интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Разъединители, выключатели нагрузки, предохранители. Разъединитель на схеме


49. Разъединители. Назначение. Конструктивное исполнение. Принцип действия. Условия выбора.

Разъединители – аппараты, которые предназначены для включения и отключения участков электрических цепей под напряжением при отсутствии нагрузочного тока. Они применяются во всех высоковольтных установках для обеспечения видимого разрыва при отключении какого-либо участка цепи, а также для производства переключений и набора нужной схемы. Все операции с разъединителями, как правило, выполняются при обесточенных цепях.

После отключения разъединителей с обеих сторон объекта, например, выключатель или транформатор и другие аппараты должны заземляться с обеих сторон, либо при помощи переносных заземлителей, либо спец. заземляющих ножей, встраиваемых в конструкцию разъединителя.

Строятся разъединители, как для внутренней, так и для наружной установки на всю шкалу токов и напряжений.

К разъединителям предъявляются следующие требования:

  1. Контактная система должна надежно пропускать номинальный ток сколько угодно длительное время. В особо тяжелых условиях работают разъединители наружных установок, подвергающиеся воздействию воды, пыли, льда. Контактная система должна иметь необходимую динамическую и термическую стойкость.

  2. Разъединитель и механизм его привода должны надежно удерживаться во включенном положении при протекании тока К3. В отключенном положении подвижный контакт должен быть надежно фиксирован, так как самопроизвольное включение может привести к очень тяжелым авариям и человеческим жертвам.

  3. В связи с особой ролью разъединителя как аппарата безопасности промежуток между разомкнутыми контактами должен иметь повышенную электрическую прочность.

  4. Привод разъединителя целесообразно блокировать с выключателем. Операции с разъединителем должны быть возможны, только когда выключатель отключен.

Разъединители могут выполняться как трехполюсными на общей раме, обычно до 35 кВ, так и однополюсными при более высоких напряжениях. Последнее обусловлено тем, что при напряжениях свыше 35 кВ требуемые расстояния между фазами достаточно велики и общая рама становится чрезвычайно громоздкой и тяжелой.

Полюс разъединителя независимо от разнообразия конструкций состоит из неподвижного и подвижного (ножа) контактов, укрепленных на соответствующих изоляторах опорной плиты или рамы и привода.

Основным элементом разъединителя являются его контакты. (Как мы уже говорили, они должны надежно работать при номинальном режиме, а также при перегрузках и сквозных токах короткого замыкания.). Нагрев, динамическая и термическая стойкость, а также электрическая и механическая прочность изоляции являются основными вопросами расчета и конструирования разъединителей. В разъединителях применяют высокие контактные нажатия. При больших токах контакты выполняют из нескольких (до восьми) параллельных пластин. Применяют пластины прямоугольного, швеллерного и круглого сечений.

Разъединители снабжаются ручным, электродвигательным либо пневматическим приводом. Разъединители на малые токи при напряжениях до 35 кВ могут управляться вручную изоляционной штангой.

Наибольшее распространение при токах до 3000 А включительно получил ручной рычажный привод. При номинальном токе свыше 3000 А – ручной червячный привод. Электродвигательные и пневматические приводы используются для управления тяжелыми разъединителями, когда ручное управление затруднено или невозможно, а также при дистанционном и автоматизированном управлении.

Разъединитель предназначен для включения и отключения обесточенных участков электрических цепей переменного или постоянного тока с созданием видимого разрыва, а также заземления отключенных участков при помощи стационарных заземлителей.

Разрешается отключение и включение разъединителями:

-нейтралей силовых трансформаторов 110 - 220 кВ;

-заземляющих дугогасящих реакторов 6 - 35 кВ при отсутствии в сети замыкания на землю;

-намагничивающего тока силовых трансформаторов 6 - 500 кВ;

-зарядного тока и тока замыкания на землю воздушных и кабельных линий электропередачи;

-зарядного тока систем шин, а также зарядного тока присоединений с соблюдением требований нормативных документов.

В кольцевых сетях 6 - 10 кВ разрешается отключение разъединителями уравнительных токов до 70 А и замыкание сети в кольцо при разности напряжений на разомкнутых контактах разъединителей более, чем на 5%.

Допускается отключение и включение трехполюсными разъединителями наружной установки при напряжении 10 кВ и ниже нагрузочного тока до 15 А.

Допускается дистанционное отключение разъединителями неисправного выключателя 220 кВ и выше, зашунтированного одним выключателем или цепочкой из нескольких выключателей других присоединений системы шин (схема четырехугольника, полуторная и т.п.), если отключение выключателя может привести к его разрушению и обесточению подстанции.

Для внутренних установок, не подверженных воздействию атмосферы и с напряжением, как правило, не выше 20 кВ, наиболее широко распространены рубящие разъединители с движением подвижного контакта (ножа) в вертикальной плоскости. Для получения электродинамической стойкости контактов необходимо соответствующее контактное нажатие. С ростом тока контактное нажатие и усилие, необходимое для включения, возрастают. При ручных приводах контактные нажатия стремятся брать возможно малыми. С этой целью применяют сдвоенные ножи и электромагнитные замки.

Для повышения электродинамической стойкости контактов разъединителей широко используются электродинамические силы, возникающие в токоведущих элементах. На рис. 2 показан трехполюсный разъединитель типа РВ на напряжение 10 кВ и ток 400 А, а на рис. 3 — в увеличенном масштабе его контактная система. Рис. 2. Разъединитель типа РВ Рис. 3. Контактная система разъединителя типа РВ

Подвижный контакт 1 выполнен в виде двух параллельных шин. При КЗ электродинамическая сила прижимает шины 1 к стойкам неподвижного контакта 2. При номинальном токе контактное нажатие создается пружинами 3, которые воздействуют на подвижный контакт через стальные пластины 4. Магнитный поток, создаваемый проходящим по шинам током, замыкается вокруг них и через стальные пластины 4. В системе возникают электродинамические   силы   такого направления, чтобы   возросла энергия магнитного поля. Пластины приближаются к шинам 1 и попадают в зону более сильного магнитного поля. Электромагнитная энергия при этом возрастает. Таким образом создается сила Р, притягивающая стальные пластины к шинам и увеличивающая контактное нажатие. Для управления разъединителями типа РВ применяются рычажные системы с ручным или моторным приводом. В схеме ручного рычажного привода (рис. 4) вал разъединителя имеет угол поворота 90°. Рычаг привода имеет угол поворота 150°. Чтобы избежать отключения под действием электродинамических сил, во включенном положении механизм находится в положении, близком к мертвому (шатун 1 и короткий рычаг 2 шарнира О располагаются почти на прямой). Кроме того, включающий рычаг 3 фиксируется в отключенном и включенном положениях с помощью специальных стопоров. При токах более 3 кА рычаг 3 заменяется червячной передачей, что позволяет увеличить действующую на шины силу.

Рис. 4. Рычажный привод разъединителя Рис. 5. Пневматический привод разъединителя

Для дистанционного управления применяются электрические и пневматические приводы. В электрических приводах ось двигателя связывается с выходным рычагом привода через систему червячной передачи. В пневматическом приводе отсутствуют громоздкие рычажные передачи и обеспечивается плавный ход контактов (рис. 5). Поршневой механизм (цилиндры, поршни) 1, блок пневматических клапанов управления 2 и 3 и электромагниты управления 4 и 5 устанавливаются непосредственно на раме разъединителя. К разъединителю подводятся трубопровод со сжатым воздухом 6 и цепи управления электромагнитами.

Рис. 6. Разъединитель типа РНДЗ-1

Поршневой механизм проектируется так, что он находится в «мертвом» положении при включенном и отключенном разъединителе. При подаче напряжения на обмотку электромагнита 4 срабатывает клапан включения 2. Верхний цилиндр включения поршневого механизма 1 разобщается с атмосферой, и в него подается сжатый воздух под давлением 0,5—1 МПа. В это время нижний цилиндр 7 отключения через клапан отключения 3 связан с атмосферным воздухом и не препятствует движению нижнего поршня вниз. Под действием сжатого воздуха верхний поршень поворачивает рычаг и связанный с ним вал разъединителя 8, что приводит к замыканию контактов. Аналогично протекает процесс отключения. Для наружной установки широко используются разъединители поворотного типа РИД. На рис. 6 представлен разъединитель типа РНДЗ-1 на напряжение 220 кВ и номинальный ток 2 кА. На раме 1 смонтированы неподвижные изоляторы 2 и подвижные изоляторы 3, которые могут вращаться вокруг своей вертикальной оси. С подвижным изолятором связаны контакты разъединителя в виде ножей 5, вращающихся в горизонтальной плоскости. Места сочленения подвижных деталей защищены кожухом 4. Для размыкания ножей 5 поворачивается правый изолятор 3, который с помощью тяги 8 поворачивает левый изолятор 3. При необходимости правый нож в положении «отключено» может быть заземлен с помощью дополнительного ножа 7, который вращается в вертикальной плоскости и замыкается с контактом 6. Благодаря механической блокировке заземление возможно только при отключенном положении ножей 5. Разъединители такого типа применяются при напряжении до 750 кВ. Следует отметить, что площадь открытого распредустройства (ОРУ) в значительной степени определяется площадью, занимаемой разъединителями. При напряжении  >330 кВ значительную экономию площади дают подвесные разъединители (рис. 7). Неподвижный контакт 1 в виде кольца укреплен на изоляторе 2. Рис. 7. Подвесной разъединитель

В качестве опоры контакта 1 могут использоваться трансформаторы тока или напряжения. Конический подвижный контакт 3 подвешен к гирлянде 4 подвесных изоляторов на стальных тросах 5. Тросы 5 пропущены через блоки 6 на портале 7 и связаны с барабаном электролебедки. Подвижный контакт 3 соединен с токоведущей трубой 9, неподвижный контакт соединен с гибкой шиной 8 либо с контактом аппарата. При включении контакт 3 опускается вниз под действием специального груза, который создает необходимое контактное нажатие. При отключении контакт 3 и связанный с ним груз поднимаются с помощью электролебедки. Такие разъединители разработаны в СССР на напряжение до 1150 кВ и длительные токи до 3,2 кА.

studfiles.net

Разъединители. Устройство и работа. Применения. Особенности

Разъединители — аппараты коммутации, служащие для выключения и включения цепи тока без потребителя, или с небольшой нагрузкой. Таким небольшим током может служить ток намагничивания трансформатора, либо другой ток не выше 15 ампер.

