интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Фотодиод обозначение на схемах. Фотодиод обозначение на схеме


Фотодиод - chipenable.ru

Фотодиод - это полупроводниковый диод, у которого ток зависит от освещенности. Обычно под этим током подразумевают обратный ток фотодиода, потому что его зависимость от освещенности выражена на порядки сильнее, чем прямого тока. В дальнейшем мы будем говорить именно про обратный ток.

В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи.

Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов.

Фотодиоды широко используются в системах управления, метрологии, робототехнике и других областях. Также они используются в составе других компонентов, например, оптопар, оптореле. Применительно к микроконтроллерам, фотодиоды находят применение в качестве различных датчиков - концевых датчиков, датчиков освещенности, расстояния, пульса и т.д.

На электрических схемах фотодиод обозначается как диод, с двумя направленными к нему стрелочками. Стрелки символизируют падающее на фотодиод излучение. Не путайте с обозначением светодиода, у которого стрелки направлены от него.

Буквенное обозначение фотодиода может быть VD или BL (фотоэлемент).

Фотодиод работает в двух режимах: фотодиодном и фотогальваническом (фотовольтаическом, генераторном).

В фотодиодном режиме используется источник питания, который смещает фотодиод в обратном направлении. В этом случае через фотодиод течет обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.

В фотогальваническом режиме фотодиод работает без внешнего источника питания. В этом режиме он может работать в качестве датчики или в качестве элемента питания (солнечной батареи), так как под воздействием света на выводах фотодиода появляется напряжение, зависящее от потока излучения и нагрузки.

Чтобы получше разобраться с режимами работы фотодиода, нужно рассмотреть его вольтамперную характеристику.

График состоит из 4 областей, так называемых квадрантов. Фотодиодному режиму соответствует работа в 3-м квадранте. 

При отсутствии излучения график представляет собой обратную ветвь вольтамперной характеристики обычного полупроводникового диода. Присутствует небольшой обратный ток, который называется тепловым (темновым) током обратно смещенного p-n перехода.

При наличии светового потока, сопротивление фотодиода уменьшается и обратный ток фотодиода возрастает. Чем больше света падает, тем больший обратный ток течет через фотодиод. Зависимость обратного тока фотодиода от светового потока в этом режиме линейная.

Из графика видно, что обратный ток фотодиода слабо зависит от обратного напряжения. Посмотрите на наклон графика от нулевого напряжения до напряжения пробоя, он маленький.

Фотогальваническому режиму соответствует работа фотодиода в 4-м квадранте. И здесь можно выделить два предельных случая:

- холостой ход (хх), - короткое замыкание (кз).

Режим близкий к холостому ходу используется для получения энергии от фотодиода. То есть для применения фотодиода в качестве солнечной батареи. Конечно, от одного фотодиода будет мало проку, да и КПД у него невысокий. Но если соединить много элементов, то такой батареей можно запитать какое-нибудь мало-потребляющее устройство.

В режиме короткого замыкания, напряжение на фотодиоде близкое к нулю, а обратный ток прямо пропорционален световому потоку. Этот режим используется для построения фотодатчиков.

В чем преимущество и недостатки фотодиодного и фотогальванического режимов работы? Фотодиодный режим обеспечивает большее быстродействие фотодиода, но в этом режиме всегда есть темновой ток. В фотогальваническом режиме темнового тока нет, но быстродействие датчиков будет ниже.

Продолжение следует.

chipenable.ru

Фотодиод обозначение на схемах

Что такое фотодиод?

Фотодиод - это полупроводниковый диод, у которого ток зависит от освещенности. Обычно под этим током подразумевают обратный ток фотодиода, потому что его зависимость от освещенности выражена на порядки сильнее, чем прямого тока. В общем случае фотодиод представляет собой p-n переход, открытый для светового излучения. Под воздействием света в области p-n перехода генерируются носители заряда (электроны и дырки), которые проходят через него и вызывают напряжение на выводах фотодиода или протекание тока в замкнутой цепи. Фотодиод, в зависимости от его материала, предназначен для регистрации светового потока в инфракрасном, оптическом и ультрафиолетовом диапазоне длин волн. Фотодиоды изготавливают из кремния, германия, арсенида галлия, арсенида галлия индия и других материалов.Фотодиод широко используются в системах управления, метрологии, робототехнике и других областях. Также они используются в составе других компонентов, например, оптопар, оптореле. Применительно к микроконтроллерам, фотодиоды находят применение в качестве различных датчиков - концевых датчиков, датчиков освещенности, расстояния, пульса и т.д.

