интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Асинхронный двигатель схема подключения. Асинхронный двигатель схема


Асинхронный двигатель - технические характеристики и принцип работы

Среди разнообразия выпускаемых на сегодняшний день типов электрических моторов большое распространение получили асинхронные двигатели. Их мощность и эффективность обеспечивает использование в деревообрабатывающей и металлообрабатывающей промышленности, в насосных агрегатах, на фабриках, в станках и ручном электрическом инструменте.

асинхронный трехфазный двигатель

асинхронный трехфазный двигатель

Содержание:

  1. Асинхронный двигатель: что это такое
  2. Трехфазный асинхронный двигатель. Принцип работы
  3. Однофазный асинхронный двигатель
  4. Двухфазный асинхронный двигатель
  5. Схемы подключения
  6. Функциональные и эксплуатационные особенности
  7. Как производятся расчеты

Асинхронный двигатель: что это

Асинхронный двигатель – это асинхронная электрическая машина, применяемая для преобразования электрической энергии в механическую. Асинхронный дословно означает неодновременный – здесь имеется в виду, что у асинхронного двигателя магнитное поле всегда имеет большую частоту вращения, чем ротор, который словно пытается его догнать. Работают эти машины от сетей с переменным током.

Любой асинхронный двигатель состоит из двух ключевых составляющих: ротора и статора. Эти части не контактируют между собой и отделены друг от друга воздушным зазором, в котором формируется подвижное магнитное поле.

Статор асинхронной машины состоит из следующих частей:

  1. Корпус. Служит для скрепления всех деталей мотора. Для двигателей небольшого размера, как правило, используют цельные литые корпусы из чугуна, стальных и алюминиевых сплавов.
  2. Сердечник или магнитопроводник. Собирается из пластин, для изготовления которых применяют специальную электрическую сталь. Запрессовывается в корпус и улучшает магнитно-индукционные качества машины. Каждая пластина сердечника покрывается особым лаком, позволяющим уменьшить потери при возникновении вихревых токов. В некоторых случаях устройство асинхронного двигателя предусматривает установку корпуса-сердечника, совмещающего в себе обе функции.
  3. Обмотки. Устанавливаются в пазы сердечника. Представляет собой три катушки из меднопроволочных секций, расположенные под углом в 120˚ относительно друг друга. Называется первичной, потому что подключается к сети напрямую.

Конструкция ротора состоит из основного блока с вентиляционной крыльчаткой, опирающегося на подшипники. Связь ротора с приводимым в движение механизмом обеспечивается с помощью прямого подключения, редукторов или других способов передачи механической энергии. В асинхронных двигателях используются два вида роторов:

  1. Массивный ротор – единая схема из прочного ферромагнитного соединения. Внутри неё индуцируются токи, и она же выполняет в конструкции роль магнитопровода.
  2. Короткозамкнутый ротор (изобретён великим русским инженером Михаилом Осиповичем Доливо-Добровольским, как и весь трёхфазный ток) – система соединенных с помощью колец проводников, похожая по внешнему виду на беличье колесо. Внутри него индуцируются токи, чье электромагнитное поле вступает во взаимодействие с магнитным полем статора, в результате чего ротор приводится в движение.
беличье колесо

беличье колесо

Рекомендуем посмотреть это видео. Оно хоть и старое, но интересное и познавательное. Позволит закрыть непонятные моменты.

Трехфазный асинхронный двигатель. Принцип работы

Принцип действия асинхронного двигателя заключается во взаимном расположении обмоток и трехфазном напряжении, что приводит к возникновению вращающегося магнитного поля, которое и выступает движущей силой.

Подробнее говоря, при подаче питания на первичную обмотку, на фазах образуются три магнитных потока, изменяющихся в зависимости от частоты входного напряжения. Они смещены между собой не только в пространстве, но и во времени, благодаря чему и появляется вращающийся магнитный поток.

Во время вращения результирующий поток создает ЭДС в роторных проводниках. По причине того, что обмотка ротора представляет собой замкнутую цепь, в ней создается ток, создающий пусковой момент в направлении вращения магнитного поля статора. Это приводит к вращению ротора после превышения пусковым моментом его тормозного момента. Наблюдаемое в этот момент явление называется скольжением — величиной, показывающей в виде процентов соотношение частоты вращения магнитного поля к частоте вращения ротора. соотношение частоты вращения магнитного поля к частоте вращения ротора(n1 – частота магнитного поля статора; n2 – частота вращения ротора)

Скольжение является очень важным параметром. На старте его величина всегда равна 1 и, естественно, становится меньше по мере увеличения разности между n1 и n2, что сопровождается также уменьшением электродвижущей силы и вращающего момента. Во время работы на холостом ходу скольжение минимально и растет по мере увеличения статического момента. Достигнув критического скольжения (обозначается как sкр), может спровоцировать опрокидывание двигателя. После уравновешивания тормозного и электромагнитного момента изменения величин прекращаются.

Таким образом, принцип действия асинхронного двигателя основывается на взаимодействии магнитного поля ротора, находящегося во вращении, и токов, наведенных в роторе этим же полем. При этом обязательным условием возникновения вращающего момента является разница частот вращения полей.

Однофазный асинхронный двигатель

Фактически, любой асинхронный электродвигатель является трехфазным и предусматривает подключение к трехфазной сети с напряжением 380 В. Однофазным или двухфазным его называют при подключении к однофазной электросети с напряжением 200 В, когда питание подается лишь на две обмотки. В такой схеме на основную рабочую обмотку подается чистая фаза от сети, а на другую питание идет через фазосдвигающий элемент, как правило, конденсатор. Такая схема позволяет создать необходимую индукцию для смещения ротора и запустить асинхронный двигатель от однофазной сети. Для дальнейшей его работы даже необязательно, чтобы пусковая обмотка (которую подключают через конденсатор) оставалась под напряжением.

Дело в том, что трехфазный асинхронный двигатель продолжает функционировать (под малой нагрузкой) даже если во время работы от него отключить подачу энергии по одному из питающих проводов, сымитировав таким образом работу от однофазной сети. Это обусловлено тем, что результирующее магнитное поле сохраняет вращение.

Двухфазный асинхронный двигатель

Создать вращающееся магнитное поле можно и при использовании двухфазных обмоток. Для обеспечения работоспособности схемы фазы обмоток необходимо расположить с 90˚ смещением друг от друга. При их питании токами, которые смещены по фазе на 90˚, возникает вращающееся магнитное поле, как и в трехфазной машине.

Асинхронный двухфазный электродвигатель приводится в движение за счет токов, образуемых при взаимодействии результирующего поля с роторными стержнями. Он ускоряется до того момента, пока не будет достигнута предельная скорость его вращения. Для питания такого двигателя от электросети однофазного тока необходимо создать сдвиг по фазе на одной из обмоток. Для этого применяются конденсаторы необходимой ёмкости.

На сегодняшний день все большее применение находят двухфазные асинхронных двигатели с полым алюминиевым ротором. Вращение ему придают вихревые токи, образованные внутри цилиндра, при взаимодействии с вращающимся магнитным полем.

Инерционный момент ротора наделяет двигатель хорошими характеристиками для использования в некоторых специализированных отраслях, как, например, системы, регулирующие работу мостовых и компенсационных схем. Одна из обмоток в них подключается к питающей сети через конденсатор, а через вторую проходит управляющее напряжение.

Схемы подключения

Для того чтобы подключить трехфазный асинхронный двигатель используют несколько различных схем, но чаще всего применяются «треугольник» и «звезда».