Также расцепители служат для образования разрыва цепи при выключении электрической сети. Это нужно для создания безопасности при проведении работ по ремонту электрооборудования. В этом случае разъединитель образует видимый разрыв между цепью рабочего оборудования и устройств, находящихся в ремонте.

Устройство

Конструкцию разъединителей можно изучить на примере аппарата коммутации с 3-мя полюсами, рубящего вида.

Он представляет собой находящиеся на одной раме три полюса. У всех полюсов есть по два контакта: подвижный и неподвижный. Подвижные виды клемм полюсов скреплены изоляторами с одним валом. Также вал соединен с рычагом механизма привода аппарата. При управлении механизмом разъединителя сразу включаются все три ножа одновременно.

Соединение контактов сделано жестким с помощью специальных пружин. Они нажимают на пластины из стали, придавливают ножи подвижного контакта к стационарному.

Во время короткого замыкания по разъединителю проходит большой ток, который приводит к его разрушению. Для решения этой проблемы в конструкцию разъединителя вмонтировали магнитный замок, который включает в себя 2 пластины, находящиеся по сторонам двигающегося контакта. Эти пластины намагничиваются от действия тока короткого замыкания, сильно притягиваются друг к другу, и создают дополнительную упругость между контактами.

В конструкции разъединителей не предусмотрено устройство для гашения электрической дуги, поэтому при включенной нагрузке выключать разъединитель запрещается. Для таких целей предназначены другие устройства, например, выключатели. Чтобы не произошло выключение цепи разъединителем при включенной нагрузке, в их конструкции предусмотрены механические блокираторы. Также для этих целей служат механические фиксаторы.

Требования к разъединителям

Такие требования нужны для обслуживания разъединителей электромонтером, либо другим обслуживающим персоналом.

  • Конструкция разъединителей выполняется такой, чтобы был виден разрыв цепи по классу напряжения.
  • Приводы должны быть оборудованы жесткого закрепления ножей в выключенном и включенном положении. Также должны быть хорошие упоры для ограничения поворота ножа больше положенного.
  • Разъединители должны быть приспособлены для любых погодных условий.
  • Изоляторы и тяги должны иметь достаточную прочность, не разрушаться при выполнении переключений.
  • Главные ножи разъединителей обязательно должны оснащаться блокировкой с ножами заземления, не допускающей одновременного включения.
Принцип действия и порядок выполнения переключений

В распредустройствах действия с разъединителями должны производиться только после того, как проверено отключенное состояние выключателя цепи.

Перед отключением разъединителя нужно снаружи осмотреть всю конструкцию. На разъединителях, блокирующих устройствах и их приводах не должно иметься повреждений, которые могли бы помешать выполнению операции выключения. Особо нужно осмотреть, нет ли шунтирующих перемычек для разъединителей.

Если обнаружены какие-либо дефекты и неисправности, то выключение разъединителя необходимо выполнять осторожно, с разрешения должностного лица, распорядившегося сделать переключение. При обнаружении трещин на изоляторах запрещается производить какие-либо операции с разъединителями.

При ручном механизме привода разъединитель нужно включать быстро и аккуратно, в конце хода не нужно допускать удара. Если во время включения появилась электрическая дуга, то ножи отводить обратно нельзя, так как размер дуги увеличится и перекроет междуфазное пространство, вызвав короткое замыкание. В любом случае операцию необходимо довести до завершения. Когда контакты замкнутся, то дуга исчезнет, и не создаст никаких проблем.

Обратную операцию по разъединению цепи производят не торопясь, с осторожностью. Сначала производят небольшое движение рычагом для проверки действия тяг, поломок изоляторов, люфтов в соединениях. Если при расцеплении цепи появляется дуга, то нужно сразу разъединитель вернуть обратно на свое место, выяснить причину. До выяснения переключения делать запрещается.

Выключение однополюсных разъединителей

Такие операции проводятся специальными штангами, в определенной последовательности, чтобы обеспечить максимальную защиту персонала. Представим такой случай, когда электромонтер начал выполнять отключение ошибочно, не отключив нагрузку.

При включенной нагрузке 1-й разъединитель выключать не опасно, так как сильная дуга не образуется. При расцеплении контактов может возникнуть только малое напряжение, с одной стороны разъединитель будет иметь напряжение источника, с другой будет одинаковая разность потенциалов, которая наводится работающими двигателями, а также конденсаторами, имеющимися в сети.

При выключении 2-го разъединителя может возникнуть мощная дуга. На 3-м разъединителе не будет большой мощности. Поэтому, как бы ни располагались разъединители, первым надо отключать средний разъединитель, далее верхний, затем нижний (при вертикальном расположении). Если расположение горизонтальное, то принцип тот же самый, только вместо верхнего и нижнего, нужно отключать правый и левый в любом порядке.

Если выключатели оснащены пружинами, то работать с разъединителями нужно, ослабив сначала пружины на выключателях, во избежание случайных срабатываний выключателей при операциях с разъединителями.

На линии 6-10 киловольт, где есть компенсация тока на заземление, перед тем как отключить ток намагничивания, сначала отключают реактор дугогашения, чтобы не было перенапряжений. Они могут возникнуть из-за неодновременного расцепления контактов фаз.

Особенности применения

Разъединители служат для видимого расцепления участка электрической цепи во время ремонта оборудования, создания безопасности, исключают подачу питания на ремонтный участок. Также расцепители можно применить для переключения питания электрическим током с одной цепи на другую.

По правилам разъединители могут включать и отключать:

• Нейтрали трансформаторов до 220 киловольт.•Дугогасящие заземляющие реакторы, если нет замыкания на землю.• Тока намагничивания.• Подключение трансформаторов на холостом ходу до 750 кВА.• Тока заряда и замыкания на заземление воздушных линий питания.• Тока заряда шин, других подключений, удовлетворяющих требованиям нормативов.• Отключение токов уравнения до 70 ампер в кольцевых сетях, замыкание сети при отличии напряжений на клеммах не выше 5%.

Отключение уравнительных токов

Рубильники могут отключать, включать токи заряда воздушных и кабельных сетей, токи намагничивания, в том числе силовых, уравнивающие токи, а также слабые токи нагрузки. Это подтверждено директивными и регламентирующими документами. Уравнительный ток – это ток между участками электрической замкнутой сети, обусловленный разностью значений напряжений во время коммутации электрической связи, то есть, во время отключения или соединения.

В закрытых распредустройствах до 10 кВ разъединителями можно включать и выключать токи намагничивания силовых трансформаторов, токов заряда линий, замыкания на землю, не больше следующих величин:

• При 6 киловольтах – ток 3,5 ампер, ток заряда 2,5 ампер, ток замыкания на землю 4 ампера.• При 10 киловольтах – ток намагничивания 3 ампера, ток заряда 2 ампера, замыкающий ток на землю 3 ампера.

Если между полюсами установлены перегородки из диэлектрического материала, то допускаемый ток при переключениях можно увеличить в 1,5 раза.

Разъединителями при напряжении от 6 до 10 киловольт можно включать и выключать токи уравнивания до 70 ампер, а также токи нагрузки линии до 15 ампер, если операция переключения проводится 3-полюсными разъединителями внешней установки с приводным механизмом.

Если в электрической цепи нет выключателя, то при напряжении сети до 10 кВ допускается производить операции с разъединителями при малых токах, которые намного меньше тока номинала устройств.

Чаще всего разъединители оснащают стационарными заземлителями. Это дает возможность не устанавливать переносные заземления на устройствах, которые требуют ремонта, а значит, не будет нарушения требований правил безопасности при установке заземлений.

Обеспечение безопасности

Во время выполнения переключений с помощью разъединителей под напряжением, электромонтер должен выбрать правильное место своего расположения возле привода, чтобы не получить травм при случайном падении изолятора и других деталей, а также для защиты от действия возможной электрической дуги.

Нельзя смотреть на контакты во время совершения операции. Но после операции нужно обязательно осмотреть состояние ножей разъединителей и стационарных видов ножей. Бывают случаи, когда ножи включились не до конца, либо не отключились ножи стационарные при отключении на отдельных фазах. Каждая фаза осматривается отдельно, даже если между ножами всех фаз есть механическая связь.

Похожие темы:

 

electrosam.ru

Разъединители, выключатели нагрузки, предохранители.

Трафарет Visio Разъединители, выключатели нагрузки, предохранители.

Трансформация условных обозначений возможна через контекстное меню фигуры путем включения-отключения  функциональных символов и их комбинации:

Символы условных обозначений разъединителей.

Базовые символы разъединителей:

Разъединитель однополюсный. Разъединитель двухполюсный.

 

Разъединитель трехполюсный Разъединитель четырехполюсный.

 

   Для любого из обозначений, в контекстном меню фигуры, можно сменить символ привода:

  • ручной,
  • ручной с фиксатором,
  • ручной с блокировочным устройством,
  • без привода.

Например, для трехполюсного разъединителя:

Разъединитель с ручным приводом. Разъединитель с ручным приводом с фиксатором.

 

 Разъединитель с ручным приводом с блокирующим устройством Разъединитель без привода.

 

Для любого из обозначений разъединителя, можно показать символ автоматического отключения. Например для трехполюсного:

Примеры обозначения разъединителя с различными типами привода.

Любой из символов условного обозначения можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.

Символы условных обозначений разъединителей двухсторонних.

Для условных обозначений разъединителя двухстороннего, в трафарете по два варианта фигур, которые отличаются расстоянием между выводами полюса (расстояние между полюсами, можно изменить, используя маркеры выделения фигуры):

Разъединитель двухсторонний однополюсный.

Разъединитель двухсторонний двухполюсный.

Разъединитель двухсторонний трехполюсный.

Разъединитель двухсторонний четырехполюсный.

 Для любого из обозначений, в контекстном меню фигуры, можно сменить символ привода:

  • ручной,
  • ручной с фиксатором,
  • ручной с блокировочным устройством,
  • без привода.

Например, для двухполюсного разъединителя двухстороннего:

Разъединитель двухсторонний с ручным приводом. Разъединитель двухсторонний с ручным приводом с фиксатором.

 

Разъединитель двухсторонний с ручным приводом с блокирующим устройством. Разъединитель двухсторонний без привода.

 

 

Любой из символов условного обозначения можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.

Символы условных обозначений выключателя нагрузки.