Обозначение на схемах

На электрических схемах фотодиод обозначается как диод, с двумя направленными к нему стрелочками. Стрелки символизируют падающее на фотодиод излучение. Не путайте с обозначением светодиода, у которого стрелки направлены от него.

Буквенное обозначение фотодиода может быть VD или BL (фотоэлемент).

Режимы работы фотодиода

Фотодиод работает в двух режимах: фотодиодном и фотогальваническом (фотовольтаическом, генераторном).

В фотодиодном режиме используется источник питания, который смещает фотодиод в обратном направлении. В этом случае через фотодиод течет обратный ток, пропорциональный падающему на него световому потоку. В рабочем диапазоне напряжений (то есть до наступления пробоя), этот ток практически не зависит от приложенного обратного напряжения.

В фотогальваническом режиме фотодиод работает без внешнего источника питания. В этом режиме он может работать в качестве датчики или в качестве элемента питания (солнечной батареи), так как под воздействием света на выводах фотодиода появляется напряжение, зависящее от потока излучения и нагрузки.

videouroki.net

Фотодиоды. Виды. Устройство и работа. Характеристики

Особое место в электротехнике занимают фотодиоды, которые применяются в различных устройствах и приборах. Фотодиодом называется полупроводниковый элемент, по своим свойствам подобный простому диоду. Его обратный ток прямо зависит от интенсивности светового потока, падающего на него. Чаще всего в качестве фотодиода применяют полупроводниковые элементы с р-n переходом.

Устройство и принцип действия

Фотодиод входит в состав многих электронных устройств. Поэтому он и приобрел широкую популярность. Обычный светодиод – это диод с р-n переходом, проводимость которого зависит от падающего на него света. В темноте фотодиод обладает характеристиками обычного диода.

1 – полупроводниковый переход.2 – положительный полюс.3 – светочувствительный слой.4 – отрицательный полюс.

При действии потока света на плоскость перехода фотоны поглощаются с энергией, превышающей предельную величину, поэтому в n-области образуются пары носителей заряда — фотоносители.

При смешивании фотоносителей в глубине области «n» основная часть носителей не успевает рекомбинировать и проходит до границы р-n. На переходе фотоносители делятся электрическим полем. При этом дырки переходят в область «р», а электроны не способны пройти переход, поэтому накапливаются возле границы перехода р-n, а также области «n».

Обратный ток диода при воздействии света повышается. Значение, на которое повышается обратный ток, называют фототоком.

Фотоносители в виде дырок осуществляют положительный заряд области «р», по отношению к области «n». В свою очередь электроны производят отрицательный заряд «n» области относительно «р» области. Возникшая разность потенциалов называется фотоэлектродвижущей силой, и обозначается «Еф». Электрический ток, возникающий в фотодиоде, является обратным, и направлен от катода к аноду. При этом его величина зависит от величины освещенности.

Режимы работы

Фотодиоды способны функционировать в следующих режимах:

• Режим фотогенератора. Без подключения источника электричества.• Режим фотопреобразователя. С подключением внешнего источника питания.

В работе фотогенератора фотодиоды используются вместо источника питания, которые преобразуют солнечный свет в электрическую энергию. Такие фотогенераторы называются солнечными элементами. Они являются основными частями солнечных батарей, применяемых в различных устройствах, в том числе и на космических кораблях.

КПД солнечных батарей на основе кремния составляет 20%, у пленочных элементов этот параметр значительно больше. Важным свойством солнечных батарей является зависимость мощности выхода к весу и площади чувствительного слоя. Эти свойства достигают величин 200 Вт / кг и 1 кВт / м2.

При функционировании фотодиода в качестве фотопреобразователя, источник напряжения Е подключается в схему обратной полярностью. При этом применяются обратные графики вольт-амперной характеристики при разных освещенностях.

Напряжение и ток на нагрузке Rн определяются на графике по пересечениям характеристики фотодиода и нагрузочной линии, которая соответствует резистору Rн. В темноте фотодиод по своему действию равнозначен обычному диоду. Ток в режиме темноты для кремниевых диодов колеблется от 1 до 3 микроампер, для германиевых от 10 до 30 микроампер.

Виды фотодиодов

Существует несколько различных видов фотодиодов, которые имеют свои достоинства.

p – i – n фотодиод

В области р-n у этого диода имеется участок с большим сопротивлением и собственной проводимостью. При воздействии на него света возникают пары дырок и электронов. Электрическое поле в этой зоне имеет постоянное значение, пространственный заряд отсутствует.

