Содержание: В электротехнике понятие сопротивления представляет собой величину, за счет которой определенная часть цепи может противодействовать электрическому току. Она образуется за счет изменения и перехода электроэнергии в другое энергетическое состояние. Данное явление присуще только переменному току, когда в сети образуется активное и реактивное сопротивление, выражающееся в необратимом изменении энергии или передаче этой энергии между отдельными компонентами электрической цепи. В случае необратимых изменений электроэнергии сопротивление будет считаться активным, а при наличии обменных процессов – реактивным. Когда электрический ток проходит через элементы с активным сопротивлением, происходят необратимые потери выделяемой мощности. Типичным примером служит электрическая плита, где в процессе работы происходят необратимые превращения электричества в тепловую энергию. То же самое происходит с резистором, в котором тепло выделяется, но обратно в электроэнергию не превращается. Помимо резисторов, свойствами активного сопротивления обладают приборы освещения, электродвигатели, трансформаторные обмотки, провода и кабели и т.д. Характерной особенностью элементов с активным сопротивлением являются напряжение и ток, совпадающие по фазе. Рассчитать этот параметр можно по формуле: r = U/I. На показатели активного сопротивления оказывают влияние физические свойства проводника – сечение, длина, материал, температура. Эти качества позволяют различать реактивное и активное сопротивление и применять их на практике. Реактивное сопротивление возникает в тех случаях, когда переменный ток проходит через так называемые реактивные элементы, обладающие индуктивностью и емкостью. Первое свойство характерно для катушки индуктивности без учета активного сопротивления ее обмотки. В данном случае причиной появления реактивного сопротивления считается ЭДС самоиндукции. В зависимости от частоты тока, при ее возрастании, наблюдается и одновременный рост сопротивления, что отражается в формуле xl = wL. Реактивное сопротивление конденсатора зависит от емкости. Оно будет уменьшаться при увеличении частоты тока, поэтому данное свойство широко используется в электронике для выполнения регулировочных функций. В этом случае для расчетов используется формула xc = 1/wC. В электронике существует не только активное и реактивное, но и полное сопротивление цепи, представляющее собой сумму квадратов обоих сопротивлений. Этот параметр обозначается символом Z и отображается в виде формулы: В графике это выражение выглядит в виде треугольника сопротивлений, где реактивное и активное сопротивление соответствуют катетам, а полное сопротивление или импеданс – гипотенузе. Реактивное сопротивление подразделяется на два основных вида – индуктивное и емкостное. При рассмотрении первого варианта следует отметить возникновение в индуктивной обмотке магнитного поля под действием переменного тока. В результате, в ней образуется ЭДС самоиндукции, направленной против движения тока при его росте, и по ходу движения при его уменьшении. Таким образом, при всех изменениях тока и наличии взаимосвязей, ЭДС оказывает на него противоположное действие и приводит к созданию индуктивного сопротивления катушки. Под влиянием ЭДС самоиндукции энергия магнитного поля обмотки возвращается в электрическую цепь. То есть, между источником питания и обмоткой происходит своеобразный обмен энергией. Это дает основание полагать, что катушка индуктивности обладает реактивным сопротивлением. В качестве типичного примера можно рассмотреть действие реактивного сопротивления в трансформаторе. Данное устройство имеет общий магнитопровод, с расположенными на нем двумя обмотками или более, имеющими общую зависимость. На одну из них поступает электроэнергия из внешнего источника, а из другой выходит уже трансформированный ток. Под действием первичного тока, проходящего по катушке, в магнитопроводе и вокруг него происходит наведение магнитного потока. В результате пересечения витков вторичной обмотки, в ней формируется вторичный ток. При невозможности создания идеальной конструкции трансформатора, магнитный поток будет частично уходить в окружающую среду, что приведет к возникновению потерь. От них зависит величина реактивного сопротивления рассеяния, которая совместно с активной составляющей образуют комплексное сопротивление, называемое электрическим импедансом трансформатора. В цепи, содержащей емкость и источник переменного тока происходят изменения заряда. Такой емкостью обладают конденсаторы, обладающие максимальной энергией при полном заряде. Напряжение емкости создает сопротивление, противодействующее