. Вот так и рассчитываются резисторы для этих случаев. Единственное здесь все будет зависеть от того, сколько резисторов вы применяете. Если два как на первой схеме, то делим получившийся результат пополам.

 

Если один, то само собой все напряжение будет падать только на нем.

Ну, как и положено, скажем о плюсах и минусах. Плюс один и очень большой, схема очень надежная. Минус тоже один, то что все напряжение будет падать на 1-2 резисторе, а значит он будет рассеивать большую мощность. Давайте прикинем. P=U*I=220*0,02=4,4 Ватта. То есть аж 4 Ватта должен быть резистор, если ток будет 0,02 А. В этом случае стоит щепетильно подойти к выбору резистора, он должен быть не менее 3-4 Ватт. Ну и сами понимаете, что об экономичности в этом случае речи не идет, когда на резисторе рассеивается 4 Ватта, а светодиодом можно пренебречь. Фактически это почти как маленькая светодиодная лампа, а горит всего лишь 1 светодиод.

Подключение нескольких светодиодов к 220 вольтам

 Когда вам необходимо подключить сразу несколько светодиодов, это несколько друга история. Фактически такие вариации схемы, еще вернее схемы стабилизатора для светодиодов называют драйвером. Видимо от слова drive (англ.) в движении. То есть вроде как схема запускающая в работу группу светодиодов. Не будем говорить о корректности применения данного слова и о новых словах, которые мы постоянно заимствуем из других языков. Скажем лишь, что это несколько иной вариант, а значит и разбирать его мы будем в другой нашей статье "Драйвер для светодиодов (светодиодной лампы)".

Видео о подключении светодиода к сети 220 вольт

А теперь тоже самое, но на видео, для тех кто видимо ленился читать;)

Итак, если хотите подключить светодиод надежно, но чуть с завышенными энергозатратами, то вам к сборке рекомендуется последних два варианта из статьи. Для всех ищущих приключений - первый вариант в самый раз!

Ну и напоследок калькулятор для тех, кто не в состоянии осилить подсчеты по формулам сам или лень;)

xn-----7kcglddctzgerobebivoffrddel5x.xn--p1ai


Каталог товаров
    .