Этот вспомогательный слой значительно снижает емкость запирающего слоя, и не зависит от напряжения. Это расширяет полосу рабочих частот диодов. В результате скорость резко повышается, и частота достигает 1010 герц. Повышенное сопротивление этого слоя значительно уменьшает ток работы при отсутствии освещения. Чтобы световой поток смог проникнуть через р-слой, он не должен быть толстым.

 
Лавинные фотодиоды

Такой вид диодов является полупроводниками с высокой чувствительностью, которые преобразуют освещение в сигнал электрического тока с помощью фотоэффекта. Другими словами, это фотоприемники, усиливающие сигнал вследствие эффекта лавинного умножения.

1 — омические контакты 2 — антиотражающее покрытие

Лавинные фотоэлементы более чувствительны, в отличие от других фотоприемников. Это дает возможность применять их для незначительных мощностей света.

В конструкции лавинных фотодиодов применяются сверхрешетки. Их суть заключается в том, что значительные различия ударной ионизации носителей приводят к падению шумов.

Другим достоинством применения аналогичных структур является локализация лавинного размножения. Это также снижает помехи. В сверхрешетке толщина слоев составляет от 100 до 500 ангстрем.

Принцип действия

При обратном напряжении, близком к величине лавинного пробоя, фототок резко усиливается за счет ударной ионизации носителей заряда. Действие заключается в том, что энергия электрона повышается от внешнего поля и может превзойти границу ионизации вещества, вследствие чего встреча этого электрона с электроном из зоны валентности приведет к появлению новой пары электрона и дырки. Носители заряда этой пары будут ускоряться полем и могут способствовать образованию новых носителей заряда.

Характеристики

Свойства таких световых диодов можно описать некоторыми зависимостями.

Вольт-амперная

Эта характеристика является зависимостью силы тока при постоянном потоке света от напряжения.

I — ток M — коэффициент умножения U — напряжение
Световая

Это свойство является зависимостью тока диода от освещения. При возрастании потока света, фототок повышается.

Спектральная

Это свойство является зависимостью тока диода от длины световой волны, и является шириной пограничной зоны.

Постоянная времени

Это время, за которое фототок диода меняется после подачи света в сравнении с установившимся значением.

Темновое сопротивление

Это значение сопротивления диода в темноте.

Инерционность

Факторы, влияющие на эту характеристику:

  • Время диффузии неравновесных носителей заряда.
  • Время прохождения по р-n переходу.
  • Время перезарядки емкости барьера р-n перехода.
Сфера применения

Фотодиоды являются основными элементами многих оптоэлектронных приборов.

Интегральные микросхемы (оптоэлектронные)

Фотодиод может иметь значительную скорость работы, но коэффициент усиления тока составляет не более единицы. Вследствие оптической связи микросхемы имеют существенные преимущества: идеальная гальваническая развязка цепей управления от мощных силовых цепей. При этом между ними сохраняется функциональная связь.

Фотоприемники с несколькими элементами

Эти устройства в виде фотодиодной матрицы, сканистора, являются новыми прогрессивными электронными устройствами. Их оптоэлектронный глаз с фотодиодом может создавать реакцию на пространственные и яркостные свойства объектов. Другими словами, он может видеть полный его зрительный образ.

Количество ячеек, чувствительных к свету, очень большое. Поэтому, кроме вопросов быстродействия и чувствительности, необходимо считывание информации. Все фотоприемники с множественными фотоэлементами являются сканирующими системами, то есть, приборами, которые позволяют анализировать исследуемое пространство последовательным поэлементным просмотром.

Фотодиоды также нашли широкое применение в оптоволоконных линиях, лазерных дальномерах. Недавно такие световые диоды стали использоваться в эмиссионно-позитронной томографии.

В настоящее время имеются образцы светочувствительных матриц, состоящих из лавинных фотодиодов. Их эффективность и область применения зависит он некоторых факторов.

Наиболее влияющими оказались такие факторы:

  • Суммарный ток утечек, образующийся путем сложения шумов и тока при отсутствии света.
  • Квантовая эффективность, определяющая долю падающих квантов, приводящих к возникновению тока и носителей заряда.
Похожие темы:

 

electrosam.ru

Фотодиоды: устройство, характеристики и принципы работы

ФотодиодыПростой фотодиод представляет собой обычный полупроводниковый диод, в котором обеспечивается возможность воздействия оптического излучения на р–n-переход.

В сбалансированном состоянии, когда поток излучения стопроцентно отсутствует, концентрация носителей, рассредотачивание потенциала и энергетическая зонная диаграмма фотодиода стопроцентно соответствуют обыкновенной p-n-структуре.