Выключатель нагрузки однополюсный Выключатель нагрузки двухполюсный.

 

Выключатель нагрузки трехполюсный. Выключатель нагрузки четырехполюсный.

 

 Для любого из обозначений, в контекстном меню фигуры, можно сменить символ привода:

  • ручной,
  • ручной с фиксатором,
  • ручной с блокировочным устройством,
  • без привода.

Например, для трехполюсного выключателя нагрузки:

Выключатель нагрузки с ручным приводом. Выключатель нагрузки с ручным приводом с фиксатором.

 

Выключатель нагрузки с ручным приводом с блокирующим устройством. Выключатель нагрузки без привода.

 

Для любого из обозначений выключателя нагрузки, можно показать символ автоматического отключения:

Примеры обозначения выключателя нагрузки с различными типами привода.

Любой из символов условного обозначения можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.

Символы условных обозначений предохранителей-разъединителей и предохранителей-выключателей.

Предохранитель-разъединитель:

Предохранитель-разъединитель однополюсный. Предохранитель-разъединитель двухполюсный.

 

Предохранитель-разъединитель трехполюсный. Предохранитель-разъединитель четырехполюсный.

 

или через контекстное меню фигуры, переключить условное обозначение как предохранитель-выключатель:

Предохранитель-выключатель однополюсный. Предохранитель-выключатель двухполюсный.

 

Предохранитель-выключатель трехполюсный. Предохранитель-выключатель четырехполюсный.

 

   Для любого из обозначений, в контекстном меню фигуры, можно сменить символ привода:

  • ручной,
  • ручной с фиксатором,
  • ручной с блокировочным устройством,
  • без привода.

Например:

Предохранитель-выключатель с ручным приводом. Предохранитель-выключатель с ручным приводом с фиксатором.

 

Предохранитель-разъединитель с ручным приводом с блокирующим устройством. Предохранитель-разъединитель без привода.

 

Любой из символов условного обозначения можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.

Символы условных обозначений выключателей нагрузки с предохранителем.

Выключатель нагрузки с предохранителем однополюсный. Выключатель нагрузки с предохранителем двухполюсный.

 

Выключатель нагрузки с предохранителем трехполюсный. Выключатель нагрузки с предохранителем четырехполюсный.

 

   Для любого из обозначений, в контекстном меню фигуры, можно сменить символ привода:

  • ручной,
  • ручной с фиксатором,
  • ручной с блокировочным устройством,
  • без привода.

Например для трехполюсного выключателя нагрузки с предохранителем:

Выключатель нагрузки с предохранителем с ручным приводом. Выключатель нагрузки с предохранителем с ручным приводом с фиксатором.

 

Выключатель нагрузки с предохранителем с ручным приводом с блокирующим устройством Выключатель нагрузки с предохранителем без привода.

 

Любой из символов условного обозначения выключателя нагрузки, можно расположить вертикально или горизонтально, а так же поменять местами подвижные и неподвижные контакты.

Символы условных обозначений предохранителей.

Предохранитель однополюсный. Предохранитель двухполюсный.

 

Предохранитель трехполюсный. Предохранитель четырехполюсный.

 

Любой из символов условного обозначения предохранителя, можно расположить вертикально или горизонтально.

td-visio.ru

Разъединители



Разъединитель представляет собой коммутационный аппарат для напряжения свыше 1 кВ, основное назначение которого - создавать видимый разрыв и изолировать части системы, электроустановки, отдельные аппараты от смежных частей, находящихся под напряжением, для безопасного ремонта.

Помимо этого основного назначения разъединители используют также для других целей, поскольку их конструкция это позволяет, а именно:

  • для отключения и включения ненагруженных силовых трансформаторов небольшой мощности и линий ограниченной длины при строго установленных условиях;
  • для переключений присоединений РУ с одной системы сборных шин на другую без перерыва тока;
  • для заземления отключенных и изолированных участков системы с помощью вспомогательных ножей, предусматриваемых для этой цели.

Разъединители имеют относительно простую конструкцию. Обязательным является наличие в положении «отключено» видимого разрыва в воздухе, создающего уверенность в том, что рассматриваемый участок действительно отключен и изолирован от смежных частей. Разъединители снабжают приводами - ручными или электродвигательными - для неавтоматического управления. Стоимость разъединителя значительно ниже стоимости выключателя, требования к уходу и ремонту также ниже.

Схемы, поясняющие использование разъединителей

Рис.1. Схемы, поясняющие использование разъединителей: а - при изоляции выключателя для ремонта; б - при переключении присоединений

Поясним условия работы разъединителей на следующих примерах. Для подготовки выключателя для ремонта он должен быть отключен и изолирован от смежных частей, находящихся под напряжением, с помощью двух разъединителей QS1 и QS2 (рис.1,а). При этом разъединители отключают емкостный ток, значение которого определяется напряжением сети и емкостью вводов выключателя. Этот ток мал, и на контактах разъединителей не возникают дуговые разряды. После отключения разъединителей выключатель Q, подлежащий ремонту, должен быть заземлен с обеих сторон с помощью дополнительных ножей QSG1 и QSG2.

Переключение присоединений РУ под током с помощью разъединителей производят при обязательном условии - наличии параллельных ветвей с малым сопротивлением. Так. например, при наличии двух параллельных ветвей с разъединителями QS1 и QS2 (рис.1,б) один из разъединителей может быть безопасно разомкнут под током, если разъединитель второй ветви включен. При отключении разъединителя ток смещается из одной ветви в другую. При этом на контактах дуги не образуются.

Преимущественное применение получили трехполюсные разъединители с общим управлением полюсами. Последние могут быть связаны между собой механически, электрически или пневматически.

Разъединители для внутренней установки

Эти разъединители выполняют обычно вертикально-рубящего типа с ножами, поворачивающимися в вертикальной плоскости, перпендикулярной основанию.

Трехполюсный разъединитель типа РВР 10 кВ, 2000 А с двумя комплектами заземляющих ножей

Рис.2. Трехполюсный разъединитель типа РВР 10 кВ, 2000 А с двумя комплектами заземляющих ножей

Трехполюсный разъединитель типа РВР - внутренней установки, рубящий (рис.2) - имеет два опорных изолятора 1 на полюс, установленных на основании 2 из профильной стали. Третий - тяговый изолятор 3 служит для приведения в движение главных ножей 4. Разъединители снабжены дополнительными ножами 5 для заземления - одним или двумя на каждый полюс. Для управления главными ножами служат вал 6 и система рычагов каждого полюса. Ведущие рычаги укреплены на валу и соединены шарнирно с тяговыми изоляторами. Последние соединены с ножами. Вал приводится во вращение с помощью привода. При этом главные ножи поворачиваются на угол около 60°. Заземляющие ножи 5 каждой стороны укреплены на особых валах 7 и соединены между собой медной шиной 9. Для управления заземляющими ножами необходимы особые приводы. Токоведущие части разъединителя (зажимы 8 для присоединения шин, контакты, ножи) выполняют в соответствии с номинальным током разъединителя. Чем больше последний, тем больше сечение ножей.

Контактная система разъединителя типа РВР 10 кВ, 1000 А

Рис.3. Контактная система разъединителя типа РВР 10 кВ, 1000 А

У разъединителей с номинальным током до 1000 А включительно (рис.3) ножи состоят из двух медных полос 1 прямоугольного сечения, охватывающих контактную стойку 2. Боковые поверхности стойки имеют цилиндрическую форму и образуют с пластинами ножа линейные контакты. Давление в контакте создается пружинами 3, насаженными на стержень. Давление на ножи передается через стальные пластины 4 с выступами. При КЗ и резком увеличении тока пластины ножа притягиваются друг к другу, увеличивая давление в контакте. Стальные пластины увеличивают магнитную индукцию и создают дополнительное давление в контактах. Такого рода магнитными замками снабжают большую часть разъединителей.

У разъединителей с номинальным током свыше 1000 А главные ножи состоят из двух и четырех частей коробчатого сечения (рис.2). Контактные поверхности покрывают слоем серебра толщиной 20 мкм. Предусматривают также магнитные замки.

Для управления главными и заземляющими ножами предусматривают приводы, устройство которых зависит от номинального тока разъединителя. Ручной привод представляет собой систему рычагов или зубчатых передач, с помощью которых человек может повернуть вал разъединителя. Чем больше номинальный ток разъединителя, тем больше силы трения в контактах. Соответственно должен быть рассчитан механизм привода.

Разъединители с номинальным током 4000 А и выше снабжают приводами с червячной передачей, управляемыми вручную или с помощью электродвигателя. Для заземляющих ножей имеются отдельные приводы, обычно рычажные. Последние блокируют с приводами главных ножей, чтобы исключить возможность включения заземляющих ножей при включенных главных ножах, а также возможность включения главных ножей при включенных заземляющих ножах.

Установка трехполюсного разъединителя типа РВР с заземляющими ножами

Рис.4. Установка трехполюсного разъединителя типа РВР с заземляющими ножами

На рис.4 показана установка трехполюсного разъединителя 10 кВ, 2000 А с двумя комплектами заземляющих ножей. Привод главных ножей 1 - электродвигательный, а приводы заземляющих ножей 2 - червячные. У всех приводов предусмотрены блок-контакты 3 для сигнализации положения и блокировки.

Разъединители для наружной установки

Во времена СССР наибольшее распространение получили разъединители горизонтально-поворотного типа с ножами, вращающимися в горизонтальной плоскости, параллельной основанию. Их изготовляют для напряжений от 35 до 500 кВ включительно.

Трехполюсный разъединитель для наружной установки типа РНД 110 кВ, 2000 А

Рис.5. Трехполюсный разъединитель для наружной установки типа РНД 110 кВ, 2000 А

Разъединитель типа РНД - наружный, двухколонковый (рис.5) - имеет две колонны изоляторов 1 на полюс, установленные вертикально в подшипниках на стальной раме 2 и связанные между собой системой рычагов 3. При повороте изоляторов поворачиваются и ножи 4, укрепленные на головках изоляторов. Зажимы 5 для присоединения проводников к разъединителю укреплены на головках изоляторов шарнирно и соединены с ножами гибкими лентами 6. При вращении изоляторов они не поворачиваются. Контакты разъединителя 7 находятся в месте стыка ножей, Они состоят из ряда пластин, укрепленных на одном ноже, и «лопатки» - на другом ноже. Давление в контактах создается пружинами. Ножи разъединителя приспособлены для работы в зимнее время при гололеде. Они состоят из двух пластин, соединенных шарнирно (на рисунке не показаны).