Треугольник

Преимущество данной схемы заключается в том, что при подключении согласно ей трехфазный двигатель может развивать наибольшую номинальную мощность. Для этого обмотки соединяются по принципу конец-начало, что на схематичном изображении похоже на треугольник, однако в виде треугольника понять что к чему, не всегда удобно. По этому предлагаем для анализа схему снизу, а затем фотографию уже в сборе (еще ниже).

схема подключения "треугольник"

схема подключения «треугольник»

В трехфазных электрических сетях величина линейного напряжения между выводами обмоток составляет 380 В. При этом нет необходимости создания рабочего нуля. Важно отметить, что в такой схеме может возникнуть большой пусковой ток, значительно перегружающий проводку.

Звезда

Этот способ подключения является наиболее используемым в сетях с трехфазным током 380 В. Название схемы связано с тем, что концы обмоток соединяются в одной точке, словно звездные лучи. Начала обмоток подключаются посредством аппаратуры коммутации к фазным проводникам. В такой конструкции линейной напряжение между начал составляет 380 В, а между местом соединения и подключения проводника – 200 В. Ниже представлена схема, а еще ниже уже фотография в собранном виде.

схема подключения "звезда"

схема подключения «звезда»

Трехфазный двигатель для 380 В сетей, подключенный таким образом, не способен развить максимальную силу из-за того, что напряжение на каждой обмотке составляет 220 В. В свою очередь, такая схема предотвращает возникновение перегрузок по току, чем обеспечивается плавный пуск.

Возможность подключения двигателя тем или иным способом, как правило, указывается на его табличке. Значок Y означает «звезду», а ∆ — «треугольник». Определить схему на уже подключенной машине можно по виду обмоток – одна двойная перемычка между ними говорит, что использована «звезда» (первое фото снизу), а если между клеммами обмоток видно три перемычки – «треугольник» (первое фото сверху).

Асинхронный двигатель, треугольник в сборе

Асинхронный двигатель, треугольник в сборе.

Асинхронный двигатель, звезда в сборе

Асинхронный двигатель, звезда в сборе

В случае, когда необходимо запустить трехфазный асинхронный электродвигатель в обратном направлении вращения, следует поменять два питающих провода от трехфазного источника местами.

Функциональные и эксплуатационные особенности

Характерные преимущества асинхронных двигателей:

  • В их конструкции нет коллекторных групп, которые увеличивают износ других видов двигателей за счет дополнительного трения.
  • Питание асинхронных электрических машин не требует использования преобразователей и может осуществляться промышленной трехфазной сети.
  • Из-за меньшего количества деталей и конструктивных элементов они относительно легко обслуживаются и имеют большой срок службы.

Среди недостатков можно отметить:

  • Сфера применения асинхронных двигателей несколько ограничена из-за малого пускового момента.
  • Высокая реактивная мощность, которую они потребляют во время работы, не оказывает влияние на механическую мощность.
  • Большие пусковые токи, потребляемые на пуске этих двигателей, могут превышать допустимые значения некоторых систем.

Как производятся расчеты

Для того чтобы вычислить частоту вращения двигателя следует воспользоваться определенной нам ранее формулой скольжения:

формула скольжения

И выразить из нее скорость вращения ротора:

скорость вращения ротора

В качестве примера возьмем двигатель модели АИР71А4У2 мощностью в 550 Вт с 4 парами полюсов и частотой вращения ротора 1360 об/мин.

При питании от сети с частотой 50 Гц статор будет вращаться со скоростью:

скорость вращения

Таким образом, величина скольжения электродвигателя составляет:

 величина скольжения электродвигателя составляет

И, наконец, прекрасное, хотя и устаревшее, видео рекомендуемое всем для одноразового просмотра.

tokidet.ru

Конструкция трёхфазного асинхронного двигателя. Короткозамкнутый и фазный ротор

Электротехника: Электрические машины

Конструкция трёхфазного асинхронного двигателя

Трёхфазный асинхронный двигатель является наиболее широко используемым электродвигателем. Почти 80% механической мощности, которая используется в промышленном производстве, преобразуется из электрической мощности, через асинхронные трёхфазные двигатели. Это происходит по той простой причине, что эти двигатели дёшевы, просты и надёжны в эксплуатации и обслуживании. Они имеют хорошие эксплуатационные характеристики, в них отсутствует коллектор, а также они эффективны при регулировании скорости.

В трёхфазном асинхронном двигателе мощность передаётся от статора на обмотку ротора посредством индукции. Наименование «асинхронный» говорит о том, что скорость вращения магнитного поля и скорость ротора не синхронны, при работе в режиме двигателя ротор имеет меньшую скорость, чем скорость вращающегося магнитного поля статора.

Как и любой другой электрический двигатель, асинхронный двигатель имеет две основные части, а именно: ротор и статор.

  • Статор. Как следует из названия – это неподвижная часть двигателя. На статоре расположены трёхфазные обмотки, а также клеммник, через который подаётся электрическая энергия.
  • Ротор. Представляет собой вращающуюся часть асинхронного двигателя. Ротор соединён с механической нагрузкой через вал.

Ротор асинхронного двигателя

Ротор асинхронного двигателя

Ротор асинхронного двигателя может конструктивно отличатся по своему исполнению, он может быть следующих типов:

  • Короткозамкнутый ротор (Squirrel cage rotor).
  • Фазный ротор (Slip ring rotor or wound rotor or phase wound rotor).

В зависимости от типа используемой конструкции ротора, асинхронный трёхфазный двигатель классифицируется как:

  • Асинхронный двигатель с короткозамкнутым ротором типа беличьей клетки (Squirrel cage induction motor).
  • Асинхронный двигатель с фазным ротором (Slip ring induction motor or wound induction motor or phase wound induction motor).

Конструкция статора для обоих типов двигателя остаётся одной и той же.

Кроме основных частей, таких как статор и ротор, асинхронный двигатель имеет и другие не основные части, а именно:

  • Вал для передачи крутящего момента от двигателя на механическую нагрузку. Этот вал изготавливается из стали.
  • Подшипники для поддержки вращающегося вала.
  • Вентилятор для создания охлаждения двигателя, так как при своей работе асинхронный двигатель выделяет тепло.
  • Клеммник для подключения электропитания двигателя.
  • Воздушный зазор между статором и ротором, который должен быть как можно меньше и, обычно, его величина колеблется от 0,4 мм до 4 мм.

Статор трёхфазного асинхронного двигателя

Статор асинхронного трёхфазного двигателя состоит из трёх основных частей:

  • Корпус статора.
  • Сердечник статора.
  • Обмотка статора или обмотка возбуждения.
Корпус статора

Это внешняя, наружная часть статора, функция которого заключается в поддержке сердечника статора и обмоток возбуждения. Он действует как защитное покрытие, обеспечивает механическую прочность всех внутренних частей двигателя. Корпус изготавливается с помощью литья под давлением или из сварной стали. Он должен быть очень прочным и жёстким, потому как требуется обеспечить наименьшую величину воздушного зазора трёхфазного асинхронного двигателя. Более того, воздушный зазор должен быть равномерный между статором и ротором, иначе магнитное притяжение будет несбалансированно, что приведёт к низкой эффективности двигателя и его быстрому износу.