течению переменного тока, которое считается реактивным. В результате взаимодействия, конденсатор и источник тока постоянно обмениваются энергией. В конструкцию конденсатора входят токопроводящие пластины в количестве двух и более штук, разделенных слоями диэлектрика. Такое разделение не позволяет постоянному току проходить через конденсатор. Переменный ток может проходить через емкостное устройство, отклоняясь при этом от своей первоначальной величины. Изменения переменного тока происходят под влиянием емкостного сопротивления. Чтобы лучше понять схему работы, найдем и рассмотрим принцип действия данного явления. Переменное напряжение, приложенное к конденсатору, изменяется в форме синусоиды. Под его воздействием на обкладках наблюдается всплеск, одновременно здесь накапливаются заряды электроэнергии с противоположными знаками. Их общее количество ограничено емкостью устройства и его габаритами. Чем выше емкость устройства, тем больше времени требуется на зарядку. В момент изменения полупериода колебания, напряжение на обкладках конденсатора меняет свою полярность на противоположное значение, потенциалы также изменяются, а заряды пластин перезаряжаются. За счет этого удается создать течение первичного тока и находить способ противодействовать его прохождению, при уменьшении величины и сдвиге угла. Зарядка обкладок позволяет току, проходящему через конденсатор, опережать напряжение на 900. С помощью электрических сетей осуществляется передача электроэнергии на значительные расстояния. В большинстве случаев она используется для питания электродвигателей, имеющих высокое индуктивное сопротивление и большое количество резистивных элементов. К потребителям поступает полная мощность, которая делится на активную и реактивную. В первом случае с помощью активной мощности совершается полезная работа, а во втором – происходит нагрев трансформаторных обмоток и электродвигателей. Под действием реактивной составляющей, возникающей на индуктивных сопротивлениях, существенно понижается качество электроэнергии. Противостоять ее вредному воздействию помогает комплекс мероприятий по компенсации с использованием конденсаторных батарей. За счет емкостного сопротивления удается понизить косинус угла φ. Компенсирующие устройства применяются на подстанциях, от которых электричество поступает к проблемным потребителям. Этот способ дает положительные результаты не только в промышленности, но и на бытовых объектах, снижая нагрузку на оборудование. electric-220.ru В электрической цепи переменного тока существует два вида сопротивлений: активное и реактивное. Это является существенным отличием от цепей постоянного тока. При прохождении тока через элементы, имеющие активное сопротивление, потери выделяющейся мощности необратимы. Примером может служить резистор, выделяющееся на нем тепло, обратно в электрическую энергию не превращается. Кроме резистора активным сопротивлением может обладать линии электропередач, соединительные провода, обмотки трансформатора или электродвигателя. Отличительной чертой элементов имеющих чисто активное сопротивление – это совпадение по фазе тока и напряжения, поэтому вычислить его можно по формуле Активное сопротивление зависит от физических параметров проводника, таких как материал, площадь сечения, длина, температура. При прохождении переменного тока через реактивные элементы возникает реактивное сопротивление. Оно обусловлено в первую очередь ёмкостями и индуктивностями. Индуктивностью в цепи переменного тока обладает катушка индуктивности, причём в идеальном случае, активным сопротивлением её обмотки пренебрегают. Реактивное сопротивление катушки переменному току создаётся благодаря её ЭДС самоиндукции. Причем с ростом частоты тока, сопротивление также растёт. Реактивное сопротивление катушки зависит от частоты тока и индуктивности катушки Конденсатор обладает реактивным сопротивлением благодаря своей ёмкости. Его сопротивление с увеличением частоты тока уменьшается, что позволяет его активно использовать в электронике в качестве шунта переменной составляющей тока. Сопротивление конденсатора можно рассчитать по формуле Цепи переменного тока обладают полным сопротивлением. Полное сопротивление цепи определяется как сумма квадратов активного и реактивного сопротивлений Графическим изображением этого выражения служит треугольник сопротивлений, который можно получить в результате расчёта последовательной RLC-цепи. Выглядит он следующим образом: На треугольнике видно, что катетами являются активное и реактивное сопротивление, а полной сопротивление гипотенуза. electroandi.ru При выработке и потреблении энергии на переменном токе