В процессе отключения нож «ломается» и разрушает лед, образовавшийся на контактах. Разъединители снабжены ножами для заземления 8 - одним или двумя на полюс. В отключенном положении ножи расположены горизонтально у основания разъединителя. При включении они поворачиваются в вертикальной плоскости на угол 90°. При этом контакт на конце заземляющего ножа соединяется с особым контактом 9 на главном ноже.

Полюсы трехполюсного разъединителя связаны между собой рычажной системой 10 и управляются с помощью общего привода 11. Средний полюс является ведущим, крайние полюсы - ведомыми. Заземляющие ножи имеют отдельные приводы, блокированные с приводами главных ножей.

Отключающая способность разъединителей

Под отключающей способностью разъединителя следует понимать его способность отключать ток порядка нескольких ампер или нескольких десятков ампер при определенных условиях.

Процесс отключения цепи разъединителем протекает следующим образом. При размыкании разъединителя на разрывах образуются дуги. Под действием магнитного поля и выделяющеюся тепла они поднимаются и вытягиваются в виде петель (рис.6). Такие дуги принято называть свободными или открытыми.

Свободная дуга на контактах разъединителя

Рис.6. Свободная дуга на контактах разъединителя

Вследствие слабой деионизации дуговой столб сохраняет свою проводимость в моменты перехода тока через нулевое значение и дуга горит в течение десятков периодов. По мере удлинения дуги ее сопротивление и напряжение на разрыве увеличиваются, а ток уменьшается (рис.7).

Осциллограммы тока и напряжения на контактах разъединителя

Рис.7. Осциллограммы тока и напряжения на контактах разъединителя: а - размыкание кольцевой линии 33 кВ с током 133 А, длительность дуги 22 периода; б - отключение ненагруженного трансформатора с током 18 А, длительность дуги 25 периодов

При определенной длине дуги, называемой критической, напряжение сети оказывается недостаточным для ее поддержания, ток спадает до нуля, а напряжение на разрыве восстанавливается до напряжения сети. Вследствие сильного демпфирования восстанавливающееся напряжение не содержит составляющих высокой частоты, характерных для выключателей, снабженных гасительными камерами.

Опытами установлено, что свободная дуга переменного тока в воздухе угасает, если имеется достаточное пространство, чтобы она могла достигнуть критической длины и если расстояние между контактами разъединителя достаточно, чтобы исключить ее повторное зажигание. Максимальный вылет дуги, т.е. наибольшее расстояние от средней точки прямой, соединяющей контакты разъединителя, до точки наибольшего удаления дуги, зависит от напряжения сети и отключаемого тока.

Зависимость максимального вылета дуги на контактах разъединителя от тока и напряжения

Рис.8. Зависимость максимального вылета дуги на контактах разъединителя от тока и напряжения

На рис.8 показана эта зависимость применительно к отключению индуктивного и активного токов.

Отключение разъединителем даже относительно небольших токов, в особенности емкостных, связано с опасностью переброса дуги на соседние фазы и на заземленные части, что недопустимо. По мере увеличения напряжения и отключаемого тока эта опасность увеличивается. Правила технической эксплуатации электроустановок (ПТЭ) разрешают операции включения и отключения электрических цепей разъединителями при строго определенных условиях. Так, например, разрешается включение и отключение разъединителями измерительных трансформаторов напряжения. При напряжениях до 10 кВ разрешается включать и отключать разъединителями наружной установки нагрузочный ток до 15 А. При более высоких напряжениях значения допускаемых отключаемых токов ставятся в зависимость от расстояний между полюсами. В табл.1 указаны допускаемые ПТЭ токи отключения для наиболее распространенных разъединителей серии РНД.

Таблица 1

Наибольшие токи намагничивания трансформаторов и зарядные токи линий,допускаемые к отключению в наружных распределительных устройствахразъединителями горизонтального типа

Наибольшие токи намагничивания трансформаторов и зарядные токи линий, допускаемые к отключению в наружных распределительных устройствах разъединителями горизонтального типа

Номинальные характеристики разъединителей

Номинальными параметрами разъединителей являются: номинальное напряжение, номинальный ток, номинальный ток динамической стойкости и номинальный ток термической стойкости. Отключающую способность разъединителей заводы-изготовители не указывают, поскольку она зависит от многих условий, в частности от расстояний между полюсами и до заземленных частей, которые выбирают проектирующие организаций.

Отделители имеют те же параметры, что и разъединители; дополнительно указывается номинальное время срабатывания.

Номинальными параметрами короткозамыкателей являются номинальное напряжение и номинальный ток включения - мгновенное значение iвкл и действующее значение периодической составляющей Iвкл. Эти величины должны быть сопоставлены с соответствующими расчетными значениями iуд и iп0. Дополнительно указывается полное время включения.



www.gigavat.com

Назначение электрического оборудования распределительных устройств



Однолинейная схема электростанции средней мощности с РУ 10 и 110 кВ

Рис.1. Однолинейная схема электростанции средней мощности с РУ 10 и 110 кВ: G - генератор; Т - трансформатор; Q - выключатель; QB - выключатель секционный; QS - разъединитель; LR - токоограничивающий реактор; F - разрядник; W - линия электропередачи

Назначение электрического оборудования первичных цепей

Назначение аппаратов и других элементов РУ удобно рассмотреть применительно к схеме конкретной установки (рис.1). Как видно из схемы, в каждом присоединении предусмотрены выключатели и соответствующие разъединители.

Выключатели

Выключатели Q являются важнейшими коммутационными аппаратами. Они предназначены для включения, отключения и повторного включения электрических присоединений. Эти операции выключатели должны совершать в нормальном режиме, а также при коротких замыканиях (КЗ), когда ток превосходит нормальное значение в десятки и сотни раз. Выключатели снабжены приводами для неавтоматического и автоматического управления. Под неавтоматической операцией включения или отключения понимают операцию, совершаемую человеком, который замыкает цепь управления привода выключателя особым ключом обычно на расстоянии, т.е. дистанционно. Автоматическое включение и отключение происходит без вмешательства человека с помощью автоматических устройств, замыкающих те же цепи управления.

Выключатели предусмотрены также в сборных шинах. Эти выключатели называют секционными QB. В РУ станций секционные выключатели при нормальной работе обычно замкнуты. Они должны автоматически размыкаться только в случае повреждения в зоне сборных шин. Вместе с ними должны размыкаться и другие выключатели поврежденной секции. Таким образом поврежденная часть РУ будет отключена, а остальная часть останется в работе.

При наличии достаточного резерва в источниках энергии и линиях электроснабжение не будет нарушено.

Разъединители

Разъединители QS имеют основное назначение - изолировать (отделять) на время ремонта в целях безопасности электрические машины, трансформаторы, линии, аппараты и другие элементы системы от смежных частей, находящихся под напряжением. Разъединители способны размыкать электрическую цепь только при отсутствии в ней тока или при весьма малом токе, например токе намагничивания небольшого трансформатора или емкостном токе непротяженной линии.

В отличие от выключателей разъединители в отключенном положении образуют видимый разрыв цепи. Как правило, их снабжают приводами для ручного управления. Операции с разъединителями и выключателями должны производиться в строго определенном порядке. При отключении цепи необходимо сначала отключить выключатель и после этого отключить разъединители, предварительно убедившись в том, что выключатель отключен. При включении цепи операции с выключателем и разъединителями должны быть выполнены в обратном порядке. Таким образом, замыкание и размыкание цепи с током совершает выключатель. Разъединители образуют дополнительные изолирующие промежутки в цепи, предварительно отключенной выключателем.

Разъединители размещают так, чтобы любой аппарат или любая часть РУ могли быть изолированы для безопасного доступа и ремонта. Так, например, в каждой линейной цепи должны быть предусмотрены два разъединителя - шинный или линейный, с помощью которых выключатели могут быть изолированы от сборных шин и от сети. В цепи генератора достаточно иметь только шинный разъединитель, обеспечивающий безопасный ремонт генератора и выключателя; при этом генератор должен быть отключен и остановлен. Для ремонта двухобмоточных трансформаторов и соответствующих выключателей достаточно иметь шинные разъединители со стороны высшего и низшего напряжений.

Заземляющие устройства

Для безопасной работы в РУ и в сети недостаточно изолировать рабочее место от смежных частей, находящихся под напряжением. Необходимо также заземлить участок системы, подлежащий ремонту. Для этого у разъединителей предусматривают заземляющие ножи, с помощью которых участок, изолированный для ремонта, может быть заземлен с обеих сторон, т.е. соединен с заземляющим устройством установки, потенциал которого близок к нулю. Заземляющие ножи снабжают отдельными приводами. Нормально заземляющие ножи отключены. Их включают при подготовке рабочего места для ремонта после отключения выключателей и разъединителей и проверки отсутствия напряжения.

Использование разъединителей не ограничивается изоляцией отключенных частей системы в целях безопасности при ремонтах. В РУ с двумя системами сборных шин разъединители используют также для переключений присоединений с одной системы сборных шин на другую без разрыва тока в цепях.

Токоограничивающие реакторы

Токоограничивающие реакторы LR представляют собой индуктивные сопротивления, предназначенные для ограничения тока КЗ в защищаемой зоне. В зависимости от места включения различают реакторы линейные и секционные.

Измерительные трансформаторы тока

Измерительные трансформаторы тока ТА предназначены для преобразования тока до значений, удобных для измерений. В присоединениях генераторов, силовых трансформаторов, линий со сложными видами защиты необходимы два-три комплекта трансформаторов тока.

Измерительные трансформаторы напряжения

Измерительные трансформаторы напряжения TV предназначены для преобразования напряжения до значений, удобных для измерений. Трансформаторы напряжения присоединяют к сборным шинам станций; их предусматривают также в присоединениях генераторов, трансформаторов и линий.

На принципиальных схемах измерительные трансформаторы обычно не показывают.

Вентильные разрядники

Вентильные разрядники F, а также ограничители перенапряжений предназначены для защиты изоляции электрического оборудования от атмосферных перенапряжений. Они должны быть установлены у трансформаторов, а также у вводов воздушных линий в РУ.