При воздействии излучения в направлении, перпендикулярном плоскости p-n-перехода, в итоге поглощения фотонов с энергией, большей, чем ширина нелегальной зоны, в n-области появляются электронно-дырочные пары. Эти электроны и дырки именуют фотоносителями.

При диффузии фотоносителей в глубь n-области основная толика электронов и дырок не успевает рекомбинировать и доходит до границы p–n-перехода. Тут фотоносители делятся электронным полем p–n-перехода, при этом дырки перебегают в p-область, а электроны не могут преодолеть поле перехода и накапливаются у границы p–n-перехода и n-области.

Таким образом, ток через p–n-переход обоснован дрейфом неосновных носителей – дырок. Дрейфовый ток фотоносителей именуется фототоком.

ФотодиодыФотоносители – дырки заряжают p-область положительно относительно n-области, а фотоносители – электроны – n-область негативно по отношению к p-области. Возникающая разность потенциалов именуется фотоЭДС Eф. Генерируемый ток в фотодиоде – оборотный, он ориентирован от катода к аноду, при этом его величина тем больше, чем больше освещенность.

Фотодиоды могут работать в одном из 2-ух режимов – без наружного источника электронной энергии (режим фотогенератора) или с наружным источником электронной энергии (режим фотопреобразователя).

Фотодиоды, работающие в режиме фотогенератора, нередко используют в качестве источников питания, модифицирующих энергию солнечного излучения в электронную. Они именуются солнечными элементами и входят в состав солнечных батарей, применяемых на космических кораблях и спутниках.

КПД кремниевых солнечных частей составляет около 20 %, а у пленочных солнечных частей он может иметь существенно большее значение. Необходимыми техническими параметрами солнечных батарей являются дела их выходной мощности к массе и площади, занимаемой солнечной батареей. Эти характеристики добиваются значений 200 Вт/кг и 1 кВт/м2, соответственно.

При работе фотодиода в фотопреобразовательном режиме источник питания Е врубается в цепь в запирающем направлении (рис. 1, а). Употребляются оборотные ветки ВАХ фотодиода при разных освещенностях (рис. 1,б).

Схема включения фотодиода в фотопреобразовательном режиме

Рис. 1. Схема включения фотодиода в фотопреобразовательном режиме: а — схема включения, б — ВАХ фотодиода.

Ток и напряжение на нагрузочном резисторе Rн могут быть определены графически по точкам скрещения ВАХ фотодиода и полосы нагрузки, соответственной сопротивлению резистора Rн. При отсутствии освещенности фотодиод работает в режиме обычного диода. Темновой ток у германиевых фотодиодов равен 10 — 30 мкА, у кремниевых 1 — 3 мкА.

Если в фотодиодах использовать обратимый электронный пробой, сопровождающийся лавинным умножением носителей заряда, как в полупроводниковых стабилитронах, то фототок, а как следует, и чувствительность существенно вырастут.

Чувствительность лавинных фотодиодов может быть на несколько порядков больше, чем у обычных фотодиодов (у германиевых – в 200 – 300 раз, у кремниевых – в 104 – 106 раз).

Лавинные фотодиоды являются быстродействующими фотоэлектрическими устройствами, их частотный спектр может достигать 10 ГГц. Недочетом лавинных фотодиодов является более высочайший уровень шумов по сопоставлению с обыкновенными фотодиодами.

Схема включения фоторезистора

Рис. 2. Схема включения фоторезистора (а), УГО (б), энергетическая (в) и вольт-амперная (г) свойства фоторезистора.

Не считая фотодиодов, используются фоторезисторы (рис 2), фототранзисторы и фототиристоры, в которых используется внутренний фотоэффект. Соответствующим недостатком их является высочайшая инерционность (граничная рабочая частота fгр

Конструкция фототранзистора подобна обыкновенному транзистору, у которого в корпусе имеется окошко, через которое может освещаться база. УГО фототранзистора – транзистор с 2-мя стрелками, направленными к нему.

Светодиоды и фотодиоды нередко употребляются в паре. При всем этом они помещаются в один корпус таким образом, чтоб светочувствительная площадка фотодиода размещалась напротив излучающей площадки светодиода. Полупроводниковые приборы, использующие пары «светодиод – фотодиод», именуются оптронами (рис. 3).

Оптрон

Рис. 3. Оптрон: 1 – светодиод, 2 – фотодиод

Входные и выходные цепи в таких устройствах оказываются электрически никак не связанными, так как передача сигнала осуществляется через оптическое излучение.

Фотодиоды

elektrica.info

Маркировка и монтаж светодиодов

Светоизлучающие диоды маркируются цветовым кодом (табл. 1).

Таблица 1. Маркировка светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый.

Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его.

Перед пайкой светодиодов необходимо снять с себя статическое электричество (например прикоснуться к батарее отопления помещения.)

Рекомендуется использовать паяльник не мощнее 25Ватт и температура его должна поддерживаться на уровне 315º. Пайка производится в течении 2-ух секунд. Нужно предостеречь эпоксидное покрытие светодиода (верхнюю светоизлучающую часть) от прикосновений паяльником, иначе она может расплавиться. Не рекомендуется механически воздействовать на поверхность светодиода при пайке, допустим, надавливать прижимать пальцем.

Пайка светодиода считается законченной, когда его температура не превышает 40ºC, после этого можно подавать на него ток. Это связано с тем, что кристаллы светодиода испытывают термический стресс во время пайки, должны остыть перед включением и плавно нагреваются во время работы.

I Рисунок 4. Условное обозначение на схемеIi. Фотодиоды

Фотодиод – это полупроводниковый прибор, который имеет светочувствительную поверхность. В зависимости от величины освещённости этой поверхности, меняется ток через фотодиод, если на него подано напряжение (фотодиод включается в обратном направлении). Этот эффект используется в различных оптических датчиках.

Фотодиод может работать и в режиме генерации электроэнергии (солнечные батареи). В этом случае напряжение на светодиод не подаётся, а наоборот, снимается. Это называется фотогальванический режим.

Принцип работы фотодиода определяется выбранным режимом. В фотодиодном режиме фотодиод может работать как датчик освещённости. В фотогальваническом – как источник электроэнергии. Конечно, один фотодиод – это очень слабый источник электроэнергии. Для того чтобы получить хоть какую-то реальную энергию, нужно включить вместе десятки и сотни фотодиодов. Отсюда и внушительные размеры солнечных батарей.

Типы фотодиодов

p-i-n фотодиод

В p-i-n структуре средняя i-область заключена между двумя областями противоположной проводимости. При достаточно большом напряжении оно пронизывает i-область, и свободные носители, появившееся за счет фотонов при облучении, ускоряются электрическим полем p-n переходов. Это дает выигрыш в быстродействии и чувствительности

Фотодиод Шоттки

п

Рисунок 5.

Условное обозначение на схеме фотодиода Шоттки

олупроводниковый диод с малым падением напряжения при прямом включении. Назван в честь немецкого физика Вальтера Шоттки. Диоды Шоттки используют переход металл-полупроводник в качествебарьера Шоттки(вместоp-n перехода, как у обычных диодов).

Лавинный фотодиод

высокочувствительные полупроводниковые приборы, преобразующие свет в электрический сигнал за счёт фотоэффекта. Их можно рассматривать в качествефотоприёмников, обеспечивающих внутреннее усиление посредствомэффекта лавинного умножения. С функциональной точки зрения они являются твердотельными аналогамифотоумножителей. Лавинные фотодиоды обладают большей чувствительностью по сравнению с другими полупроводниковыми фотоприёмниками, что позволяет использовать их для регистрации малых световых мощностей.

Фотодиод с гетероструктурой

Гетеропереходом называют слой, возникающий на границе двух полупроводников с разной шириной запрещённой зоны. Один слой р+ играет роль «приёмного окна». Заряды генерируются в центральной области. За счет подбора полупроводников с различной шириной запрещённой зоны можно перекрыть весь диапазон длин волн. Недостаток — сложность изготовления.

studfiles.net

Фотодиод | Наука | FANDOM powered by Wikia

Обозначение на схемах

Фотодио́д или пиксел — приёмник оптического излучения, который преобразует свет в электрический заряд за счёт процессов в p-n-переходе в его фоточувствительной области.

Фотодиоды, формируемые, например, в матрицах (фото), связанные электронной схемой в самих матрицах или вне матриц и выполняющие свои функции фотодатчиков называются пикселами. Изготавливаемые матрицы по периферии пластины содержат неработающие фотодиоды, выполняя технологические функции в пластинах матриц при дальнейшей операции изготовления основного продукта Фотодатчика — Фотосенсора.

Фотодиод, работа которого основана на фотовольтаическом эффекте (разделение электронов и дырок в p- и n- области, за счёт чего образуется заряд (ЭДС)) называется солнечным элементом. Кроме p-n фотодиодов существуют и p-i-n фотодиоды, в которых между слоями p- и n- находится слой изолятора i. p-n и p-i-n фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов и фототранзисторов. [1]

    Принцип работы фотодиода Править

    Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы; Ф — поток электромагнитного излучения; Е — источник постоянного тока; Rн — нагрузка.

    кремниевый фотодиод 10x10mm

    При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей - дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и емкостью p-n-перехода Cp-n

    Фотодиод может работать в двух режимах:

    • фотогальванический - без внешнего напряжения
    • фотодиодный - с внешним обратным напряжением

    Особенности:

    • простота технологии изготовления и структур
    • сочетание высокой фоточувствительности и быстродействия
    • малое сопротивление базы
    • малая инерционность

    Параметры и характеристики фотодиодов Править

    Параметры:

    • чувствительность отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприемника, к световому потоку или потоку излучения, его вызвавшему. $ S_{i,{\Phi_v}}=\frac {I_\Phi}{\Phi_v} $; $ S_{i,{E_v}}=\frac {I_\Phi}{E_v} $ - токовая чувствительность по световому потоку $ S_{u,{\Phi_e}}=\frac {U_\Phi}{\Phi_e} $; $ S_{i,{E_e}}=\frac {U_\Phi}{E_e} $ - вольтаическая чувствительность по энергетическому потоку
    • шумы помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром - шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.

    Характеристики:

    • вольт-амперная характеристика (ВАХ) зависимость выходного напряжения от входного тока. $ U_\Phi=f(I_\Phi) $
    • спектральные характеристики зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещенной зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
    • световые характеристики зависимость фототока от освещенности, соответствует прямой пропорциональности фототока от освещенности. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
    • постоянная времени это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63%) по отношению к установившемуся значению.
    • темновое сопротивление сопротивление фотодиода в отсутствие освещения.
    • инерционность
    • p-i-n фотодиод В p-i-n структуре средняя i-область заключена между двумя областями противоположной проводимости. При достаточно большом напряжении оно пронизывает i-область и свободные носители, появившееся за счет фотонов при облучении, ускоряются электрическим полем p-n переходов. Это дает выигрыш в быстродействии и чувствительности. Повышение быстродействия в p-i-n фотодиоде обусловлено тем, что процесс диффузии заменяется дрейфом электрических зарядов в сильном электрическом поле. Уже при Uобр≈0.1В p-i-n фотодиод имеет преимущество в быстродействии.
    Достоинства: 1) есть возможность обеспечения чувствительности в длинноволновой части спектра за счет изменения ширины i-области. 2) высокая чувствительность и быстродействие 3) малое рабочее напряжение Uраб Недостатки: сложность почучения высокой чистоты i-области
    • Фотодиод Шоттки (фотодиод с барьером Шоттки) Структура металл-полупроводник. При образовании структуры часть электронов перейдет из металла в полупроводник p-типа.
    • Лавинный фотодиод В структуре используется лавинный пробой. Он возникает тогда, когда энергия фотоносителей превышает энергию образования электронно-дырочных пар. Очень чувствительны. Для оценки существует коффициент лавинного умножения: $ M=\frac {I_\Phi}{I_{\Phi_0}} $ $ M=\frac {1}{1-\left(\frac {U}{U_{pr}}\right)^m} $ Для реализации лавинного умножения необходимо выполнить два условия: 1) Электрическое поле области пространственного заряда должно быть достаточно большим, чтобы на длине свободного пробега электрон набрал энергию, большую, чем ширина запрещенной зоны: $ q\lambda=\frac {3I_g}{2} $ 2) Ширина области пространственного заряда должна быть существенно больше, чем длина свободного пробега: $ W >> \lambda $ Значение коэффициентов внутреннего усиления составляет M=10-100 в зависимости от типа фотодиодов.
    • Фотодиод с гетероструктурой Гетеропереходом называют слой, возникающий на границе двух полупроводников с разной шириной запрещенной зоны. Один слой р+ играет роль "приемного окна". Заряды генерируются в центральной области. За счет подбора полупровоников с различной шириной запрещенной зоны можно перекрыть весь диапазон длин волн. Недостаток - сложность изготовления.

    Применение фотодиодов в оптоэлектроникеПравить

    Фотодиод является составным элементом во многих сложных оптоэлектронных устройствах, поэтому он находит широкое применение во многих областях.

    В оптоэлектронных интегральных микросхемах фотодиод может обладать большим быстродействием, но его коэффициент усиления фототока не превышает единицы. Благодаря наличию оптической связи оптоэлектронные интегральные микросхемы обладают рядом существенных достоинств. Почти идеальная гальваническая развязка управляющих цепей при сохранении между ними сильной функциональной связи.