Конструкция статора
Сердечник статора

Основное назначение сердечника статора заключается в том, чтобы обеспечить чередующийся переменный магнитный поток в статоре. Сердечник статора является магнитопроводом. Для того, чтобы уменьшить потери от вихревых токов, сердечник статора изготавливают из тонких листов ламинированной электротехнической стали. Толщина таких листов, изготовленных с помощью штамповки, составляет 0,4 – 0,5 мм. Как правило, выбирается сталь с высоким содержанием кремния, который помогает уменьшить потери на гистерезис, происходящие при работе двигателя.

Сердечник статора

Все тонкие ламинированные листы собираются в пакет так, чтобы образовался цельный сердечник с пазами (слотами) для размещения в них обмотки возбуждения. Внешний вид собранного пакета напоминает кусок полой толстой трубы, во внутренней части которого проделаны параллельные борозды в виде отрезков.

Обмотка статора (обмотка возбуждения)

В трёхфазном асинхронном двигателе в сердечнике статора, в пазах (слотах), располагаются три обмотки возбуждения. По одной обмотке на каждую фазу питания. Эти обмотки между собой соединяются в трёхфазную цепь по типу или «звезда» (Star), или «треугольник» (Delta). Тип соединения зависит от характеристики подаваемого питания на обмотки статора.

Асинхронные двигатели с короткозамкнутым ротором позволяют выполнять запуск с помощью переключения «звезда-треугольник» (star-delta), тогда в рабочем режиме двигатель будет работать с подключением обмоток типа «треугольник». Такое переключение и такой режим работы имеет свои преимущества и недостатки, но гораздо чаще можно встретить прямой пуск асинхронного трёхфазного двигателя по типу подключения «звезда» (star).

В том случае, если подключается асинхронный двигатель с фазным ротором, в котором обмотка ротора выведена на контактные кольца и есть к ним доступ через клеммник, запуск двигателя осуществляется через вставку сопротивлений в обмотку ротора. В этом случае не только статор может иметь способы соединения обмоток, но и ротор может быть соединён по типу или «звезда», или «треугольник».

Обмотку статора называют обмоткой возбуждения потому, как именно через неё создаётся вращающееся магнитное поле, которое является причиной работы асинхронного двигателя.

Типы трёхфазных асинхронных двигателей

Существует два типа двигателей с различными конструкциями роторов, как было сказано об этом выше.

Трёхфазный асинхронный двигатель с короткозамкнутым ротором

Ротор короткозамкнутого асинхронного двигателя имеет цилиндрическую форму. На периферии ротора имеются пазы (слоты). Пазы параллельны друг другу и имеют скос относительно оси вращения ротора. В пазах ротора расположены проводники, которые являются обмоткой ротора и выполнены в виде алюминиевых, медных или латунных стержней. Скос проводников обмотки необходим, чтобы предотвратить магнитное запирание ротора и статора, что делает работу двигателя более гладкой и равномерной, без рывков и перегрузок.

По бокам, с торцов ротора расположены кольца, с которыми соединены проводники обмотки ротора. По внешнему виду такая конструкция обмотки похожа на беличье колесо. Так как обмотка ротора замкнута накоротко, это исключает возможность изменять сопротивление обмотки, потому как отсутствуют контактные кольца и щёточный механизм. В свою очередь такая конструкция ротора проста и надёжна, что позволяет широко использовать трёхфазные асинхронные двигатели с этим типом ротора.

Преимущества использования асинхронного двигателя с короткозамкнутым ротором
  • Простота, надёжность и прочность конструкции.
  • Отсутствие контактных колец и щёточного механизма значительно упрощает обслуживание двигателя.
Применение асинхронного двигателя с короткозамкнутым ротором

Используется в станках в металлорежущем и деревообрабатывающем оборудовании, в сверлильных станках, а также в вентиляторах, в токарном и фрезерном оборудовании.

Трёхфазный асинхронный двигатель с фазным ротором

В этом типе трёхфазного асинхронного двигателя ротор не имеет короткозамкнутой обмотки. Отсутствуют торцевые кольца, на которых проводники ротора соединяются накоротко. Ротор обычно имеет такое же количество пар полюсов, что и статор, но в отличии от статора его проводники имеют гораздо большее сечение. Концы проводников выводятся на контактные кольца, которые расположены на валу фазного ротора. Если оба конца проводников выведены на контактные кольца, то это позволяет соединять обмотку ротора по типу «звезды» (star) или «треугольника» (delta). В основном, с одной стороны контакты проводников фазного ротора соединяются вместе в общую точку, а противоположные концы выводятся на контактные кольца. В этом случае фазный ротор включается по типу «звезда» (star) и имеется возможность управлять сопротивлением обмотки ротора через коммутационную аппаратуру.

Трёхфазный асинхронный двигатель с фазным ротором

Контактные кольца фазного ротора соприкасаются со щётками, посредством которых осуществляется непрерывный контакт с обмоткой ротора. Щётки располагаются в щёточном механизме, они требуют дополнительного обслуживания, периодической замены по мере износа. Наличие подвижного контакта вызывает нежелательное искрение, которое сводят к минимальному значению, обеспечивая плотное прилегание щёток к контактным кольцам.

Подключение внешнего сопротивления в обмотку ротора используется для облегчения пуска двигателя и для контроля скорости двигателя. Чтобы обеспечить плавный пуск двигателя с фазным ротором, по мере пуска добавочное сопротивление в обмотке ротора уменьшают. Это происходит или плавно, или ступенчато, в зависимости от используемой пусковой аппаратуры. Когда двигатель войдёт в рабочий режим, обмотка ротора практически замкнута накоротко.

В ниже приведённой схеме показана схема включения и запуска трёхфазного асинхронного двигателя с фазным ротором.

Управление двигателем с фазным ротором
Преимущества трёхфазного асинхронного двигателя с фазным ротором
  • Он имеет высокий пусковой момент и низкий пусковой ток.
  • Возможен контроль скорости вращения через дополнительные сопротивления в цепи фазного ротора.
Применение трёхфазного асинхронного двигателя с фазным ротором

Двигатель этого типа используется там, где требуется высокий пусковой момент. Например, это могут быть: подъёмные механизмы, краны, лифты, любое оборудование, в котором двигатель вынужден запускаться с высокой механической нагрузкой на валу. Кран, который держит подвешенный груз, или лифт, который нагружен, всё это повышенная нагрузка на вал ротора, что в свою очередь требует высокого пускового момента от двигателя. Включение обычного короткозамкнутого асинхронного двигателя при такой нагрузке приведёт к высоким пусковым токам, что неэкономично, потому как повышает требования к электросети и может вызвать поломку двигателя. Поэтому применение асинхронных двигателей с фазным ротором оправдано.

Дата: 25.01.2016

© Valentin Grigoryev (Валентин Григорьев)

Тег статьи: Асинхронные двигатели

Все теги раздела Электротехника:Электричество Закон Ома Электрический ток Электробезопасность Устройства Биоэлектричество Характеристики Физические величины Электролиз Электрические схемы Асинхронные двигатели

www.electricity-automation.com

Однофазный асинхронный двигатель

Однофазные асинхронные движки разрабатывают от 5 Вт до 10 кВт. Такие движки применяют: в приводах стиральных машин, холодильных камерах, различных центрифугах, маленьких обрабатывающих станках и др.

Надо отметить, что однофазные асинхронные двигатели по сравнению с трёхфазными движками как правило имеют несколько худшие технические данные. Мощность у однофазного асинхронного двигателя не больше 70% от всей мощности трёхфазного асинхронного двигателя в таком же габарите. Кроме того, у однофазных асинхронных двигателей  более низкая перегрузочная способность.