Токопроводы

Токопроводы представляют собой относительно короткие электрические линии (как правило, от нескольких метров до нескольких сотен метров) с жесткими или гибкими проводниками, укрепленными на опорных или подвесных изоляторах, предназначенные для соединения электрических машин, трансформаторов и электрических аппаратов в пределах станции, подстанции, распределительного устройства.

Требования, предъявляемые к электрическому оборудованию и токопроводам

Требования, предъявляемые к электрическому оборудованию и токопроводам, заключаются в следующем.

  • Изоляция оборудования должна обладать достаточной электрической прочностью, чтобы противостоять наибольшему рабочему напряжению, а также коммутационным и атмосферным перенапряжениям.
  • Оборудование и проводники должны:
    • проводить в течение неограниченного времени наибольшие рабочие токи соответствующих присоединений; при этом температура в наиболее нагретых точках не должна превышать нормированные значения для продолжительного режима;
    • выдерживать тепловое и механическое действия токов КЗ, т.е. обладать достаточной термической и электродинамической стойкостью;
    • быть экономичными и надежными в эксплуатации, т.е. вероятность повреждений должна быть мала, а требования к уходу и ремонту минимальными;
    • быть безопасными для лиц, обслуживающих установку.

Кроме перечисленных общих требований, к электрическому оборудованию предъявляют ряд частных требований в соответствии с назначением и условиями работы оборудования.

Номинальные параметры электрического оборудования - это параметры, определяющие свойства электрического оборудования, например номинальное напряжение, номинальный ток и многие другие. Номинальные параметры назначают заводы-изготовители. Они указываются в каталогах, справочниках, на щитках оборудования. При проектировании установки и выборе оборудования номинальные параметры сопоставляют с соответствующими расчетными значениями напряжений и токов, чтобы убедиться в пригодности оборудования для работы в нормальных и анормальных условиях. Ограничимся здесь лишь определением понятия номинального напряжения электрической сети и электрического оборудования.

Номинальное напряжение - это базисное напряжение из стандартизованного ряда напряжений, определяющее уровень изоляции сети и электрического оборудования. Действительные напряжения в различных точках системы могут несколько отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения, установленные для продолжительной работы:

Номинальное междуфазное напряжение, действующее значение, кВ... 3..6..10..20..35..110

Наибольшее рабочее напряжение, действующее значение, кВ... 3,5..6,9..11,5..23..40,5

Номинальное междуфазное напряжение. действующее значение, кВ... 150..220..330..500..750..1150

Наибольшее рабочее напряжение, действующее значение, кВ... 172..252..363..525..787..1210

Для сетей с номинальным напряжением 220 кВ включительно наибольшее рабочее напряжение принято равным 1,15 номинального; для сетей с номинальным напряжением 330 кВ - 1,1 номинального и для сетей 500 кВ и выше - 1,05 номинального. Электрическое оборудование должно быть рассчитано на продолжительную работу при указанных напряжениях.

Изоляция электрического оборудования должна также противостоять перенапряжениям, т.е. кратковременному действию напряжений, превышающих наибольшее рабочее напряжение. Различают перенапряжения коммутационные и атмосферные.

Аппараты вторичных цепей. Релейная защита и элементы системной автоматики

Автоматические устройства, в частности релейная защита, необходимы там, где требуется быстрая реакция на изменение режима работы и немедленная команда на отключение или включение соответствующих цепей. Так, например, при КЗ, когда ток в ряде цепей резко увеличивается, необходимо немедленно отключить поврежденный участок системы, чтобы но возможности уменьшить размеры разрушения и не помешать работе смежных неповрежденных цепей. Такая команда может быть подана только автоматическим устройством, реагирующим на изменение тока, направление мощности и другие факторы и замыкающим цепи управления соответствующих выключателей.

Автоматическое отключение элементов системы, должно быть избирательным (селективным). Это означает, что в случае повреждения в любой цени отключению подлежит только поврежденная цепь ближайшими к месту повреждения выключателями. Работа остальной части системы не должна быть нарушена. Так, например, при замыкании в точке К1 (рис.2) ток проходит по цепям генераторов, повышающих трансформаторов, поврежденной и неповрежденной линий. Однако отключению подлежит только поврежденная линия с обеих сторон. Связь станции с системой сохранится по другой линии.

В случае повреждения генератора или трансформатора отключению подлежит только поврежденный элемент. На рис.2 участки системы, подлежащие отключению в случае их повреждения, разграничены пунктирными линиями. Каждый участок отключается одним или двумя выключателями. В случае повреждения выключателя отключению подлежат два смежных участка.

Электрическая схема станции и участка сети

Рис.2. Электрическая схема станции и участка сети Пунктирные линии разграничивают участки станции и сети,подлежащие отключению в случае их повреждения

Избирательность релейной защиты обеспечивают различными способами, например соответствующим выбором времени или тока срабатывания защит смежных участков сети, применением реле, реагирующих на направление мощности, и др.

Время отключения цепи при КЗ слагается из времени срабатывания релейной защиты и времени отключения выключателя, исчисляемого от момента подачи команды на отключение до момента погасания дуги в разрывах выключателя.

Время отключения основных линий системы стремятся по возможности уменьшить, чтобы не нарушить устойчивости параллельной работы электростанций. Время отключения новейших выключателей составляет два периода и время релейной защиты еще 0,5 периода. Полное время отключения составляет таким образом 2,5 периода. Для распределительных сетей 2,5-периодное отключение не требуется. Здесь применяют более простые защиты и менее быстродействующие выключатели, стоимость которых значительно ниже. Полное время отключения составляет несколько десятых долей секунды и более.

Автоматическое повторное включение

Автоматические устройства для повторного включения (АПВ) воздушных линий после отключения их защитой имеют назначение быстро восстановить работу линии после отключения. Эффективность повторного включения воздушных линий основана на том, что большая часть замыканий связана с грозовыми разрядами и приводит к перекрытию изоляторов по поверхности. После автоматического отключения линии электрическая прочность воздушного промежутка быстро восстанавливается и при повторном включении линия остается в работе.

Первоначально команда на повторное включение подавалась вручную дежурным на щите управления. Позднее операцию включения стали автоматизировать. В настоящее время автоматическое повторное включение, однократное и двукратное, получило широкое применение. Оно способствует повышению надежности электроснабжения, в особенности при питании потребителей по одиночным линиям.

Полное время автоматического повторного включения исчисляется от подачи команды релейной защиты на отключение выключателя до повторного замыкания его контактов. Оно должно быть возможно малым, чтобы не нарушать работу потребителей, но в то же время достаточным для деионизации дугового промежутка в месте перекрытия. Время повторного включения зависит от напряжения сети и быстродействия выключателя. В устройствах двукратного повторного включения для первого включения выбирают минимальное время из условия деионизации дугового промежутка. Если первое включение оказывается неуспешным и линия отключается вновь, происходит второе включение с интервалом в несколько секунд.

Автоматический ввод резерва

Автоматические устройства для включении резервной цепи (АВР) должны автоматически включать резервный трансформатор или резервный агрегат взамен отключенного защитой, а также автоматически подключать секцию сборных шин (с соответствующей нагрузкой), потерявшую питание, к соседней секции, обеспеченной питанием, с целью быстрого восстановления электроснабжения. Перерыв в подаче энергии должен быть относительно невелик, не более 0,5 с, чтобы электродвигатели, потерявшие питание, не успели остановиться, а после восстановления питания могли быстро войти в нормальный режим работы.



www.gigavat.com

Монтаж разъединителей 6—10 кВ - Разъединители, отделители, короткозамыкатели и ВН

Устройство разъединителей.

Высоковольтные разъединители предназначены: для отключения и включения под напряжение участков электрической цепи либо отдельных аппаратов при отсутствии нагрузочного тока (нагрузка отключена выключателем) или для изменения схемы соединения; для безопасного производства работ на отключенном участке; для включения и отключения (при условиях, установленных ПУЭ) зарядных токов воздушных и кабельных линий, тока холостого хода трансформаторов и токов небольших нагрузок. Имея открытую контактную систему, разъединители создают видимый разрыв электрической цепи, позволяющий персоналу убедиться в безопасности производства работ на отключенном участке.В закрытых распределительных устройствах и на подстанциях напряжением 6—10 кВ применяют однополюсные и трехполюсные разъединители внутренней установки РВО, РВ, РВЗ, РВФ и др. Условное обозначение разъединителей расшифровывается так: Р — разъединитель, В — высоковольтный, О — однополюсный, 3 — с заземляющими ножами, Ф — фигурный. Цифры после букв означают номинальное напряжение (кВ), номинальный ток (А) и вариант исполнения.Однополюсный разъединитель (рис. 1) состоит из двух опорных изоляторов 3 и контактной системы, в которую входят неподвижный контакт 4 и подвижный контактный нож 5, укрепленные на изоляторах. Контактный нож, вращающийся на оси, выполнен из двух полос, охватывающих неподвижные контактные стойки. Необходимое давление в контактах создают пружины. Разъединитель собран на основании в виде корытообразного цоколя 2.Во включенном положении нож разъединителя запирается специальной защелкой, что исключает его самопроизвольное открытие под влиянием собственной массы, сотрясений и электромагнитных сил. Зацеп 6 имеет ушко для изолирующей штанги, с помощью которой включают и отключают разъединитель. Открытие ножа на угол более 75° ограничивается упором.