    Многоэлементные фотоприемники - это приборы сканистор, мишень кремникона, фотодиодная матрица с управлением на МОП-транзисторе, фоточувствительные приборы с зарядовой связью и другие. Они относятся к числу наиболее быстро развивающихся и прогрессирующих изделий электронной техники. Сочетая в себе успехи физики дискретных фотоприемников и новейшие технологические достижения больших интегральных схем, многоэлементные фотоприемники вооружают оптоэлектронику твердотельным «глазом», способным реагировать не только на яркостно-временные, но и на пространственные характеристики объекта, то есть воспринимать его полный зрительный образ. Для успешного выполнения этих функций необходимо, чтобы число элементарных фоточувствительных ячеек в приборе было достаточно большим, поэтому кроме всех проблем дискретного фотоприемника (чувствительность, быстродействие, спектральная область) приходится решать и проблему считывания информации. Все многоэлементные фотоприемники представляют собой сканирующие системы, то есть устройства, позволяющие производить анализ исследуемого пространства путем последовательного его просмотра (поэлементного разложения). Принцип восприятия образов этими системами сводится к следующему. Распределение яркости объекта наблюдения превращается в оптическое изображение и фокусируется на фоточувствительную поверхность. Здесь световая энергия переходит в электрическую, причем отклик (ток, заряд, напряжение) пропорционален освещенности. Яркостная картина преобразуется в электрический рельеф. Схема сканирования производит периодический последовательный опрос каждого элемента и считывание содержащейся в нем информации. В конечном счете, на выходе устройства мы получаем последовательность видеоимпульсов, в которой закодирован воспринимаемый образ. При создании многоэлементных фотоприемников стремятся обеспечить наилучшее выполнение ими функций преобразования и сканирования.

    Фотодиоды активно используются в оптронах, оптоэлектронныых приборах, в которых имеются источник и приемник излучения с тем или иным видом оптической и электрической связи между ними, конструктивно объединенные и помещенные в один корпус. В электронной схеме оптрон выполняет функцию элемента связи, в одно из звеньев которого информация передается оптически. Это основное назначение оптрона. Если между компонентами оптрона создать электрически обратную связь, то оптрон может стать активным прибором, пригодным для усиления и генерации электрических и оптических сигналов. Принципиальное отличие оптронов как элементов связи заключается в использовании для переноса информации электрически нейтральных фотонов, что обуславливает ряд достоинств оптронов, которые присущи и всем остальным оптоэлектронным приборам в целом. Хотя у оптронов есть, разумеется, и свои недостатки.

    В повседневной жизни фотодиоды используются в таких приборах, как устройства чтения компакт-дисков, пультах дистанцианного управления, фотокамерах, различных сенсорных устройствах, использующих данную технологию. Одно из важных применений - в медицинских приборах, в частности - в устройствах для проведения компьютерной томографии.

    1. ↑ Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.

    Внутренний поиск Править

    Внешний поиск по URL Править

    • Страница 0 - краткая статья
    • Страница 1 - энциклопедическая статья
    • Разное - на страницах: 2 , 3 , 4 , 5
    • Прошу вносить вашу информацию в «Фотодиод 1», чтобы сохранить ее

    ru.science.wikia.com

    Фотодиод - это... Что такое Фотодиод?

    Фотодиод ФД-10-100 активная площадь-10х10 мм² ФД1604 (активная площадь ячейки 1,2х4мм2 — 16шт) Обозначение на схемах

    Фотодио́д — приёмник оптического излучения[1], который преобразует попавший на его фоточувствительную область свет в электрический заряд за счёт процессов в p-n-переходе.

    Фотодиод, работа которого основана на фотовольтаическом эффекте (разделение электронов и дырок в p- и n- области, за счёт чего образуется заряд и ЭДС), называется солнечным элементом. Кроме p-n фотодиодов, существуют и p-i-n фотодиоды, в которых между слоями p- и n- находится слой нелегированного полупроводника i. p-n и p-i-n фотодиоды только преобразуют свет в электрический ток, но не усиливают его, в отличие от лавинных фотодиодов и фототранзисторов.

    Описание

    Структурная схема фотодиода. 1 — кристалл полупроводника; 2 — контакты; 3 — выводы; Φ — поток электромагнитного излучения; Е — источник постоянного тока; RH — нагрузка.

    Принцип работы:

    При воздействии квантов излучения в базе происходит генерация свободных носителей, которые устремляются к границе p-n-перехода. Ширина базы (n-область) делается такой, чтобы дырки не успевали рекомбинировать до перехода в p-область. Ток фотодиода определяется током неосновных носителей — дрейфовым током. Быстродействие фотодиода определяется скоростью разделения носителей полем p-n-перехода и ёмкостью p-n-перехода Cp-n

    Фотодиод может работать в двух режимах:

    • фотогальванический — без внешнего напряжения
    • фотодиодный — с внешним обратным напряжением

    Особенности:

    • простота технологии изготовления и структуры
    • сочетание высокой фоточувствительности и быстродействия
    • малое сопротивление базы
    • малая инерционность

    Параметры и характеристики фотодиодов

    Параметры:

    • чувствительность отражает изменение электрического состояния на выходе фотодиода при подаче на вход единичного оптического сигнала. Количественно чувствительность измеряется отношением изменения электрической характеристики, снимаемой на выходе фотоприёмника, к световому потоку или потоку излучения, его вызвавшему. ;  — токовая чувствительность по световому потоку ;  — вольтаическая чувствительность по энергетическому потоку
    • шумы помимо полезного сигнала на выходе фотодиода появляется хаотический сигнал со случайной амплитудой и спектром — шум фотодиода. Он не позволяет регистрировать сколь угодно малые полезные сигналы. Шум фотодиода складывается из шумов полупроводникового материала и фотонного шума.

    Характеристики:

    • вольт-амперная характеристика (ВАХ) зависимость выходного напряжения от входного тока.
    • спектральные характеристики зависимость фототока от длины волны падающего света на фотодиод. Она определяется со стороны больших длин волн шириной запрещённой зоны, при малых длинах волн большим показателем поглощения и увеличения влияния поверхностной рекомбинации носителей заряда с уменьшением длины волны квантов света. То есть коротковолновая граница чувствительности зависит от толщины базы и от скорости поверхностной рекомбинации. Положение максимума в спектральной характеристике фотодиода сильно зависит от степени роста коэффициента поглощения.
    • световые характеристики зависимость фототока от освещённости, соответствует прямой пропорциональности фототока от освещённости. Это обусловлено тем, что толщина базы фотодиода значительно меньше диффузионной длины неосновных носителей заряда. То есть практически все неосновные носители заряда, возникшие в базе, принимают участие в образовании фототока.
    • постоянная времени это время, в течение которого фототок фотодиода изменяется после освещения или после затемнения фотодиода в е раз (63 %) по отношению к установившемуся значению.
    • темновое сопротивление сопротивление фотодиода в отсутствие освещения.
    • инерционность

    Классификация

    • В p-i-n структуре средняя i-область заключена между двумя областями противоположной проводимости. При достаточно большом напряжении оно пронизывает i-область, и свободные носители, появившееся за счет фотонов при облучении, ускоряются электрическим полем p-n переходов. Это дает выигрыш в быстродействии и чувствительности. Повышение быстродействия в p-i-n фотодиоде обусловлено тем, что процесс диффузии заменяется дрейфом электрических зарядов в сильном электрическом поле. Уже при Uобр≈0.1В p-i-n фотодиод имеет преимущество в быстродействии.
    Достоинства: 1) есть возможность обеспечения чувствительности в длинноволновой части спектра за счет изменения ширины i-области. 2) высокая чувствительность и быстродействие 3) малое рабочее напряжение Uраб Недостатки: сложность получения высокой чистоты i-области
    • Фотодиод Шоттки (фотодиод с барьером Шоттки) Структура металл-полупроводник. При образовании структуры часть электронов перейдет из металла в полупроводник p-типа.
    • Лавинный фотодиод
    • В структуре используется лавинный пробой. Он возникает тогда, когда энергия фотоносителей превышает энергию образования электронно-дырочных пар. Очень чувствительны. Для оценки существует коэффициент лавинного умножения: Для реализации лавинного умножения необходимо выполнить два условия: 1) Электрическое поле области пространственного заряда должно быть достаточно большим, чтобы на длине свободного пробега электрон набрал энергию, большую, чем ширина запрещённой зоны: 2) Ширина области пространственного заряда должна быть существенно больше, чем длина свободного пробега: Значение коэффициентов внутреннего усиления составляет M=10-100 в зависимости от типа фотодиодов.
    • Фотодиод с гетероструктурой Гетеропереходом называют слой, возникающий на границе двух полупроводников с разной шириной запрещённой зоны. Один слой р+ играет роль «приёмного окна». Заряды генерируются в центральной области. За счет подбора полупроводников с различной шириной запрещённой зоны можно перекрыть весь диапазон длин волн. Недостаток — сложность изготовления.

    См. также

    Примечания

    В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 15 мая 2011.

    dic.academic.ru


Каталог товаров
    .