Схема включения однофазного асинхронного двигателя

У двигателя имеется пара обмоток на статоре — основная (то есть рабочая) и пусковая, которая нужна, чтобы запускать асинхронный двигатель. Ротор асинхронного двигателя изготовлен короткозамкнутым в виде беличьей клетки.

Принцип работы однофазного асинхронного двигателя

Чтобы понять для чего необходима пусковая обмотка приведём пример, когда движок включён в сеть 220 Вольт только на одну обмотку — рабочую.

Однофазный ток I1 данной обмотки создаёт пульсирующие магнитное поле, которое можно разделить на два поля Фа и Фв, они имеют одинаковые амплитуды и вращаются в противоположные направления с равной скоростью.

Когда ротор неподвижен, магнитные поля Фа и Фв создают равные по величине, но противоположные по знаку крутящие моменты М1 и М2. По этой причине при пуске результирующий момент (Мn = M1 — M2) равен нулю, и движок не имеет возможности прийти во вращение даже без нагрузки на валу. Поэтому для запуска однофазного асинхронного двигателя и применяется дополнительная пусковая обмотка, она даёт возможность получать вращающиеся магнитные поля, за счёт которых обеспечиваются начальные пусковые моменты, которые определяют направления вращения вала.

Схема однофазного АД

Как правило из теории электромашин, чтобы получить вращающее магнитное поле на статоре движка должно быть установлено, не меньше двух обмоток, смещённых в пространстве на определенный угол и обтекаемых переменным током. По этой причине пусковая обмотка устанавливается на статор движка со смещением её оси на 90% по отношению к оси рабочей обмотки, а сдвиг токов выполняется подключением в её цепь дополнительного фазосдвигающего элемента, в роли которого могут быть применены: активный резистор, конденсатор либо катушка индуктивности.

payaem.ru

A-QUALUX.RU - Запчасти и аксессуары для бытовой техники

1. Применение асинхронных двигателей в стиральных машинах

   Асинхронные двигатели нашли широкое применение как в промышленности,так и в быту. В целом следует отметить два самых распространённых вида асинхронных двигателей - это конденсаторные (иногда их называют двухфазные) и трёхфазные. Конденсаторные двигатели, которые мы будем рассматривать, часто применялись в стиральных машинах 80х-90х гг. выпуска. В таких машинках количество оборотов барабана при отжиме достигало всего лишь лишь 400-600 оборотов в минуту, реже 800 или 1000, где уже применялась электронная схема управления. В 2000-x годах, было выпущено крайне мало стиральных машин с такими двигателями. С развитием электронных технологий, конденсаторные асинхронные двигатели канули в прошлое, поскольку на смену им пришли более компактные и динамичные универсальные коллекторные двигатели, а также трёхфазные двигатели с частотным регулированием скорости. Для осуществления привода барабана стиральных машин, производителям пришлось по ряду причин отказаться от применения конденсаторных асинхронных двигателей. Но это не означает, что асинхронные двигатели и вовсе исключили из конструкции стиральных машин. Например в стиральных машинах с функцией сушки горячим воздухом,простейшие односкоростные конденсаторные двигатели применяются до сих пор в качестве приводов вентиляторов, которые обдувают ТЭН сушки, прогоняя горячий воздух в бак стиральной машины.

2. Устройство асинхронного двигателя

Устройство асинхронного двигателя1. Крышки двигателя2. Подшипники3. Ротор4. Статор5. Крыльчатка охлаждения

Рис.2  Устройство асинхронного двигателя

Асинхронный двигатель имеет в своём составе две основные детали: статор и ротор, разделённые воздушным зазором.Статор (от латинского-стою) - неподвижная часть двигателя, взаимодействующая с подвижной частью-ротором.Активными частями статора являются обмотки и магнитопровод (сердечник). Обмотка статора в общем случае представляет  собой многофазную обмотку, проводники которой равномерно уложены по окружности в пазы сердечника. Асинхронные двигатели для стиральных машин имеют две скорости вращения. В режиме стирки частота вращения на роторе двигателя составляет около 300 об/мин, а в режиме отжима (центрифугирования) 2800 об/мин. Поэтому, такие двигатели называют двухскоростные и для каждого режима работы применяется своя обмотка. Статор в рассматриваемом двигателе является электромагнитом, который создаёт магнитное поле.

 

 
Ротор - подвижная часть двигателя (Рис.3) В асинхронных двигателях это короткозамкнутая обмотка, которую часто называют "беличьей клеткой" из-за схожести конструкции. Алюминиевые или медные стержни статора замкнуты накоротко с торцов кольцами и как правило заливаются сплавом алюминия.Сердечник (вал ротора) имеет зубчатую структуру, который жестко скреплён с "беличьей клеткой".Вал ротора  вращается на двух подшипниках, опорами которого являются крышки двигателя. Для лучшего охлаждения обмоток статора, на роторе устанавливаются крыльчатки с лопастями. Устройство ротора асинхронного двигателя1. Сердечник из штампованных листов стали или залитый сплавом алюминия2. Стальной вал с зубцами3. Короткозамкнутая обмотка в виде "беличьей клетки"

Рис.3  Устройство ротора асинхронного двигателя

3. Принцип работы конденсаторного асинхронного двигателя

Для привода барабана в стиральных машинах всегда применялись двухскоростные конденсаторные асинхронные двигатели.Конденсаторный двигатель — разновидность асинхронного двигателя, в обмотки которого включен конденсатор для создания сдвига фазы тока. Подключается в однофазную сеть посредством специальных схем. Работоспособная схема подключения такого двигателя содержит конденсатор (пусковой конденсатор), от чего и произошло название. Давайте рассмотрим простейшую схему подключения конденсаторного двигателя на примере Рис.4
Одна из обмоток (её чаще называют рабочей) подключают напрямую к сети, а пусковую обмотку последовательно через конденсатор. Рабочая и пусковая обмотки геометрически сдвинуты друг относительно друга на определённый угол. Для работы асинхронных двигателей важно, чтобы частота вращения ротора не была равна частоте вращения магнитного поля, создаваемое током обмотки статора. Отсюда и название - асинхронный двигатель. Но однофазная обмотка на статоре не способна создавать вращающее круговое магнитное поле. Поэтому, для соблюдения условий работы асинхронного двигателя, необходимо, что бы и токи были сдвинуты по фазе. Конденсатор в цепи пусковой обмотки создаёт сдвиг фаз токов на электрический угол "фи"=90°. Магнитное поле статора воздействует на обмотку ротора и по закону электромагнитной индукции наводит в них ЭДС. В обмотке ротора под действием наводимой ЭДС возникает собственное магнитное поле и ток, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая складываясь по окружности, создает вращающий электромагнитный момент, заставляющий ротор вращаться. Относительная разность скоростей вращения ротора и магнитного потока, создаваемого обмотками статора называется скольжение асинхронного двигателя.    

А - рабочая обмоткаВ - пусковая обмоткаС - пусковой конденсатор

схема подключения асинхронного двигателя через конденсатор

Простая схема подключения асинхронного двигателя через конденсаторРис.4

А теперь представьте, если бы в пусковой обмотке не было конденсатора. Тогда магнитное поле создаваемое статором, создавало бы такое же магнитное поле в роторе. При такой схеме подключения, двигатель можно представить лишь в качестве трансформатора и совпадающие по фазе токи не смогли бы создать вращающее круговое магнитное поле, а пусковой момент был бы настолько мал, что ротор оставался бы почти неподвижным.  