Рис. 1. Однополюсный разъединитель РВО на напряжение 6—10 кВ и ток 600 А:1 — болт заземления, 2 — цоколь, 3 — изолятор, 4 — неподвижный контакт, 5 — подвижный контактный нож, 6 — зацеп

Ножи разъединителей, состоящие из двух полос (расположенных по обе стороны подвижного контакта), изготовляют только на номинальный ток до 600 А. При больших токах нож составляют из четырех, шести или восьми полос.Разъединитель серии РВ состоит из трех скомплектованных на общей сварной металлической раме однополюсных разъединителей с общим валом и приводным рычагом для трех полюсов. В контактную систему разъединителя вертикально-рубящего типа входят неподвижные контакты и подвижные контактные ножи. Контактная система каждого полюса крепится на двух опорных изоляторах. Движение передается ножам всех трех фаз через изолирующие фарфоровые тяги, связанные с приводом через вал.Трехполюсные разъединители по сравнению с однополюсными имеют следующие преимущества: простое и быстрое управление, возможность дистанционного управления приводом, а также одновременного включения и отключения всех трех фаз одной цепи, более простую сигнализацию.Разъединители РВЗ в зависимости от варианта исполнения имеют один или два вала с заземляющими ножами, которые укреплены на раме пластинами. Заземляющие ножи снабжены дополнительными заземляющими контактами, расположенными под основными неподвижными контактами. В разъединителях РВЗ предусмотрена блокировка между валами основных и заземляющих ножей, что предотвращает ошибочные операции. Для управления разъединителями РВЗ устанавливают два одинаковых привода — для основных и заземляющих ножей.Разъединители РВФ используют в устройствах, где необходим изолированный переход из одного помещения (отсека) в другое благодаря наличию в их конструкции проходных изоляторов и меньшей площади для их установки.Разъединители РВЗ (или РВФЗ) используют для заземления основного токоведущего контура со стороны снятого напряжения, безопасного производства работ на отключенном участке или изменения схемы соединения. По сравнению с другими разъединители РВЗ имеют следующие преимущества: не требуют переносных заземлений (упрощается процесс заземления) и создают лучшие условия безопасности. Блокировка между подвижными контактами и заземляющими ножами, между разъединителем и выключателем исключает заземление частей, находящихся под напряжением.Разъединители РВЗ (РВФЗ), как и РВ (рис. 2, а, б), собирают на металлической раме 3 с изоляторами 4, на которой укреплены медные неподвижные 5 (губки) и подвижные 6 (ножи) контакты. Заземляющие ножи приварены к стальному валу 8, который вращается в раме и соединен с ней гибкой медной связью 9. Между двумя валами (разъединяющих и заземляющих ножей) укреплена блокировочная тяга 10. Кроме того, разъединители РВЗ, как и РВ, снабжены механизмом включения и отключения токоведущих ножей и ножей заземления. Подвижные контакты, соединяющиеся с рычагами отключающих механизмов, изолируют тягами.Управление трехполюсными разъединителями осуществляют приводами ПР-10 и ПР-11, а однополюсными — изолирующими оперативными штангами ШО. При установке разъединителя и привода на одной стороне стены для управления токоведущими и заземляющими ножами применяют привод ПР-11, а при установке на разных стенах или разных сторонах одной стены—привод ПР-10.

Рис. 2. Разъединители:а — РВ-6-10, б — РВЗ-6-10; 1 — рычаг, 2 — вал, 3 — рама, 4 — опорный изолятор, 5 — неподвижный контакт, 6 — нож, 7 — тяга с изоляторами, 8 — вал с заземляющими ножами, 9 — гибкая связь, 10 — блокировочная тяга

Привод состоит из чугунного литого подшипника, служащего его основанием, и рычажного механизма. Угол поворота рукоятки привода 150°. При отключении разъединителя рукоятку привода поворачивают вниз, при включении — вверх.При установке привода на разных стенах рычажный механизм передает с помощью секторов движение от рукоятки на рычаг, связанный с разъединителем. При угле поворота рукоятки на 150° рычаг поворачивается на 90°. Крайние положения привода ограничиваются фиксатором. Чтобы вывести привод из крайнего положения, нужно фиксатор оттянуть на себя. Если разъединитель и привод расположены в одной плоскости, они соединяются между собой только тягой. Механизм привода обеспечивает ограничение хода и исключает самопроизвольное отключение ножей.Штанга серии ШО служит для определения напряжения с помощью навинченного на нее указателя напряжений и состоит из рабочей головки, держателя и ограничительного кольца, отделяющего изолирующую часть держателя от ручки захвата. На конце штанга имеет палец, который при операциях вводят в зацеп разъединителя. Штанги выпускают длиной 1220 мм (ШО-10) и 1813 мм (ШО-35).

Установка разъединителей и приводов.

Монтаж разъединителей складывается из следующих операций: ревизии, подъема на опорные конструкции и крепления, проверки и регулировки основных и сигнальных контактов, проверки смонтированных разъединителя и привода в работе.Перед установкой разъединители подвергают осмотру и ревизии: проверяют состояние фарфоровых деталей, отсутствие трещин, сколов, повреждений глазури; прочность армировки; надежность крепления всех узлов и деталей; исправность контактной системы; отсутствие раковин, вмятин, ржавчины.Обнаруженные дефекты устраняют пришлифовкой и опиливанием, болтовые соединения подтягивают, трущиеся части смазывают тонким слоем технического вазелина, поврежденные фарфоровые детали заменяют. Ревизию разъединителей производят, как правило, в мастерских, вне зоны монтажа.Разъединитель поднимают на место установки и закрепляют на болтах или штырях без затяжки гаек до отказа. В зависимости от массы его поднимают за раму вручную с помощью переносного штатива или талью. Не допускается подъем разъединителя за изоляторы или ножи.Одновременно с установкой разъединителя монтируют привод и производят сборку передачи между ними. Разъединитель и привод устанавливают так, чтобы осевые линии, выверенные по уровню и отвесу, не отклонялись более чем на ± 2 мм.Разъединитель и его привод крепят к стене или конструкции прочно и надежно. Болты должны иметь полную резьбу; при затянутой гайке должен оставаться свободный конец болта, имеющий не более двух-трех ниток резьбы.Крепление разъединителя и его привода выполняют по уровню и отвесу. Для регулировки их положения применяют подкладки из листовой стали с отверстием для прохода крепежных болтов. При выверке следят, чтобы положение валов привода и разъединителя было строго горизонтальным. При установке нескольких однополюсных разъединителей, соединенных в один комплект, их валики должны быть расположены на одной горизонтальной оси.После установки и выверки взаимного положения разъединители и приводы к ним окончательно закрепляют, затягивая до отказа болты, гайки и контрящие приспособления, и производят окончательную сборку передачи. Для этого на каждый разъединитель и диск привода устанавливают рычаги, на оба конца тяги навинчивают вилки, а тягу закрепляют шпильками со шплинтами. Кроме того, для поддерживания тяги при поломке или расцеплении ставят тягоуловитель. Части передачи соединяют коническими штифтами. После тщательной выверки соосности и регулировки длин сопрягаемых частей просверливают отверстия цилиндрическим сверлом и развертывают конической разверткой под штифты соответствующего размера. Точно так же выполняют штифтование подвижного упора на валу привода и рычагов на валах разъединителя и привода, но до этого должны быть завершены все работы по регулировке разъединителя с приводом (рис. 3, а, б).Рис. 3. Установка трехполюсного разъединителя с приводом ПР-10:а — РВ, б — РВЗ; 1 — вспомогательные контакты, 2 — привод, 3 и 4 — вилки, 5 — разъединитель

При расположении осей передачи от разъединителя к приводу в разных плоскостях производят с помощью соединительной муфты удлинение вала разъединителя с закреплением соединительных валов коническими штифтами. Свободный конец вала укрепляют в торцевом или опорном подшипнике, устанавливаемом на боковой стенке. При устройстве более сложной передачи в разных плоскостях производят не только удлинение вала, но и устанавливают промежуточные подшипники, на которых закрепляют промежуточные валы с надетыми на них рычагами. В этом случае тягу составляют из отдельных элементов, соединяемых между собой с помощью вилок и закрепляемых на соответствующих рычагах шпильками и шплинтами.После установки разъединителей и приводов к ним, а также после сборки передачи осуществляют окончательные регулировку разъединителей и приводов и закрепление рычагов на валах упорными винтами. При регулировке соблюдают и выполняют условия, обеспечивающие нормальную работу разъединителей и приводов. Ножи располагают соосно без перекосов по отношению к неподвижным контактам. При выключении нож должен входить в неподвижный контакт. Для устранения недостатков во взаимном положении ножа и неподвижного контакта несколько смещают последний по отношению к изолятору, на котором он укреплен, либо смещают изолятор по отношению к раме, либо поворачивают изолятор вокруг своей оси. После того как нож и неподвижный контакт достигнут правильного положения, затягивают все болтовые соединения.Одновременность замыкания контактов проверяют так: медленно доводят передачу на включение до момента соприкосновения с подвижным контактом и в этом положении измеряют зазоры, оставшиеся между неподвижными контактами и ножами остальных полюсов. Допустимыми считаются зазоры, не превышающие 3 мм для разъединителей до 10 кВ. При большой разновременности производят регулировку изменением длины звеньев передачи.Измеряя усилие вытягивания ножа из неподвижного контакта, проверяют контактное давление динамометром или пружинными весами при сухих (обезжиренных) контактных поверхностях.Угол поворота ножей задается заводом-изготовителем для каждого типа разъединителей. Например, для РВ-10/400 угол между отключенными и включенными положениями разъединителя равен 65°. Допустимое отклонение от нормы ±3°. При необходимости его регулируют изменением длины тяги.При регулировке привода добиваются, чтобы включенное и отключенное положения разъединителя и привода соответствовали друг другу: при верхнем положении рукоятки рычажного привода разъединитель должен быть включен, при нижнем — отключен. В обоих крайних положениях привод запирается защелкой. Регулировку считают законченной, если для включения и отключения разъединителя достаточно усилий руки одного человека.Сигнальные контакты КСА регулируют изменением положения рычагов на их валике и приводе разъединителя. Они служит для замыкания и размыкания блокировочных цепей, цепей сигнальных ламп и других вспомогательных электрических цепей. Эти контакты, предназначенные для установки с выключателями и разъединителями, имеют (в зависимости от назначения) от 2 до 12 контактов для присоединения цепей.Конструкция контактов КСА проста и удобна в монтаже и эксплуатации. Основными их элементами являются неподвижные и поворотные контакты, валик для насадки подвижных контактов, диск для соединения под различным углом с приводным рычагом. Последний соединен другим концом с приводом выключателя или разъединителя (у однополюсных разъединителей— с ножом).При сборке КСА поворотные контактные шайбы располагают на валике так, чтобы контакты на замыкание и размыкание чередовались. Если по схеме необходимо другое расположение поворотных контактных шайб, проводят соответствующую переборку КСА. Приводной рычаг можно переставлять в требуемое положение по всей окружности диска, используя отверстия в нем и в самом рычаге. Основное требование к регулировке контактов КСА заключается в том, чтобы сигнал об отключении разъединителя начинал действовать после прохождения ножом разъединителя 75 % полного хода, а сигнал о включении — не ранее момента касания ножом неподвижных контактов.После регулировки разъединителя окончательно закрепляют рычаг на его валу с помощью конических штифтов диаметром 6 мм и длиной 60 мм. В рычаге и валу сверлят отверстия, диаметр которых на 0,2—0,3 мм меньше диаметра штифта.Работы по установке и регулировке разъединителей считаются законченными, если привод разъединителя и вся система передачи работают четко, без затираний. Холостой ход рукоятки привода, возникший в результате зазоров и упругих деформаций всей системы передачи от рукоятки привода до ножей, не должен превышать 5 Привод в крайних положениях автоматически запирается специальными приспособлениями. Ножи разъединителя при включении попадают в неподвижные контакты по центру и входят в них без ударов и перекосов, не доходя до упора на 3—5 мм.Неодновременность включения ножей двухполюсных и трехполюсных разъединителей не должна превышать 3 мм при измерении этого расстояния между ножом и неподвижным контактом. Поверхностные контакты должны иметь не менее трех точек касания, не лежащих на одной прямой, а линейные контакты — не менее двух площадок касания. Наличие указанных площадок проверяют щупом толщиной 0,05 мм и шириной 10 мм, который не должен проходить более чем на 5 мм внутрь поверхностного контакта либо вдоль контактной линии при линейном контакте. Жесткое зажатие контактных пружин разъединителей не допускается. При включенном положении ножа между витками спиральных пружин или пластинами плоских пружин должен оставаться зазор не менее 0,5 мм.Отрегулированный разъединитель проверяют несколькими включениями и отключениями. Эти операции выполняют одним движением привода без рывков и ударов в ножах с соблюдением заданных углов поворота подвижных контактов и рычагов. В крайних положениях съемный штифт, фиксирующий положение привода, должен свободно входить в отверстие поворачивающегося сектора и надежно запирать привод.По окончании монтажа до пуска в эксплуатацию контактные части разъединителя смазывают техническим вазелином, обертывают бумагой и закрепляют шпагатом.

Рассмотренные вопросы

  1. Как устроены и для чего служат разъединители?
  2. Как установить, закрепить и отрегулировать трехполюсный разъединитель?
  3. Каково устройство рычажного привода и как монтируют передачу от привода к разъединителю?
  4. Для чего служат сигнальные контакты КСА и как их устанавливают?

Всего комментариев: 0

ukrelektrik.com

Информационный ресурс энергетики - Диспетчерские наименования энергетических объектов

Общие положения

Целью данной работы является формулировка правил, используемых при определении диспетчерских наименований энергетических объектов.Диспетчерские наименования – это наименования объектов, используемые в оперативных переговорах и записях. Диспетчерские наименования (далее по тексту - ДН) должны однозначно определять оборудование в пределах определенного распределительного устройства.В диспетчерское наименование должны входить сокращенное буквенно-цифровое обозначение оборудования, класс напряжения и имя присоединения, к которому относится данное оборудование и информация, конкретизирующая положение элемента в схеме.Порядок выполнения диспетчерских наименований должен быть указан в местных инструкциях на предприятиях. Поскольку на разных предприятиях правила исполнения ДН могут отличаться друг от друга, то в данном документе приводятся общие правила для нанесения диспетчерских наименований, которые могут отличаться от правил, принятых на местах.Диспетчерские наименования определяют элементы схемы в пределах некоторого распредустройства. Это может быть подстанция, ОРУ, и т.д.Если операции проводятся одновременно в нескольких распредустройствах, в оперативных переговорах и записях необходимо перед диспетчерским наименованиемиспользовать имя распределительного устройства, в котором находится оборудование. Например – ОРУ-500: ТР 500 кВ  АТ-2.

Термины и определения

Присоединение - Электрическая цепь (оборудование и шины) одного назначения, наименования и напряжения, присоединенная к шинам РУ, генератора, щита, сборки и находящаяся в пределах электростанции, подстанции и т.п. Электрические цепи разного напряжения одного силового трансформатора (независимо от числа обмоток), одного двухскоростного электродвигателя считаются одним присоединением. В схемах многоугольников, полуторных и т.п. схемах к присоединению линии, трансформатора относятся все коммутационные аппараты и шины, посредством которых эта линия или трансформатор присоединены к РУКлючевые элементы присоединения – элементы, лежащие в основе присоединения, их наименование используется в наименовании присоединения.

Правило группировки – правило, по которому элементы на схеме группируются в присоединение.

Простое присоединение – присоединение, содержащее один элемент, образующий присоединение.

Сложное присоединение – присоединение, в котором находятся несколько элементов, образующих присоединение (присоединения нескольких фидеров 6-10 кВ на одном выключателе, возможно ТСН + фидеры, и т.п.).

Соединение  - группа соединенных между собой элементов и ограниченная со всех сторон шинами

Простая цепь – цепь элементов схемы, не имеющая ветвлений.

Используемые сокращения

ДН – Диспетчерское наименование

Составляющие диспетчерского наименования

Диспетчерское наименование состоит из следующих  составляющих:

  • Сокращенное буквенно-цифровое обозначение элемента.
  • Класс напряжения ( например 110 кВ)
  • Имя присоединения
  • Информация, конкретизирующая положение элемента в схеме – («Сторона» элемента схемы, секция шин, с которой соединен элемент, для СВ – соединяемые секции).

Буквенно-цифровое обозначение элемента

 

В диспетчерском наименовании объекта на первом месте стоит сокращенное буквенно-цифровое обозначение типа элемента, например :

  • АТ-1 автотрансформатор;
  • СК–1 синхронный компенсатор;
  • ТСН-2  – трансформатор собственных нужд.

В сокращенное буквенное обозначение элемента может входить информация не только о типе элемента, но еще и о функциональном предназначении элемента в присоединении. (Понятие присоединения дано Межотраслевых правилах по охране труда* и помещено в раздел «Термины и определения»). Например: разъединитель шинный**   именуется как ШР, линейный разъединитель – ЛР и т.д.К сокращенному буквенному обозначению элемента через дефис добавляется порядковый номер этого элемента. Порядковые элементы именуются сквозной нумерацией для определенного типа элементов в пределах определенного распредустройства (подстанция, РУСН-10, РУСН-0,4 и т.д). Например – ТСН-1, ТСН-2, ТСН-3 и т.д., Т-1, Т-2, Т-3 и т.д. Нумерация элементов схемы определяется персоналом предприятия.В случае, если один объект разделен конструктивно на несколько элементов, или общие правила наименования элемента не обеспечивают уникальности его наименования, то к цифре буквенно-цифрового обозначения добавляется буквенный индекс. Например – ТХН-1 А 10 кВ, ТХН-1 Б 10 кВ, РШ 1 сек. А 220 кВ ОШВ.

*Межотраслевые правила по охране труда при эксплуатации электроустановок ПОТРМ – 016 –2001 (РД 153-34.0-03.150-00)

   **Элементы схем с вынесенным в ДН  функциональным назначением приведены в таблице Функционально-определенные элементы схем.

Класс напряжения

 

Если у элемента схемы один класс напряжения (например – разъединитель, заземляющий нож, разрядник, выключатель) то в ДН указывается этот класс напряжения.Если у элемента схемы несколько классов напряжения – например трансформатор, то для таких элементов схемы в ДН указывается наивысший класс напряжения. Пример – АТ-1 500 кВ, ТСН-1 10 кВ.Иногда для главных  объектов схемы не указывают класс напряжения. Поскольку этих объектов не много, и они часто используются в переговорах и записях, то информация о классе напряжения этих элементов в диспетчерское наименование на некоторых предприятиях не включается. Как правило это главные трансформаторы, генераторы, энергоблоки.

Напряжение указывается в киловольтах с указанием единиц измерения: 110 кВ, 35 кВ, 0,4 кВ, 0,23 кВ. Напряжение по роду может быть как переменное так и постоянное.

Имя присоединения

 

В диспетчерское наименование включается имя присоединения. По наименованию присоединения в ДН  можно определить принадлежность элемента схемы к тому или иному присоединению.Имя присоединения определяется по буквенно-цифровому обозначению  ключевого элемента схемы, образующего присоединение. Например: трансформаторный разъединитель 10 кВ автотрансформатора АТ-1 будет называться ТР 10 кВ АТ-1. АТ-1 в этом случае это ключевой элемент присоединения, дающий наименование присоединению.Перечень элементов, образующих присоединение, приведен в таблице «Элементы схемы, образующие присоединение». В случае, если элемент образует присоединение, то в его имени уже включено имя присоединения, и дополнительно оно больше не включается.В случае, если в присоединении несколько элементов, образующих присоединение, например – несколько фидеров, присоединенных к одному выключателю, то имя присоединения включает в себя информацию о всех фидерах, например :если фидеры называются 123-А, 234 Б, 234-В, то имя присоединения будет ф. 123-А + 234-Б+В.Более подробно о выделении присоединений на схемах указано в разделе «Как выделить присоединения на схемах».

«Сторона» элемента схемы

Для определенных элементов схемы в диспетчерском наименовании необходимо указывать дополнительную информацию о месте установки элемента. Это относится к элементам, являющимся составной частью других элементов схемы (заземляющие ножи), а также шинные разъединители. Например: существуют разъединители, выполненные конструктивно с заземляющими ножами. Заземляющие ножи располагаются по обе стороны разъединителя. Каждый ЗН заземляет свою сторону разъединителя.Наименование заземляющего ножа будет состоять в этом случае из префикса ЗН, ДН разъединителя, на котором установлен ЗН, и указания, в какую сторону включен заземляющий нож. «Сторона», в которую включается заземляющий нож, это ближайший к ЗН в электрической цепи элемент схемы в сторону, противоположную разъединителю, на котором установлен ЗН. Пример: ЗН РЛ-220 кВ ВЛ Тяговая – Пущино в стор. ВЛ, ЗН РЛ-220 кВ ВЛ Тяговая – Пущино в стор. МВ.

после слов «в стор.» добавляется буквенное сокращение типа элемента.Поскольку операция заземления является ответственной операцией, необходима предельная точность в указании места, куда устанавливается заземление.Но в некоторых предприятиях используют не однозначные правила именования заземляющих ножей, не указывая, в какую сторону установлен заземляющий нож, если он единственный на разъединителе. Уникальность наименования в этом случае соблюдается, но меняется правило наименования заземляющих ножей и точность диспетчерского наименования.Аналогично именуются и короткозамыкатели на отделителях.При наименовании шинных разъединителей необходимо в ДН конкретизировать шину, с которой соединен разъединитель. например – ШР 1 сек. 110 кВ ВЛ Кучино-Трубино.

В случае, если элемент схемы образует присоединение, то его диспетчерское наименование состоит из сокращенного буквенно-цифрового обозначения, которое будет являться наименованием присоединения,  и класса напряжения.В случае, если элемент схемы не образует присоединения, то его ДН состоит из сокращенного буквенно-цифрового обозначения, класса напряжения, наименования присоединения. Существуют отклонения от этих правил для функционально определенных элементов схем. Эти правила описаны ниже.

Диспетчерские наименования функционально-определенных элементов схем

Перечень функционально-определенных элементов схем приведен в таблице .

Таблица. функционально-определенные элементы схем.

No

Наименование

Буквенное сокращение

Примечание

1

Линейный разъединитель

ЛР

 

2

Шинный разъединитель

ШР

 

3

Обходной разъединитель

ОР

 

4

Секционный разъединитель

СР

 

5

Трансформаторный разъединитель

ТР

 

6

Трансформатор собственных нужд

ТСН

 

7

Заземляющий_нож

ЗН

как разъединитель с одним заземленным концом.

8

Обходная шина

ОШ

 

9

Обходной выключатель

ОВ

 

10

Секционный выключатель

СВ

 

11

Шиносоединительный выключатель

ШВ

 

Линейный разъединитель

Разъединитель является линейным, если одним концом он соединен с линией (КЛ или ВЛ) или элементом, являющимся частью линии – фидером, муфтой, связъю с объектом. Другим концом он не должен быть присоединен к ОШ – обходной шине.

Шинный разъединитель

Как правило, разъединитель, соединенный с шиной называется шинным (исключение составляют разъединители обходных шин и трансферов, секционные разъединители, см. ниже).Для шинного разъединителя необходимо указывать сокращенное обозначение (ШР), наименование секции, с которой он соединен, и наименование присоединения. Это необходимо для однозначного именования шинных разъединителей одного присоединения, соединенных с разными секциями шин. В этом случае все элементы, стоящие в цепи шинного разъединителя от шины до узла, соединяющего в себе более двух элементов схемы или до сдвоенного реактора,  должны содержать в диспетчерском наименовании имя секции шин, к которой они присоединены. Это относится и с разъединителям, и к выключателям, реакторам. Иногда, в случае, если у присоединения один шинный разъединитель, ДН упрощают и не указывают, с какой шиной соединен шинный разъединитель. Тем не менее, в оперативных переговорах как правило уточняют эту информацию на словах.

Пример:ШР 1 сек. 110 кВ Т-1:  1 сек. 110 кВ – наименование секции, Т-1 – наименование присоединения.

Разъединитель трансформатора напряжения

Могут быть установлены на линиях и шинах. Именуются ТР ТН-1 500 кВ ВЛ Липки – Рюмино. На шинах в зависимости от местных правил могут именоваться как ШР ТН-1 10 кВ, или ТР ТН-1 10 кВ.

Секционный разъединитель

Разъединитель, стоящий в цепи секционного выключателя.ДН включает в себя имя разъединителя (СР),  ДН секционного выключателя,Пример: СР 10 кВ СМВ 1-3 сек.  в стор. 3 сек.

Обходной разъединитель

Разъединитель, соединенный с обходной шиной.Примеры : ОР ТН 220 кВ ОСШ, ОР 110 кВ Т-1,ОР 110 кВ  ВЛ Тяговая – Пущино.

Трансформаторный разъединитель

Разъединитель в цепи обмотки трансформатора, Ближайший к трансформатору разъединитель.Пример: ТР 10 кВ Т-1. В случае, если он соединен с шиной в схемах четырехугольников, мостов используется наименование ТР.

Трансформатор собственных нужд

Именуется как трансформатор, только вместо Т стоит ТСН.

Заземляющий нож

Наименование заземляющего ножа состоит из префикса ЗН, наименования разъединителя или другого коммутационного аппарата, на котором установлен ЗН, и указания, в какую сторону включен заземляющий нож. «Сторона», в которую включается заземляющий нож, это ближайший к ЗН в электрической цепи элемент схемы в сторону, противоположную разъединителю, на котором установлен ЗН. Пример: ЗН РЛ-220 кВ ВЛ Тяговая – Пущино в стор. ВЛ, ЗН РЛ-220 кВ ВЛ Тяговая – Пущино в стор. МВ.ЗН МВ-10 кВ ТСН-1 в стор. ТСН-1

Поскольку операция заземления является очень ответственной операцией, необходима предельная точность в указании места, куда устанавливается заземление.Но в некоторых предприятиях используют не однозначные правила именования заземляющих ножей, не указывая, в какую сторону установлен заземляющий нож, если он единственный на разъединителе. Однозначность наименования в этом случае соблюдается, но меняется правило наименования заземляющих ножей и точность диспетчерского наименования.Аналогично именуются и короткозымыкатели на отделителях.

В случае, если заземляющий нож отдельно установлен для заземления шин, то наименование шины служит для него именем присоединения : ЗН 1 СШ 110 кВ в ст. .

Обходные шины

Наименование обходных шин состоит из сокращения ОШ и класса напряжения. В некоторых случаях, когда в пределах одного распредустройства несколько обходных шин одного класса напряжения, им присваивают различные номера. Например : ОШ-1 110 кВ,ОШ-2 110 кВ. Обходные шины предназначены для перевода какого либо присоединения со своего выключателя на выключатель обходной системы шин без перерыва в электроснабжении.

Обходной выключатель

Обходной выключатель предназначен для перевода нагрузки какого-либо присоединения через обходную систему шин. Для других коммутационных аппаратов, в цепи с которыми стоит, является элементом, образующим присоединение.

Пример: ОР -110 кВ ОВ, ШР 1 сек. 110 кВ ОВ. В наименовании выключателя может учитываться тип выключателя, например:  ШР 1 сек. 220 кВ ОВВ (воздушный).

Секционный выключатель

Если выключатель соединяет секции, у которых нет общих присоединений - это будет секционный выключатель.Секционный выключатель предназначен для соединения секций шин. Для других коммутационных аппаратов, в цепи с которыми стоит, является элементом, образующим присоединение. Пример : СВ 110 кВ. В случае, если в распредустройстве больше двух секций, то в наименование секционного выключателя добавляются наименования секций, которые он соединяет.Пример :  СВ 1–3 сек. 10 кВ

Для других коммутационных аппаратов, в цепи с которыми стоит, является элементом, образующим присоединение.

Пример: СР 1 сек. 110 кВ СВ . В наименовании выключателя может учитываться тип выключателя, например:  СР 1 сек. 220 кВ СВВ (воздушный).

Шиносоединительный выключатель

Если в схеме распредустройства две шины с возможностью перевода присоединения как на одну, так и на другую шину, (в присоединении два шинных разъединителя )  то выключатель, соединяющий шины называется шиносоединительным (ШСВ). Для других коммутационных аппаратов, в цепи с которыми стоит, является элементом, образующим присоединение. Примеры: ШСВ 110 кВ. Рш 1 сек. 110 кВ ШСМВ.

Буквенные обозначения элементов схем

Наименование

Буквенное сокращение

Примечание

Автомат

АВ

 

автомат_силовой

АВ

 

автотрансформатор

АТ

 

воздушная_линия

ВЛ

 

Выключатель

по типу :

 

Вакуумный

ВВ

 

Воздушный

ВВ

 

Масляный

МВ

 

Элегазовый

ЭВ

 

выключатель_выдвижной

по типу выключателя

 

выключатель_нагрузки

ВН

 

Генератор

Г

 

Группа_АРНТ

АРНТ

 

двигатель_асинхронный

Д, РМ- разгонный механизм

 

двигатель_постоянного тока

ДПТ

 

двигатель_синхронный

ДС

 

ДГР

ДГР

 

Дроссельная_катушка

ДК

 

заземляющий_нож

ЗН

 

кабельная_линия

КЛ

 

короткозамыкатель

КЗ

 

Линия_связи

ЛС

 

Муфта

по тексту , фидер - ф.

 

ОПН

ОПН

 

Отделитель

ОД

 

Отделитель_выдвижной

ОД

 

Предохранитель

Предохр.

 

Разъединитель

шинный -ШР, линейный -ЛР, трансформаторный -ТР, обходной  ОР,  секционнный - СР, секционный разъем - СР., прочие: Р-ль.

 

разъединитель_выдвижной

см. разъединитель

 

Реактор

Реакт.

 

реактор_шунтирующий

Реакт.

 

РПН

РПН

 

РПН_настраиваемый

РПН

 

связь_с_объектом

по тексту,  фидер - ф.

 

Синхронный_компенсатор

СК

 

Трансформатор

Т

 

трансформатор_напряжения

ТН

 

трансформатор_силовой

Т

 

трансформатор_собственных_нужд

ТСН

 

трансформатор_тока

ТТ

 

Шина

СШ, ОШ – обходная система шин, щит собственных нужд - ЩСН

 

Ошиновка

ОШ

 

Фидер

ф.

 

Развилка

развил.

 

Элементы схемы, образующие присоединение

Панели управления

П4У

 

Панели релейной защиты

П12Р

 

Наименование

Буквенное сокращение

Примечание

Линии

 

Воздушная_линия

ВЛ

 

кабельная_линия

КЛ

 

линия_связи

ЛС

 

Муфта

по тексту (ВЛ, КЛ ) , фидер - ф.

 

Связь_с_объектом

по тексту (ВЛ, КЛ),  фидер - ф.

 

Фидер

ф.

 

Подстанционное оборудование

 

автотрансформатор

АТ

 

трансформатор

Т

 

трансформатор_напряжения

ТН

 

трансформатор_силовой

Т

 

трансформатор_собственных_нужд

ТСН

 

Генератор

Г

 

двигатель_асинхронный

Д, РМ- разгонный механизм

 

двигатель_постоянного_тока

ДПТ

двигатель_синхронный

ДС

дугогасящий_реактор

ДГР

Реактор

Реакт.

Реактор_шунтирующий

Реакт.

Дроссельная_катушка

ДК

Синхронный_компенсатор

СК

 

Шина

СШ, ОШ, щит собственных нужд - ЩСН

 

Шиносоединительный выключатель

 ШСВ, ШСМВ

 

Секционный выключатель

СВ, СМВ

 

Обходной выключатель

ШОВ, ОВ

 

ukrelektrik.com


Каталог товаров
    .