равенству вырабатываемой и потребляемой электрической энергии в каждый момент времени отвечает равенство вырабатываемой и потребляемой не только активной, но и реактивной мощности. Эти условия можно записать так: ГПН+, QГQП=QН+Q, где Г и QГ – генерируемые активные и реактивные мощности станций за вычетом собственных нужд; Н, QН – активная и реактивная мощности потребителей; , Q – суммарные потери активной и реактивной мощностей в сетях; П,QП – суммарное потребление активной и реактивной мощностей. Эти уравнения являются уравнениями баланса активной и реактивной мощностей. Баланс реактивной мощности по всей системе в целом определяет некоторые уровень напряжения. Напряжения в узловых точках сети электроэнергетической системы в той или в иной степени отличаются от среднего уровня, причем это отличие определяется конфигурацией сети, нагрузкой и другими факторами, от которых зависит падение напряжения. Баланс реактивной мощности для всей системы в целом не может исчерпывающе определить требования, предъявляемые к мощности источников реактивной мощности. Надо оценивать возможность получения необходимой реак-й мощ-ти как по системе, так и по отдельным ее районам. Необходимость в оценке баланса реак-й мощ-ти возникает прежде всего при проектировании подсистемы регулирования напряжения – реак-й мощ-ти АСДУ. В ряде случаев оценка изменений условий баланса производится и в практике эксплуатации, например при вводе новых регулирующих устройств, установленных мощностей электрических станций, изменениях схемы сети. Нарушение баланса реактивной мощности приводит к изменению уровня напряжения в сети. Если генерируемая реактивная мощность становится больше потребляемой (QГQП), то напряжение в сети повышается. При дефиците реактивной мощности (QГQП) напряжение в сети понижается. Для пояснения указанной связи напомним, что например, емкостный ток линии на х.х. повышает напряжение на ее конце. Соответственно реактивной мощности приводит к повышению, а ее недостаток – к понижению напряжения. В дефицитных по активной мощности энергетических систем уровень напряжения, как правило, ниже номинального. Недостающая для выполнения баланса активной мощности передается в такие системы из соседних энергетических систем, в которых имеется избыток генерируемой мощности. Обычно энергетические системы дефицитные по активной мощности и по реактивной мощности. Однако недостающую реактивную мощность эффективнее не передавать, а генерировать в компенсирующих устройствах в данной энергетической системе. Основными являются частота переменного тока (f) и напряжение (U).Остальные показатели качества не рассматриваем, т.к. они не влияют на расчет режимов электрической сети. Качество электроэнергии влияет на работу электроприемников и на работу электрических аппаратов, присоединенных к электрическим сетям. Все электрические приемники и аппараты характеризуются определенными номинальными параметрами (fHOM, UHOM, IHOM и т.д.). Изменение частоты и напряжения вызывают изменение технических и экономических показателей работы электрических приемников и аппаратов. Различают электромагнитное и технологическое влияние отклонения частоты на работу электроприемников. Электромагнитная составляющая обусловливается увеличением потерь активной мощности и ростом потребления активной и реактивной мощностей. Можно считать, что снижение частоты на 1% увеличивает потери в сетях на 2%. Технологическая составляющая вызвана в основном недовыпуском промышленными предприятиями продукции. Согласно экспертным оценкам, значение технологического ущерба на порядок выше электромагнитного. Технологическая составляющая связана с существенным влиянием (f) частоты на число оборотов электродвигателей, а, следовательно, и на производительность механизмов. Большинство технологических линий оборудовано механизмами, где в качестве приводов служат асинхронные двигатели. Частота вращения этих двигателей пропорциональна изменению частоты сети, а производительность технологических линий зависит от частоты вращения двигателя. При значительном повышении частоты в энергосистеме, что может быть, например, в случае уменьшения (сброса) нагрузки, возможно повреждение оборудования. Кроме того, пониженная частота в электрической сети влияет на срок службы оборудования, содержащего элементы со сталью (электродвигатели, трансформаторы), за счет увеличения тока намагничивания в таких аппаратах и дополнительного нагрева стальных элементов. При проектировании в расчетах электросетей влияние изменения (f)частоты не рассматривается. Предполагается, что электрическая система обеспечивает поддержание стандартной частотыf=50 Гц. Изменение U оказывает неблагоприятное влияние на работу осветительных ламп и асинхронных двигателей, которые составляют значительную часть всех электроприемников в энергосистеме. Нежелательно как повышение U, так и его понижение на зажимах электроприемников. Снижение U вызывает резкое уменьшение () светового потока ламп накаливания и их к.