4. Неисправности и диагностика. Пуск асинхронного двигателя стиральной машины

   Характерный признак неисправности при работе конденсаторных асинхронных двигателей проявляется как правило в ослаблении вращающего момента, вследствие чего ротор двигателя, особенно под нагрузкой, не в силах совершить полный оборот.Из-за этого в стиральной машине, барабан с бельём совершает неполные покачивающие движения напоминающие колебание маятника. В подобных двигателях стиральных машин можно выделить несколько причин такой неисправности.    Самая распространённая причина - это потеря ёмкости пускового конденсатора, из-за чего сдвиг фаз токов пусковой и рабочей обмотки становится незначительным и не создаётся мощного вращающего момента ротора двигателя. Хотя при этом в режиме холостого хода (без нагрузки) двигатель может запускаться нормально. Подобная проблема не относится непосредственно к неисправности самого двигателя. В этом случае требуется только замена пускового конденсатора.    Другая причина - это межвитковое замыкание одной из обмоток двигателя. Причём поведение в работе двигателя иногда схоже с потерей ёмкости пускового конденсатора, но сопровождается сильным нагревом статорной обмотки, завышенным потребляемым током, иногда появляется запах гари и характерный гудящий звук. Иногда, при межвитковом замыкании в цепи обмоток режима отжима, обмотки режима стирки  могут быть абсолютно исправны и работать нормально, и наоборот. В этом случае двигатель подлежит замене. Если нет возможности его заменить, то можно обратиться на предприятие где профессионально занимаются ремонтом электродвигателей.    Иногда при неисправности в двигателе одна или несколько обмоток могут быть в полном обрыве. В остальных случаях проблем работы двигателей, можно выделить неисправности связанные с коммутирующими устройствами и модулями управления, но это мы не будем рассматривать в данном материале.

   Для того, чтобы отличить неисправность непосредственно двигателя от неисправности коммутирующих его устройств, необходимо произвести измерения электрического сопротивления обмоток, в частности электрического пробоя обмоток на корпус статора, подключить двигатель напрямую измерив потребляемый рабочий ток. Данные о потребляемом токе указаны на шильдике двигателя, а электрические сопротивления и схема соединения обмоток указываются в сервисной инструкции для мастеров.   Ниже, на Рис.5 и Рис.6 приведена схема проверки двухскоростного асинхронного электродвигателя стиральной машины. Мы взяли самую сложную встречающуюся схему колодки двигателя с применением тахогенератора и термозащиты. Тахогенератор (Т) и термозащита (ТН) при проверке двигателя напрямую не подключаются к схеме. Для того,чтобы измерить ток в обмотках амперметр (A) подключается последовательно в разрыв цепи, но можно использовать и токовые клещи. Завышенный рабочий ток может свидетельствовать о межвитковом замыкании обмоток статора. Пусковой конденсатор (С), может быть общим для пусковых обмоток отжима и стирки. Но иногда используются и схемы с двумя пусковыми конденсаторами. Изменение направления вращения двигателя для режима стирки происходит путём изменения подключения полюсов обмоток. В режиме отжима двигатель вращается всегда в одну сторону. 

Схема подключения асинхронного двигателя для проверки обмотки отжима

Рис.5  Схема подключения дляпроверки обмотки отжима

Схема подключения асинхронного двигателя для проверки обмотки стирки

Рис.6  Схема подключения дляпроверки обмотки стирки

 

5. Режимы работы и коммутация обмоток асинхронного двигателя в стиральных машинах

   Как мы и говорили, в стиральных машинах всегда применяются две скорости вращения двигателя. В режиме стирки, двигатель вращается медленно, а в режиме отжима (центрифугирования) с большой скоростью. Коммутация обмоток асинхронного двигателя в стиральных машинах традиционно осуществляется при помощи электромеханического командного аппарата. В режиме стирки, двигатель вращается через определённую паузу с поочерёдным изменение направлением вращения. Это делается для того, что бы белье в барабане не перекручивалось. В режиме отжима двигатель вращается в постоянном направлении. Как видно на представленных ниже фрагментах схемы ,контакты командоаппарата имеют несколько положений. Вывод двигателя номер 5 является общим для обеих обмоток и включается напрямую с общей шиной питания, а другие выводы двигателя запитаны через соответствующие контакты командоаппарата, тем самым создавая электрическую цепь. В этой схеме применяется один пусковой конденсатор, но в некоторых бывает и два конденсатора. Иногда, коммутация обмоток и управление двигателем (например в стиральных машинах Ardo TL80) осуществляется посредством электронного модуля с расположенными на нём симистором управления двигателем и контрольной цепью тахогенератора.  
Двигатель не вращается

 

  • Двигатель не вращается

 

Режим отжима (центрифугирования) 
  • Режим отжима (центрифугирования)

 

Двигатель вращается по направлению часовой стрелки  
  • Двигатель вращается по направлению часовой стрелки
Двигатель вращается против направления часовой стрелки

 

  • Двигатель вращается против направления часовой стрелки
 

6. Преимущества и недостатки однофазных асинхронных двигателей

  К преимуществам можно отнести: простоту конструкции, относительно высокий ресурс двигателя, низкий уровень шума по сравнению  с коллекторными двигателями (речь о которых идёт в другой главе), практически не требует профилактического обслуживания, максимум требуется смазывание, либо замена подшипников.    К недостаткам можно отнести: большие габариты и массу двигателя, большой пусковой ток, применение нескольких обмоток для каждого режима работы двигателя, низкий КПД (коэффициент полезного действия), при неизменном габарите невозможно увеличить мощность двигателя, этим и объясняется его применение в стиральных машинах с низким числом оборотов барабана при отжиме, плохая управляемость электронными схемами.  

7. Частые вопросы

  • Для чего нужен конденсатор в цепи пусковой обмотки электродвигателя?
Конденсатор в асинхронных двигателях используется для сдвига фаз токов пусковой и рабочей обмотки, в результате чего возникает вращающееся магнитное поле. Сдвиг фаз обязательное условие для работы конденсаторных асинхронных однофазных двигателей.  
  • Какая ёмкость пускового конденсатора применяется для пуска асинхронных двигателей стиральных машин?

Для каждого типа двигателей индивидуально подбирается значение ёмкости конденсатора. Самые распространённые номиналы ёмкостей (ёмкость конденсатора измеряется в микрофарадах): 8,5 мкф, 11,5 мкф, 12,5 мкф, 14 мкф,16 мкф, 18 мкф, 20 мкф, 22 мкф и 25 мкф. Но самые распространённые 14 мкф и 16 мкф.

  • Почему рабочее напряжение пускового (фазосдвигающего) конденсатора должно быть не менее 400 вольт?

Фазосдвигающий конденсатор устанавливается в цепи обмоток статора, которые обладают большой индуктивностью. При работе электродвигателя, особенно при его пуске и остановке, на обмотках высвобождается большая электродвижущая сила самоиндукции (ЭДС самоиндукции), в виде всплесков повышенного напряжения 300-600 вольт, приложенная именно к конденсатору. Если установить конденсатор с меньшим допустимым рабочим напряжением,  то он выйдет из строя.

  • Что произойдёт, если вместо конденсатора номинальной ёмкости предназначенного для оптимальной работы двигателя установить конденсатор большей или меньшей ёмкости?

Если величина ёмкости фазосдвигающего конденсатора выбрана больше, чем требуется при данных конкретных условиях работы электродвигателя, то двигатель будет быстро перегреваться. Если величина ёмкости выбрана меньше требуемой, то вращающий пусковой момент ослабнет, что может вызвать затруднённое вращение барабана с бельём в стиральной машине.

В электрической цепи с ёмкостным сопротивлением (конденсатором) ток опережает напряжение на угол "фи"=90°. Ток опережающий напряжение по фазе на 90°, называется реактивным или безваттным током, так как он не вызывает в цепи потребления мощности.С включением последовательно пусковой обмотки и конденсатора, нарушается чисто ёмкостный (реактивный) характер цепи, в результате чего уменьшается угол сдвига фаз. Поэтому для каждого асинхронного однофазного двигателя ёмкость  конденсатора пусковой обмотки подбирается таким образом,чтобы угол сдвига фаз тока относительно рабочей был близок к 90°.

Материал подготовлен  сервисом "Аквалюкс"

www.a-qualux.ru

Асинхронный двигатель – принцип работы и особенности управления

Среди всех электродвигателей следует особо отметить асинхронный двигатель, принцип работы которого основан на взаимодействии магнитных полей статора с электрическим током, наводящимся с помощью этого поля в обмотке ротора. Вращающееся магнитное поле создается с помощью трехфазного переменного тока, проходящего по обмотке статора, включающего в себя три группы катушек.

Асинхронный двигатель – принцип работы и применение

Принцип действия асинхронного двигателя основан на возможности передачи электрической энергии в механическую работу для какой-либо технологической машины. При пересечении замкнутой обмотки ротора магнитное поле наводит в ней электрический ток. В результате вращающееся магнитное поле статора взаимодействует с токами ротора и вызывает возникновение вращающегося электромагнитного момента, который и приводит ротор в движение.

Кроме того, механическая характеристика асинхронного двигателя основана на его работе в двух вариантах. Он может работать как генератор или электродвигатель. Благодаря этим качествам, его, чаще всего, используют как передвижной источник электроэнергии, а также во многих технологических приборах и оборудовании.

Рассматривая устройство асинхронного двигателя, следует отметить его пусковые элементы, состоящие из пускового конденсатора и пусковой обмотки с повышенным сопротивлением. Они отличаются своей дешевизной и простотой, не требуют дополнительных фазосдвигающих элементов. В качестве недостатка необходимо отметить слабую конструкцию пусковой обмотки, которая нередко выходит из строя.

Устройство асинхронного двигателя и правила обслуживания

Схема пуска асинхронного двигателя может быть улучшена за счет последовательного включения с обмоткой пускового конденсатора. После отключения конденсатора происходит полное сохранение всех характеристик двигателя. Очень часто схема включения асинхронного двигателя имеет рабочую обмотку, разбиваемую на две последовательно соединяемые фазы. При этом пространственный сдвиг осей находится в пределах от 105 до 120 градусов. Для тепловых вентиляторов применяются двигатели с наличием экранированных полюсов.

Устройство трехфазного асинхронного двигателя требует проведения ежедневного осмотра, внешней очистки и крепежных работ. Два раза в месяц и более двигатель должен продуваться изнутри с помощью сжатого воздуха. Особое внимание следует обращать на смазку подшипников, которая должна соответствовать конкретному типу двигателя.  Полная замена смазки производится дважды в течение года, с одновременной промывкой подшипников бензином.

Принцип действия асинхронного двигателя – его диагностика и ремонт

Для того чтобы управление трехфазным асинхронным  двигателем осуществлялось удобно и долго, необходимо следить за шумом подшипников во время работы. Следует избегать свистящих, хрустящих или царапающих звуков, свидетельствующих о недостатке смазки, а также глухих ударов, указывающих на то, что обоймы, шарики, сепараторы могут быть поврежденными.

В случае возникновения нетипичного шума или перегревания, подшипники в обязательном порядке подвергаются разборке и осмотру. Происходит удаление старой смазки, после чего производится промывка бензином всех деталей. Перед тем как посадить на вал новые подшипники, они должны быть предварительно прогреты в масле до нужной температуры. Новая смазка должна заполнять рабочий объем подшипника примерно на одну третью часть, равномерно распределяясь по всей окружности.

Состояние контактных колец заключается в систематической проверке их поверхности. В случае их поражения ржавчиной применяется зачистка поверхности мягкой наждачной бумагой и протирание керосином. В особых случаях делается их расточка и шлифовка. Таким образом, при нормальном уходе за двигателем он сможет отслужить свой гарантийный срок и проработать намного больше.

Оцените статью: Поделитесь с друзьями!

carnovato.ru

Асинхронный двигатель схема подключения — sovetskyfilm.ru

Асинхронный двигатель схема подключения Асинхронный двигатель — это двигатель переменного тока, частота вращения ротора которого отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронный двигатель преобразует электрическую энергию в механическую. Благодаря своей простоте устройства, надежности в эксплуатации двигатели такого типа являются самыми распространенными электрическими машинами в мире.

Фазные обмотки статора электродвигателя соединяются в звезду или треугольник (в зависимости от напряжения сети). Если в паспорте электродвигателя указано, что обмотки выполнены на напряжение 220/380 В, то при включении его в сеть с линейным напряжением 220 В обмотки соединяют в треугольник, а при включении в сеть 380 В — в звезду.

Асинхронный двигатель схема подключения

Схемы соединения обмоток статора трехфазного асинхронного двигателя: а — в звезду, б — в треугольник, в — в звезду и треугольник на клеммном щитке электродвигателя

Асинхронный двигатель схема подключения

Схема включения асинхронного электродвигателя с фазным ротором: 1 — обмотка статора, 2 — обмотка ротора, 3 — контактные кольца, 4 — щетки, R — резисторы.

Для изменения направления вращения вала асинхронного двигателя необходимо изменить направление вращения магнитного поля статора. Для этого достаточно поменять местами два любых провода, соединяющих обмотку статора с питающей сетью.

Асинхронный двигатель схема подключения

Схема включения однофазных конденсаторных двигателей: а — с рабочей емкостью Ср, б — с рабочей емкостью Ср и пусковой емкостью Сп.

Асинхронный двигатель схема подключения

Асинхронный двигатель схема подключения

Лучшие отели Амстердама, которые понравятся даже самым требовательным туристам Если вы отправляетесь в Амстердам, то вам определенно стоит обратить внимание на эти отели, пребывание в которых уже будет незабываемым опытом.

Асинхронный двигатель схема подключения

Самые неловкие ситуации в жизни, или Как не упасть лицом в грязь? Вы когда-нибудь чувствовали себя неловко, если вам предлагали пищу, на которую у вас была аллергия? Набрасывалась ли на вас собака друга, когда вы пер.

Асинхронный двигатель схема подключения

11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.

Асинхронный двигатель схема подключения

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Асинхронный двигатель схема подключения

Что форма носа может сказать о вашей личности? Многие эксперты считают, что, посмотрев на нос, можно многое сказать о личности человека. Поэтому при первой встрече обратите внимание на нос незнаком.

Асинхронный двигатель схема подключения

9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.

Подробности Категория: Электрика Опубликовано 16.07.2014 13:21 Автор: Admin Просмотров: 16295

Как подключить трех фазный двигатель в сеть переменного тока напряжением в 220 В — спросите вы. Ведь на самом двигателе 3 фазы а сеть имеет 2 провода. Давай попробуем с этим разобраться.

Внешний вид асинхронного двигателя

Асинхронный двигатель схема подключения

Асинхронными двигателями они называются потому что у них отличаются частоты вращения магнитного поля статора и ротора. Получается что ротор пытается догнать или сравнять эти частоты. Таким образом и происходит вращение.

Схема соединения обмоток статора асинхронного двигателя

Обмотки статора, которых там 3 штуки имеют 2 способа подключения:

  • соединение в звезду;
  • соединение в треугольник.

На крышке двигателя имеются выводы которые обозначаються как C1-C6. C1-C3 это концы обмоток, а C4-C6 это их начала. Как осущствляеться подсоединение обмоток в ту или иную конйигурация показано на рисунках ниже.

Асинхронный двигатель схема подключения

Асинхронный двигатель схема подключения

Как работает асинхронный двигатель

Принцип действия таких двигателей основан на всеми известным законом электромагнитной индукции. Статор двигателя имеет 3 обмотки на них поочередно подается напряжение. В обмотках возникает электрический ток который также поочередно появляется в этих обмотках.

Электрический ток как известно создает «вокруг» себя переменное магнитное поле. А по закону электромагнитной индукции переменное магнитное поле наводит в металле электрический ток. В результате в обмотке ротора наводится электрический ток. Данный ток создает свое магнитное поле которое взаимодействует с магнитным полем статора. Получается своего рода аналог двух магнитов которые взаимодействуют с собой. Как отталкиваются и притягиваются магниты, объяснять думаю не стоит.

В роторе не подводиться электрический ток — это стоит понимать. Обмотки ротора замыкаются между собой при помощи блока переменных сопротивлений. Переменное сопротивление используется в этом случае для регулировки частоты вращения двигателя. Изменяя при помощи него ток ротора меняется сила взаимодействия ротора и статора.

Схема подключения асинхронного двигателя в сеть 220В

Асинхронный двигатель схема подключения

Для того чтобы подключить асинхронный двигатель нам нужно два вывода обмотки соеденить через конденсатор между собой и сделать вывод. При подсоединении нашего асинхронника к сети 220В по схеме представленной выше, выдаваимая им мощность будет составлять 0.7 от номинальной. Это происходит потому что мы присоединяем 3-х вахный двигатель в одно вазную сеть. Для расчета емкости можно использовать приближенную формулу:

С — емкость в мкФ

P — мощность двигателя в Вт

Рабочее напряжение конденсатора должно быть больше напряжения в сети. На схеме также представлен пусковой конденсатор, номинал его емкости долже быть в 3-4 раза больше рабочей емкости. Пусковой конденсатор необходим для компенсации значительных пусковых токов в момент запуска двигателя, т. к. возникают значительные напряжения самоиндукции в момент пуска.

Довольно часто получаеться так что под рукой не оказывается нужной емкости. Для выхода из этой ситуации нужно использовать параллельное соединение конденсаторов.

схема реверса трехфазного двигателя

Схему подключения реверсивного магнитного пускателя для асинхронного двигателя мы уже освоили, поэтому осталось только соединить разработанные узлы в одну принципиальную схему. 1 и 2 выводы схемы управления сажаем на фазы С1 и С3, а электродвигатель — к выходу теплового реле, вот и вся схема подключения асинхронного двигателя через пускатель.Асинхронный двигатель схема подключенияПосмотрите, если убрать блокировку пусковых кнопок контактами КМ1.1 и КМ2.1, при отпускании кнопок пускатели отключатся. Где-то такое может быть неудобно, а вот в электросхеме тельфера считается обязательным.В этой схеме маленькая недоработка: я описывал трехфазное подключение теплового реле, а на Рис. 3 задействованы только две его фазы. Страшного ничего нет, можно сделать и такое подключение теплового реле, зато получилась схема подключения асинхронного двигателя с применением двухфазного теплового реле.

пуск двигателя звезда треугольник

Когда-нибудь замечали, как во время работы мощной сваркой мигает освещение. Так и при запуске мощного электродвигателя напряжение в сети падает из-за большого пускового тока. Чтобы пусковой ток снизить, придумали поэтапный пуск двигателя звезда треугольник (треугольник рассчитан на 380V). На каждой фазе статора своя обмотка, у которой есть начало и конец, и они выведены в клеммную коробку.Асинхронный двигатель схема подключенияЗначение начала и конца важно: например, при соединении обмоток в треугольник конец первой обмотки соединяется с началом второй, конец второй — с началом третьей, и конец третьей — с началом первой. По-другому двигатель не потянет. В коробке переключение со звезды на треугольник производится перемычками с4-с5-с6 на с1-с4, с2-с5, с3-с6. Но при запуске не открывать же коробку и переставлять перемычки, для этого и придумали пуск с помощью двух контакторов КМ2 и КМ3, заменяющих эти пластинки.Асинхронный двигатель схема подключенияКак это сделать? Прежде всего убрать перемычки, затем подключить все выводы обмоток к контакторам КМ1, КМ2 и КМ3 согласно схеме (Рис. 4).Как работает такая схема? При нажатии пусковой кнопки SB2 включается главный контактор КМ1, который запускает своим контактом КМ1.2 реле времени КТ и блокирует контактом КМ1.1 пусковую кнопку. Одновременно включается контактор КМ3, соединяющий обмотки статора в звезду, и размыкает своим контактом КМ3 цепь катушки КМ2 во избежание случайного ее включения. Пуск на звезде осуществлен.После разгона отключается контакт реле времени КТ1.2, катушка контактора КМ3 обесточивается, контакт КМ3 возвращается в исходное положение. В это время замыкается контакт реле времени КТ1.1, включает катушку контактора КМ2, соединяющего обмотки в треугольник и страхующего катушку КМ3 от включения, размыкая свой контакт КМ2. Теперь двигатель начал работать на нужном нам треугольнике.Очень важно настроить реле времени так, чтобы момент его срабатывания соответствовал полному разгону на звезде.Примечание: схема управления подключена на 220V, то есть на фазу и на «ноль» N, схема подключения двигателя через пускатель в грузоподъемных механизмах должна работать только на 380V, 220V разрешено подключать через трансформатор 380/220V.Проблему большого пускового тока эффективно решает подключение асинхронного двигателя с фазным ротором .В заключение предлагаю ознакомиться с еще одной схемой подключения асинхронного двигателя — подключение трехфазного двигателя к однофазной сети .

Добавить комментарий Отменить ответ

Очень часто бывает, что механика в стиральной машине, пылесосе, электродрели полностью выходит из строя, и выгодней будет купить новую бытовую технику, чем починить безнадёжно устаревшие домашние электроприборы.

Асинхронный двигатель схема подключения

Из кучи оставшихся от данных устройств запчастей, как правило, самым ценным элементом будет электродвигатель, которому можно найти достойное применение, подключив в сеть 220В.

В подобных электроприборах изредка встречается полноценный трёхфазный двигатель, и скорее всего там окажется однофазный коллекторный или асинхронный электродвигатель, у которого может оказаться изрядный запас прочности и ресурса подшипников для применения в качестве привода насоса, компрессора, вентилятора, точила, мини-станка, овощерезки, газонокосилки и т.д.

В данной статье будет рассказано о том, как подключить однофазный электродвигатель в сеть 220 В, в зависимости от его типа.

Принцип действия коллекторного двигателя

В коллекторном электродвигателе, встречающемся в стиральных машинах и электродрелях, имеются обмотки на статоре и роторе.

Роторные обмотки намотаны в виде рамок и помещаются в специальных пазах, а их переключение происходит при помощи коллекторных выводов и контактов в виде графитовых щёток.

ротор коллекторного двигателя

Устройство ротора выполнено таким образом, чтобы в любой момент времени под напряжением находилась только одна рамка, магнитное поле которой перпендикулярно полю обмотки статора.

Асинхронный двигатель схема подключения

Электромагнитное взаимодействие полярных магнитных полюсов стремится повернуть ротор так, чтобы направленность его магнитного поля совпала с полем статора, подобно стрелке компаса.

Асинхронный двигатель схема подключения

Но, как только ротор поворачивается на определённый угол, контакты рамки выходят из соприкосновения со щётками, и включаются следующая обмотка, и процесс повторяется, создавая непрерывный момент вращения.

Подключение в сеть 220 В коллекторного электродвигателя

Схема коллекторного электродвигателя устроена таким образом, что направления токов в обмотке статора ротора и рамке ротора всегда совпадают, независимо от фазы переменного напряжения. Из-за совпадения направления токов, возникающие магнитные поля будут всегда перпендикулярными, что и будет вызывать момент вращения вала.

Асинхронный двигатель схема подключения

Поэтому очень важно установить перемычку на выводах двигателя, для последовательного соединения статорной и роторной обмоток. Поменяв местами выводы обмоток статора или ротора можно изменить направление вращения вала двигателя.

Асинхронный двигатель схема подключения

Для полноты картины нужно проследить путь тока – один из выводов от щётки коллектора подключается в сеть 220 В (допустим фаза, но это не имеет значения). Вывод другой щётки нужно подсоединить к одному выводу статора при помощи перемычки. Оставшийся вывод от статора подключается в сеть 220 В (ноль), замыкая цепь.

Принцип действия однофазного асинхронного электродвигателя

В отличие от коллекторного двигателя, в однофазном асинхронном электродвигателе с короткозамкнутым находящимся в состоянии покоя ротором,

Асинхронный двигатель схема подключения

устройство асинхронного двигателя

в котором индуцируются токи, создающие магнитное поле, взаимодействующее с электромагнитным полем катушки, векторы возникающих сил (М, -М) уравновешивают друг друга. Это означает, что при включении в сеть вал мотора вращаться не будет, и для его запуска нужен начальный вращательный момент S.

Можно рукой раскрутить вал и подать напряжение сети, тогда двигатель наберёт обороты. Многие так и делают, запуская точило, но такой способ совершенно неприемлем, если нужно раскрутить вращающиеся ножи овощерезки или газонокосилки.

Асинхронный двигатель схема подключения

Поскольку в трёхфазном электродвигателе момент вращения задан конструктивно при помощи расположения обмоток и смещения фаз трёхфазной сети, то в однофазном моторе для запуска применяют дополнительную пусковую обмотку, благодаря которой создаётся вращательный момент смещения ротора.

Схема подключения 1

Смещения фазы тока дополнительной обмотки относительно синусоиды напряжения 220 В создаётся при помощи конденсатора.

Схема подключения 2

Подключение в сеть асинхронного однофазного электродвигателя.На корпусе однофазного асинхронного электродвигателя должна быть схема подключения, где указываются выводы основной и дополнительной обмотки, а также емкость конденсатора.

Но, если схема где-то затерялась, то нужно определить рабочую и пусковую обмотку, измерив и сравнив сопротивления – у основной оно должно быть меньшим. Для этого нужно взять мультиметр, выставить диапазон для измерения в Омах, и поочерёдно измерить сопротивление между выводами.

Определение пусковой и рабочей обмотки

Поскольку часто данные обмотки имеют общий вывод, то его определяют опытным путём – сумма сопротивлений, измеренных от данного провода обмоток должна соответствовать суммарному сопротивлению подключённых последовательно обмоток. Если конструкция двигателя позволяет, то определить принадлежность выводов можно визуально – у проводов рабочей обмотки поперечное сечение (толщина) больше.

рабочая и пусковая обмотки

Рабочая обмотка подключается к напряжению 220 В напрямую, а пусковая – последовательно с конденсатором. Если обмотки соединены внутри мотора, то такая схема не позволит изменять направление вращения. Если из мотора выходят четыре провода от двух обмоток, то направление вращения будет зависеть выбора выводов для их соединения в общий отвод.

Выбор вращения двигателя

Существуют электродвигатели с идентичными обмотками – их называют двухфазными.

Режимы однофазных двигателей

Поскольку однофазные и двухфазные двигатели для запуска требуют применения конденсатора. то такие электродвигатели называют конденсаторными. Существует несколько режимов работы конденсаторного двигателя:

  • С пусковым конденсатором и дополнительной обмоткой, которые подключаются только на время запуска. Емкость выбирается исходя из 70 мкФ на 1 кВт мощности двигателя;
  • С рабочим конденсатором, емкостью 23-35 мкФ и дополнительной обмоткой, подключённой всё время;
  • С рабочим и пусковым конденсатором, подключаемым параллельно рабочему.

Применяется в случаях с тяжёлым запуском двигателя. Емкость рабочего конденсатора в два-три раза меньше номинала пускового (70 мкФ/1 кВт).

Из-за сложности формул расчёта принято выбирать емкости, исходя из приведённых выше пропорций. В реальности, подключив электродвигатель, нужно проследить за его работой и нагревом. Если двигатель будет заметно нагреваться в режиме с рабочим конденсатором, то его емкость необходимо уменьшить. Подбирать конденсаторы нужно с рабочим напряжением не меньше 450 В.

Асинхронный двигатель схема подключения

Запуск двигателя с пусковым конденсатором осуществляется вручную с помощью кнопки управления,

Асинхронный двигатель схема подключения

или схемы с двумя контакторами, один из которых (пусковой) не имеет самоподхвата и удерживается током замкнутого кнопочного контакта или реле времени. Некоторые конденсаторные электродвигатели имеют центробежный контакт, используемый при запуске, размыкающийся при наборе оборотов.

Подключение трёхфазного двигателя в сеть 220 В

Подобным способом с применением конденсатора подключается трёхфазный двигатель по схеме «звезда» или «треугольник».

Асинхронный двигатель схема подключения

Расчёт емкости производится исходя из рабочего напряжения и тока,

Асинхронный двигатель схема подключения

Асинхронный двигатель схема подключения

или паспортной мощности мотора.

Асинхронный двигатель схема подключения

Асинхронный двигатель схема подключения

По аналогии с однофазным электродвигателем, в случае тяжёлого запуска трёхфазного двигателя, применяется пусковой конденсатор, емкость которого в два-три раза выше номинала рабочего.

Асинхронный двигатель схема подключения

Подключая трехфазный электродвигатель в сеть 220 В при помощи пускового конденсатора, нужно помнить, что при такой схеме подключения мотор не будет работать с полной отдачей и не разовьет максимальную мощность.

Асинхронный двигатель схема подключенияДля полноценной работы такого двигателя нужны три фазы, получить которые можно проведя сеть 380 В, или использовать сложную электронную схему, рассчитанную под конкретную мощность, генерирующую смещение фаз при помощи мощных силовых полупроводниковых ключей.

Асинхронный двигатель схема подключенияАсинхронный двигатель схема подключения

Имея много различных конденсаторов, но не находя нужного значения емкости, можно соединять их параллельно или последовательно.

Комбинируя данные способы подключения, можно приблизиться к требуемому номиналу емкости.

Похожие статьи

Асинхронный двигатель схема подключения Как подключить трехфазный счетчик

Асинхронный двигатель схема подключения Счетчик электрический трехфазный

Асинхронный двигатель схема подключения Ремонт коллекторных электродвигателей

Асинхронный двигатель схема подключения Перемотка статора асинхронного электродвигателя

Защита электродвигателя автоматическим выключателем. Практические расчеты

Внимание, только СЕГОДНЯ!

sovetskyfilm.ru


Каталог товаров
    .