п.д. При снижении U на 5% световой поток уменьшается на 18%, а снижение U на 10% приводит к уменьшению потока уже более чем на 30%. Это приводит к значительному уменьшению освещенности рабочих мест на производстве и к снижению производительности труда и ухудшению его качества, может увеличиться число несчастных случаев. При увеличении U световой поток заметно повышается, но значительно уменьшается срок службы ламп. Так при повышении U на 10% световой поток ламп увеличивается приблизительно на 30%, а срок службы ламп сокращается почти в 3 раза. Снижение U в сети энергосистемы может явиться причиной массового останова асинхронных двигателей и может привести к возникновению тяжелой системной аварии. При снижении крутящего момента асинхронных двигателей, пропорционального квадрату напряжения на зажимах двигателей, может произойти остановка или невозможность запуска двигателей. При пониженном напряжении у двигателей ухудшается к.п.д. и происходит процесс более интенсивного старения изоляции из-за увеличения тока, проходящего по обмоткам. Одновременно увеличивается скольжение и уменьшается число оборотов двигателя. При этом может снизиться производительность соединенных с двигателем механизмов. Увеличение U на зажимах асинхронных двигателей неблагоприятно сказывается на условиях их работы. Существенно увеличивается их ток, что вызывает перегрузку обмотки статора. Может заметно возрасти потребление реактивной мощности двигателями. Изменение напряжений на зажимах электроприемников технологических установок промышленных предприятий также является неблагоприятным фактором, который приводит к снижению технико-экономических показателей работы этих установок, т.е. при снижении U уменьшается производительность установок, удорожается выпускаемая продукция, увеличивается расход электроэнергии на единицу продукции. Анализируя влияние изменения U у потребителей в качестве потребителей должны рассматриваться и трансформаторы (автотрансформаторы), устанавливаемые на подстанции. Снижение U у трансформаторов при неизменной мощности приводит к увеличению тока в обмотках. Во многих случаях это не представляет опасности для трансформаторов, т.к. их SНОМ часто превышает нагрузку, и конструкция трансформаторов позволяет допускать некоторую перегрузку. Однако при оценке возможности перегрузки необходимо правильно определять ожидаемый максимальный ток, на величину которого может оказать влияние снижение напряжения на зажимах трансформатора. Более опасным для трансформатора может оказаться повышение подводимого к нему напряжения. Связано это с существенным увеличением намагничивающего тока, которое у трансформаторов более заметно вследствие резкого увеличения реактивного сопротивления намагничивания. Это характерно при превышении номинального напряжения регулировочного ответвления обмотки. Значительный рост тока намагничивания (I) при увеличении напряжения на ответвлении объясняется работой трансформаторов в области нелинейной характеристики намагничивания, а это приводит к искажению кривой тока намагничивания (I) и появлению высших гармоник, которые обуславливают увеличение потерь активной мощности (Р) в магнитопроводе и его дополнительный нагрев. Существенное изменение характеристик нагрузки при отклонениях напряжения от номинального на ее зажимах приводит к необходимости ограничивать эти отклонения предельно допустимыми значениями. Опыт показывает, что допустимые отклонения от номинального напряжения должны быть относительно малыми. Поэтому электросеть должна быть построена таким образом, чтобы напряжения в ее отдельных пунктах (узлах) существенно не отличались друг от друга и от напряжения источника питания. При этом часто приходится применять специальные устройства для регулирования напряжения. studfiles.netБаланс реактивной мощности и его связь с напряжением. Реактивное и активное напряжение
Активное и реактивное сопротивление
Основные различия между активным и реактивным сопротивлением
Индуктивное сопротивление
Емкостное сопротивление
Компенсация реактивной мощности
Активное и реактивное сопротивление в цепи переменного тока
Активное сопротивление
Реактивное сопротивление
Треугольник сопротивлений
Баланс реактивной мощности и его связь с напряжением
16.3. Последствия нарушения качества электроэнергии
Поделиться с друзьями: