интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Что такое напряженность электрического поля. Напряжение и напряженность электрического поля


Электрическое поле. Напряженность электрического поля. Графическое представление электростатического поля.

Электрическое поле. Напряженность электрического поля.

Закон Кулона не объясняет механизм передачи электромагнитного взаимодействия: близкодействие (непосредственный контакт) или дальнодействие? Если заряды действуют друг на друга на расстоянии, то скорость передачи взаимодействия должна быть бесконечно большой, взаимодействие должно распространяться мгновенно. На опыте скорость конечна (скорость света с=3.108м/с).

 

Для объяснения вводится понятие электрического поля (впервые - М. Фарадей) - особый вид материи, существующий вокруг любого электрического заряда и проявляющий себя в действии на другие заряды.

 

Напряженность  -  силовая характеристика электрического поля.

 

Пусть заряд  q0 создает поле, в произвольную точку которого мы помещаем положительный заряд  q. Во сколько бы раз мы не изменяли заряд q  в этой точке, сила взаимодействия изменится во столько же раз (з-н Кулона).

Напряженность - силовая характеристика электрического поля.

Следовательно: величина постоянная в данной точке данного поля - величина постоянная  в  данной  точке  данного  поля.

 

Напряженность - векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку данного поля, к величине этого заряда

 Напряженность - векторная физическая величина, численно равная отношению

силы, действующей на заряд, помещенный в данную точку данного поля, к величине этого заряда.

Напряженность - векторная физическая величина, численно равная отношению силы, действующей на заряд, помещенный в данную точку данного поля, к величине этого заряда

Напряженность не зависит от величины заряда, помещенного в поле.

, если q>0. , если q<0. Т.е. вектор напряженности направлен от положительного заряда и к отрицательному.

 

единицы измерения Напряженности поля в данной точке   Напряженность в данной точке поля равна 1, если на заряд в 1 Кл, помещенный в эту точку, действует сила в 1 Н. (Напряженность равна 1  , если между точками электростатического поля, находящимися на расстоянии 1 м друг от друга, существует разность потенциалов 1 В).

единицы измерения Напряженности поля в данной точке

Принцип суперпозиции полей:   напряженность поля, созданного системой зарядов равна геометрической сумме напряженностей полей, созданных каждым зарядом. Т.е. напряженности складываются геометрически: Принцип суперпозиции полей

(Это опытный факт.)

Пример:

 напряженность поля, созданного системой зарядов равна геометрической сумме напряженностей полей, созданных каждым зарядом

напряженность поля, созданного системой зарядов равна геометрической сумме напряженностей полей, созданных каждым зарядом

Графическое представление электростатического поля.

Силовые линии (линии напряженности) -  непрерывные (воображаемые) линии вектор напряженности касателен к каждой точке которых. Способ описания с помощью силовых линий введен Фарадеем.

Силовые линии (линии напряженности)

Силовые линии (линии напряженности)

Силовые линии (линии напряженности)

Силовые линии (линии напряженности)

Силовые линии (линии напряженности)

Свойства:

  1. Начинаются на положительных и заканчиваются на отрицательных зарядах.
  2. Не пересекаются.
  3. Густота линий тем больше, чем больше напряженность. Т.е. напряженность поля прямо пропорциональна количеству силовых линий, проходящих через единицу площади поверхности.
  4. Можно договориться изображать поля так, что количество проведенных линий пропорционально величине заряда.

www.eduspb.com

Что такое напряженность электрического поля :: SYL.ru

Напряженность электрического поля может иметь значительную важность при использовании конденсаторов, а также иных деталей для схем. Почему так? Давайте рассмотрим данное понятие с точки зрения физики.

Зачем было введено само понятие напряженности электрического поля

Оно характеризирует особый вид материи, которая существует около любого электрического заряда и проявляет себя во влиянии на другие подобные частицы. Напряженность – это характеристика данного поля. Принимать во внимание данное понятие необходимо из-за того, что существует влияние на электронные компоненты любой схемы, которая есть в любой электротехнике. А при игнорировании этого аспекта машины, в которых они есть, будут очень быстро выходить из строя, возможно даже, что мгновенно – при первом же запуске. Как напряженность электрического поля рассматривается современной наукой?

Что такое напряженность с точки зрения физики

Данному понятию было уделено много внимания – ещё бы, ведь от понимания данных процессов сейчас очень сильно зависит мощь нашей цивилизации. Под ней понимают векторную величину, которую используют, чтобы охарактеризовать электрическое поле в одной точке. Она численно равняется отношению силы, что воздействует на недвижимый точечный заряд, который рассматривается, к его величине:

Н=С/ВЗ, где:

  1. Н – напряженность.
  2. С – сила.
  3. ВЗ – величина заряда, что рассматривается.

Вот как определить напряженность электрического поля. И вот почему её могут иногда называть его же силовой характеристикой. Что же выступает единственным отличием? От вектора силы, который действует на заряженную частицу, данный случай отличается наличием постоянного множителя. А что можно сказать про его величину?

Значение вектора в каждой точке пространства

Необходимо учитывать, что данная величина меняется вместе с изменением координат. Формально все точки векторного объема можно выразить такой записью: Е = Е (х, у, z, t). Она представляет напряженность электрического поля в виде функции пространственных координат. А теперь на них необходимо наложить векторы магнитной индукции. В результате можно получить электромагнитное поле, которое вместе со своими законами будет представлять предмет электродинамики. В чем измеряется напряженность данного объекта? Для этого используют показатель вольт на метр или ньютон на кулон (запись соответственно В/м или Н/Кл).

Напряжённость электрического поля в классической электродинамике

Она признана одной из основных фундаментальных величин. Сопоставимыми по важности можно назвать вектор магнитной индукции и электрический заряд. В некоторых случаях подобную значительность могут приобретать потенциалы электромагнитного поля. Более того, если соединить их вместе, то можно получить значение, которое покажет возможность влияния на другие объекты. Оно называется электромагнитным потенциалом. Существуют и другие понятия. Электрический ток, его плотность, вектор поляризации, напряженность магнитного поля – все они достаточно значимые и важные, но считаются только вспомогательными величинами. Давайте устроим краткий обзор основных контекстов, которые имеются в классической электродинамике относительно напряженности электрического поля.

Сила действия на заряженные частицы

Для выражения общего показателя воздействия магнитного поля использую формулу Лоренца:

С = ЭЗЧ*ВС+ЭЗЧ*Ск*^ВМИ.

С – сила воздействия магнитного поля на заряженную частицу.

ЭЗЧ – электрический заряд одной частицы.

ВМИ – вектор магнитной индукции.

Ск – скорость движения частицы.

*^ - векторное произведение.

Если разобраться в формуле, то можно увидеть, что она полностью согласуется с ранее данным определением, чем является напряженность электрического поля. Но само уравнение обобщено, поскольку в него включено действие на заряженную частицу со стороны магнитного поля при движении оной. Также предполагается, что объект рассмотрения является точечным. Формула позволяет рассчитывать силы, которыми действует электромагнитное поле на тело любой формы, в котором произвольное распределение зарядов и токов. Необходимо только разбить сложный объект на маленькие части, каждая из них может считаться точкой, и тогда к ней становится возможным применение формулы.

Что можно сказать про остальные подсчёты

Другие уравнения, которые применяются при расчетё электромагнитных сил, считают следствиями формулы Лоренца. Также их называют частными случаями её применения. Хотя для практического применения даже в самых простых задачах всё же необходимо иметь ещё небольшой багаж знаний, о которых сейчас и будет рассказано.

Электростатика

Занимается частными случаями, когда заряженные тела являются неподвижными, или их скорость передвижения настолько мала, что их таковыми считают. Как же посчитать напряженность электрического поля в данном случае? В этом нам поможет скалярный потенциал:

НЭП = -∆СП.

НЭП – напряженность электрического поля.

СП – скалярный потенциал.

Верно и обратное. Полученное значение называется электростатическим потенциалом. Также подобный подход упрощает уравнение Максвелла, и оно превращается в формуле Пуассона. Для частного случая областей, которые свободны от заряженных частиц, используют подсчёты по методу Лапласа. Обратите внимание – все уравнения линейные, а соответственно, к ним применяется принцип суперпозиции. Для этого следует найти поле только одного точечного единичного заряда. Затем следует обсчитать напряженность или потенциал поля, что создаются их распределением. Знаете, как называют полученный результат? Наверняка нет. А имя ему - напряженность электрического поля точечного заряда.

Уравнения Максвелла

Они вместе с формулой силы Лоренца составляют теоретический фундамент классической электродинамики. Традиционная форма представлена. Поскольку описывать каждое из них – это долго, то мною они будут представлены в виде картинки. Считается, что этих четырёх уравнений и формулы силы Лоренца достаточно, чтобы полностью описать классическую (только её, а не квантовую) электродинамику. Но что делать с практикой? Для решения реальных задач может потребоваться ещё уравнение, которое описывает движение материальных частиц (в классической механике в их роли выступают законы Ньютона). Также будет нужной информация о конкретных свойствах сред и физических тел, которые рассматриваются (их упругость, электропроводность, поляризация и подобное). Для решения задач могут применяться и другие силы, что не входят в рамки электродинамики (как то гравитация), но которые бывают нужными, чтобы построить замкнутую систему уравнений или решить конкретную проблему.

Заключение

Что же, подводя итог, можно сказать, что напряженность электрического поля была рассмотрена довольно полно, как в целом, так и некоторые частные случаи. Данных, представленных в рамках статьи, должно с лихвой хватить, чтобы рассчитывать параметры для своих будущих конструкций. Про графическое изображение можно сказать, что векторы напряженности электрического поля изображаются с помощью силовых линий, которые считаются касательными к каждой точке. Этот способ описания впервые был введён Фарадеем. На этом про напряженность электрического поля автор заканчивает и благодарит вас за уделенное внимание.

www.syl.ru

Напряженность электрического поля

Рисунки § 13 дают лишь общую качественную картину электрического поля. Для количественной характеристики электрического поля мы могли бы использовать любое из производимых им действий. Так, например, под влиянием электрического поля заметно изменяются оптические свойства некоторых веществ. Это свойство электрического поля можно было бы применить для количественной оценки поля. Обычно, однако, для этой цели пользуются механическими действиями поля на заряженные тела.

Представим себе, что электрическое поле создано некоторым зарядом ; внесем в него «пробный заряд»  и измерим действующую на него силу . Это можно сделать, нанося, например, «пробный заряд» на легкий шарик, подвешенный на шелковой нити (рис. 28), и измеряя угол отклонения шарика. По закону Кулона эта сила пропорциональна пробному заряду . Увеличивая этот заряд в 2, 3 и вообще  раз, мы будем наблюдать увеличение силы в 2, 3 или  раз. Поэтому отношение  уже не зависит от пробного заряда  и характеризует только электрическое поле в той точке, где находится пробный заряд. То же имеет место и в любом другом электрическом поле, а не только в поле заряженного шара.

37.jpg

Рис. 28. Исследование электрического поля пробным зарядом. Напряженность поля убывает с расстоянием

Отношение , численно равное силе, действующей на единичный заряд, принимают за количественную меру поля и называют напряженностью поля. Таким же образом будет характеризоваться и поле, созданное не одним каким-либо зарядом , а любой, совокупностью зарядов. Итак, напряженность электрического поля в данной точке пространства есть отношение силы, действующей на заряд, помещенный в эту точку, к заряду. Следовательно, напряженность поля численно равна силе, действующей на единичный заряд.

Если обозначить напряженность поля в некоторой точке через , заряд, находящийся в этой точке, через  и силу, действующую на заряд, через , то

, (14.1)

откуда

. (14.2)

Напряженность, равная единице, есть напряженность такого поля, в котором на единичный заряд действует сила, равная единице. Например, в СИ за единицу напряженности принимают напряженность поля, в котором на заряд, равный одному кулону, действует сила, равная одному ньютону. Эту единицу называют вольтом на метр (В/м) (§ 23).

Мы определили напряженность электрического поля как физическую величину, численно равную силе, действующей на единичный заряд. Однако всякая сила определяется не только своим числовым значением (модулем), но и направлением. Поэтому для полной характеристики напряженности поля надо указать также и ее направление. За направление напряженности поля принимают направление силы, действующей на положительный заряд. Напряженность поля в некоторой точке можно изобразить графически в виде направленного отрезка, исходящего из данной точки, подобно тому как это делается при изображении силы и других векторных величин.

14.1. На маленьком шарике находится заряд 10 нКл. Чему равна напряженность поля на расстоянии 0,1 м от центра шарика?

14.2. Вычислите напряженность поля, создаваемого зарядом 5 Кл на расстоянии 1 км от него.

14.3. В электрическом поле напряженности 300 кВ/м находится заряд 10 нКл. Какая сила действует на этот заряд?

sfiz.ru

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ - это... Что такое НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ?

в классической электродинамике (E) - векторная характеристика электрич. поля, сила, действующая па покоящийся в данной системе отсчёта единичный олектрич. заряд. При этом предполагается, что внесение заряда (заряженного пробного тела) во внеш. поле E не изменяет такового. Иногда вместо H. э. п. говорят просто "электрич. поле". Размерность Н. э. п. в гауссовой системе - L-1/2M1/2T -1, в СИ - LMT-3I-1; единицей H. э. п. в СИ является вольт на метр (1 СГСЭ = 3.104 В/м). Распределение H. э. п. в пространстве обычно характеризуют с помощью семейства линий E (силовых линий электрич. поля), касательные к к-рьш в каждой точке совпадают с направлениями вектора E. Как и любое векторное поле, поле E разбивается на две составляющие: потенциальную ([E п) = 0, E п = - j е )и вихревую ( ЕB = 0, ЕB = [Am]). В частности, электрич. поле, создаваемое системой неподвижных зарядов, является чисто потенциальным. Электрич. поле излучения, в т. ч. поле E в поперечных эл.-магп. волнах, является чисто вихревым. Вместе с вектором магн. индукции В H. э. п. составляет единый 4-тензор электромагнитного поля. Поэтому чисто олектрич. поле данной системы зарядов существует лишь в "избранной" системе отсчёта, где заряды неподвижны. В др. инерцпальных системах отсчёта, перемещающихся относительно "избранной" с пост. скоростью u, возникает ещё и магнитное поле В' = = [uE]/, обусловленное появлением конвекц. токов j = ru/(r - плотность заряда в "избранной" системе).

Для характеристики полей в материальных средах помимо H. э. и. вводят ещё вектор поляризации среды Р е(E), равный дипольноту моменту единицы объёма. Обычно оба эти вектора объединяются в вектор электрической индукции, или электрич. смещения, D = E + + 4pPe. Источниками поля D являются свободные заряды (D = 4pr), источниками поля E - совокупность свободных (r) и связанных (r св) зарядов E = 4p(r + r св),= -.P е· В линейных средах, где Pe есть линейная ф-ция E, имеет место принцип суперпозиции, согласно к-рому поле, создаваемое суммой зарядов , равно векторной сумме полей, создаваемых парциальными зарядами .

В классич. электродинамике иногда вводят "естеств." значение H. о. п., E* кл = т2e с4/|е|3= 6·1015 СГСЭ, выражаемое через фундам. константы и равное приблизительно H. э. п. на поверхности заряж. тела, служащего классич. моделью электрона (заряд е= -4,8.10-10 СГСЭ, радиус r е=2,8·10-13 см). Однако в таких сильных полях становятся существенными квантовые эффекты; в квантовой электродинамике критич. значение H. э. п. для частицы с массой т и зарядом е равно E* кв = m2 с3/| е|. Работа по перемещению частицы в таком поле на расстояние комптоновской длины волны -l- = (2p/h)/mc равна энергии покоя частицы. Для электрона E* кв = 4,4·1013 СГСЭ; при Е> E* кв происходит эфф. рождение электронно-позитронных пар (см. Рождение пар). Отношение E* кв/E* кл - 1/137, т. е. равно постоянной тонкой структуры.

Для прецизионных измерений статич. и медленно изменяющихся электрич. полей обычно используют Штарка эффект. Повседневные рабочие измерения часто производят опосредованно, через значение прикладываемых напряжений или через величины наведённых эдс на зондах и щупах.

Лит. см. при ст. Электрическое поле.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

dic.academic.ru

Напряженность электрического поля | Физика

1. Определение напряженности

Как вы уже знаете из курса физики основной школы, электрическое взаимодействие заряженных тел осуществляется посредством электрического поля: каждое заряженное тело создает вокруг себя электрическое поле, которое действует на другие заряженные тела. Представление об электрическом поле ввел английский ученый Майкл Фарадей в первой половине 19-го века.

Электрическое поле в данной точке пространства можно охарактеризовать с помощью силы, действующей со стороны этого поля на точечный заряд, помещенный в данную точку. (Этот заряд должен быть достаточно мал, чтобы создаваемое им поле не изменяло распределения зарядов, которые создают данное поле.)

Как показывает опыт, сила , действующая на заряд q, пропорциональна величине этого заряда. Следовательно, отношение силы к заряду не зависит от величины заряда и характеризует само электрическое поле.

Напряженностью электрического поля в данной точке называют физическую величину, равную отношению силы , действующей со стороны поля на заряд q, помещенный в данную точку поля, к величине этого заряда:

Напряженность поля – векторная величина. Ее направление в каждой точке совпадает с направлением силы, действующей на положительный заряд, помещенный в эту точку.

Единицей напряженности поля является 1 Н/Кл. 1 Н/Кл – небольшая напряженность. Например, напряженность электрического поля вблизи поверхности Земли, обусловленная электрическим зарядом Земли, составляет примерно 130 Н/Кл.

Если известна напряженность поля в данной точке, то можно найти силу , действующую на заряд q, помещенный в эту точку, по формуле

Из формул (1) и (2) следует, что направление напряженности поля в данной точке совпадает с направлением силы, действующей на положительный заряд, помещенный в эту точку.

Напряженность поля точечного заряда

Если внести в поле положительного точечного заряда Q другой положительный заряд, он будет отталкиваться от заряда Q.

Следовательно, напряженность поля положительного точечного заряда во всех точках пространства направлена от этого заряда. На рисунке 51.1 изображены векторы напряженности поля точечного заряда в некоторых точках. Видно, что при удалении от заряда модуль напряженности поля уменьшается.

? 1. Объясните, почему модуль напряженности поля точечного заряда Q на расстоянии r от заряда выражается формулойПодсказка. Воспользуйтесь законом Кулона и определением напряженности поля.

? 2. Чему равна напряженность поля точечного заряда 2 нКл на расстоянии 2 м от него?

? 3. Модуль напряженности поля точечного заряда на расстоянии 0,5 м от него равен 90 Н/Кл. Чему может быть равен этот заряд?

Принцип суперпозиции полей

Если заряд находится в поле, созданном несколькими зарядами, то каждый из этих зарядов действует на данный заряд независимо от других.

Отсюда следует, что равнодействующая сил, действующих на данный заряд со стороны других зарядов, равна векторной сумме сил, действующих на данный заряд со стороны каждого из остальных зарядов.

Это означает, что справедлив принцип суперпозиции полей:

напряженность поля, созданного несколькими зарядами, равна векторной сумме напряженностей полей, созданных каждым из зарядов:Используя принцип суперпозиции, можно найти напряженность поля, создаваемого несколькими зарядами.

? 4. Два точечных заряда расположены на расстоянии 60 см друг от друга. Модуль каждого заряда равен 8 нКл. Чему равен модуль напряженности поля, создаваемого этими зарядами:а) в точке, расположенной на середине отрезка, соединяющего заряды, если заряды одноименные? разноименные?б) в точке, находящейся на расстоянии 60 см от каждого заряда, если заряды одноименные? разноименные?

Для каждого из этих случаев сделайте в тетради чертеж, поясняющий решение.

2. Линии напряженности

На примере поля точечного заряда (рис. 51.1) можно заметить, что векторы напряженности электрического поля в разных точках пространства выстраиваются вдоль некоторых линий.

В случае точечного заряда эти линии представляют собой прямые лучи, проведенные из точки, в которой находится заряд. В поле, созданном несколькими зарядами, зти линии будут некоторыми кривыми, причем напряженность поля в каждой точке будет направлена по касательной к одной из таких линий.

Воображаемые линии, касательные к которым в каждой точке совпадают с направлением напряженности электрического поля, называют линиями напряженности электрического поля.

Линии напряженности начинаются на положительных зарядах и заканчиваются на отрицательных. Густота линий напряженности пропорциональна модулю напряженности.

? 5. Объясните, почему линии напряженности электрического поля не могут пересекаться.

Поля точечных зарядов

? 6. Объясните, почему линии напряженности электрического поля положительного и отрицательного точечных зарядов имеют вид, изображенный на рисунках 51.2, а и 51.2, б.

? 7. На рисунке 51.3 изображены линии напряженности поля, созданного одинаковыми по модулю зарядами (разноименными и одноименными). В некоторых точках для наглядности изображены векторы напряженности поля.а) Перенесите рисунки в тетрадь и обозначьте на них знаки зарядов.б) Изобразите в тетради линии напряженности поля, созданного двумя одноименными зарядами, которое не совпадает ни с одним из приведенных рисунков.в) Чему равна напряженность поля в центральной точке рисунка 51.3, б (в середине отрезка, соединяющего заряды? Поясните ваш ответ с помощью закона Кулона.

Поле равномерно заряженной сферы

На рисунке 51.4 изображены линии напряженности электрического поля равномерно заряженной сферы.

Мы видим, что вне сферы зто поле совпадает с полем точечного заряда, ровного суммарному заряду сферы и расположенного в центре сферы.Можно доказать, что внутри заряженной сферы напряженность поля ровна нулю. (Доказательство этого факта выходит за рамки нашего круга.)

? 8. На сфере радиусом 5 см находится заряд 6 нКл. Чему равна напряженность поля этого заряда:а) в центре сферы?б) на расстоянии 4 см от центра сферы?в) на расстоянии 10 см от центра сферы?г) вне сферы на расстоянии 1 см от ближайшей к этой точке поверхности сферы?

Однако напряженность электрического поля внутри заряженной сферы не обязательно равна нулю! Если внутри этой сферы находится заряженное тело, то согласно принципу суперпозиции напряженность электрического поля равна векторной сумме напряженности поля, создаваемого зарядом этого тела, и напряженности поля, создаваемого зарядом сферы.

Внутри сферы поле создается только заряженным телом, находящимся внутри сферы, потому что напряженность поля, созданного заряженной сферой, внутри сферы равна нулю. А в любой точке вне сферы напряженность поля можно найти, складывая векторы напряженности поля, создаваемого телом, расположенным внутри сферы, и поля, создаваемого зарядом сферы.

? 9. Имеются две концентрические (имеющие общий центр) сферы радиусом 5 см и 10 см. Заряд внутренней сферы равен 6 нКл, а заряд внешней сферы равен –9 нКл. Чему равен модуль напряженности поля в точке, находящейся от общего центра сфер на расстоянии, равном:а) 3 см; б) 6 см; в) 8 см; г) 12 см; д) 20 см?

Поле равномерно заряженной плоскости

На рисунке 51.5 изображены линии напряженности электрического поля вблизи равномерно заряженной плоской пластины.Будем считать, что размеры пластины намного больше расстояний от нее до тех точек пространства, в которых мы рассматриваем напряженность поля. В таких случаях говорят о поле равномерно заряженной плоскости.

Напряженность поля равномерно заряженной плоскости практически одинакова (по модулю и по направлению) во всех точках пространства по одну сторону от плоскости. Линии напряженности этого поля представляют собой параллельные прямые, перпендикулярные плоскости и расположенные на равных расстояниях друг от друга. Такое электрическое поле называют однородным.

По другую сторону плоскости изменяется только направление напряженности поля, а ее модуль остается таким же.

? 10. Напряженность электрического поля, создаваемого большой однородно заряженной пластиной, равна 900 Н/Кл. На расстоянии 40 см от пластины находится точечный заряд, равный по модулю 1 нКл.а) На каком расстоянии от точечного заряда модуль напряженности его поля равен модулю напряженности поля пластины?б) На каком расстоянии от плоскости результирующая напряженность поля плоскости и точечного заряда равна нулю, если знак точечного заряда совпадает со знаком заряда плоскости? Если знак точечного заряда противоположен знаку заряда плоскости?

Поле двух разноименно заряженных плоских пластин

Возьмем две одинаковые равномерно заряженные пластины, заряды которых равны по модулю, но противоположны по знаку. Расположим пластины параллельно друг друту на малом расстоянии друг от друга (рис. 51.6).

? 11. Объясните, почему в пространстве между пластинами напряженность поля в 2 раза больше, чем напряженность поля, создаваемого каждой из пластин, а вне пластин практически равна нулю.Подсказка. Воспользуйтесь принципом суперпозиции электрических полей.

Как увидеть линии напряженности?

Поставим опытПоместим в электрическое поле состоящие из диэлектрика мелкие тела продолговатой формы – кристаллики, частицы манной крупы, мелко настриженные волосы и т. п. В электрическом поле они поворачиваются так, чтобы их более длинная сторона была направлена вдоль вектора напряженности поля. В результате эти тела выстраиваются вдоль линий напряженности, делая их форму видимой. На рисунке 51.7 приведены полученные таким образом «картины» электрических полей, создаваемых заряженным шариком (рис. 51.7, а) и двумя разноименно заряженными шариками (рис. 51.7, б).

Дополнительные вопросы и задания

12. Небольшой заряженный шарик массой 0,2 г подвешен на нити в однородном электрическом поле, напряженность которого направлена горизонтально и равна по модулю 50 кН/Кл.а) Изобразите на чертеже положение равновесия шарика и силы, действующие на него.б) Чему равен заряд шарика, если нить отклонена от вертикали на угол 30º?

13. Какова должна быть напряженность поля, чтобы капелька воды радиусом 0,01 мм находилась в этом поле в равновесии, потеряв 103 электронов? Как должна быть направлена напряженность поля?

phscs.ru

Электрическое поле и его напряженность

Если взять расческу натереть о волосы или какую-нибудь шерстяную материю, расческа начнет притягивать мелкие предметы. При выключении старых телевизоров, иногда можно заметить различные всполохи в виде молний, а если поднести руку близко к экрану волосы встанут дыбом.  Эти явления объединяет свойство притягивать окружающие предметы. Благодаря какой силе это происходит?

Расческа при трении о шерсть или волосы наэлектризовывается, и появляются множество зарядов. Каждый заряд создает вокруг себя невидимые возмущения в пространстве, которое можно определить только по косвенным признакам. Это явление называется электрическим полем.   

Электрическое поле

Электрическое поле – разновидность материи, которая появляется вокруг электрических зарядов и проявляет себя, воздействием на другие заряды. С помощью электрического поля происходит передача воздействия одного заряда к другому.

Сила, с которой заряды действуют друг на друга, определяется законом Кулона. Но для описания силовой характеристики электрического поля этого не достаточно. Поэтому вводится понятие напряженности электрического поля.

Электрическое поле действует на каждый заряд с различной силой. Поэтому напряженность в каждой точке также будет различна.

Напряженность электрического поля

Напряженностью электрического поля называют отношение силы, с которой поле действует на заряд, к величине этого заряда.

formula5

Это векторная величина, соответственно она имеет направленность. В случае точечного заряда они направлены в разные стороны от заряда.

risunok4

У двух разноименных зарядов, линии напряженности, как бы соединены дугообразными линиями, радиус которых увеличивается по мере удаления от электрических зарядов.

risunok5

Если заряды одноименные, эти линии не будут соприкасаться, и имеют дугообразное расхождение.

risunok6

Густота линий зависит от модуля напряженности E в данной точке поля. На самом деле линий поля реально не существует: это только удобный способ графического изображения электрической напряженности.

Каждый заряд создает вокруг себя электрическое поле с определенной величиной напряженности. Если зарядов множество, то результирующая сила будет описываться суммой всех сил.

formula6

Согласно закону супер позиции сил, напряженность электрического поля, создаваемая несколькими зарядами равна сумме напряженностей зарядов по отдельности.

fizikatyt.ru

Напряженность электрического поля - Физическая энциклопедия

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ в классической электродинамике (E) - векторная характеристика электрич. поля, сила, действующая па покоящийся в данной системе отсчёта единичный олектрич. заряд. При этом предполагается, что внесение заряда (заряженного пробного тела) во внеш. поле E не изменяет такового. Иногда вместо H. э. п. говорят просто "электрич. поле". Размерность Н. э. п. в гауссовой системе - L -1/2M1/2T -1, в СИ - LMT -3I-1; единицей H. э. п. в СИ является вольт на метр (1 СГСЭ = 3.104 В/м). Распределение H. э. п. в пространстве обычно характеризуют с помощью семейства линий E (силовых линий электрич. поля), касательные к к-рьш в каждой точке совпадают с направлениями вектора E. Как и любое векторное поле, поле E разбивается на две составляющие: потенциальную ([3050-1.jpgEп) = 0, Eп = - 3050-2.jpgjе)и вихревую (3050-3.jpgЕB = 0, ЕB = [3050-4.jpgAm]). В частности, электрич. поле, создаваемое системой неподвижных зарядов, является чисто потенциальным. Электрич. поле излучения, в т. ч. поле E в поперечных эл--магп. волнах, является чисто вихревым. Вместе с вектором магн. индукции В H. э. п. составляет единый 4-тензор электромагнитного поля. Поэтому чисто олектрич. поле данной системы зарядов существует лишь в "избранной" системе отсчёта, где заряды неподвижны. В др. инерцпальных системах отсчёта, перемещающихся относительно "избранной" с пост. скоростью u, возникает ещё и магнитное поле В' = = [uE]/3050-5.jpg, обусловленное появлением конвекц. токов j = ru/3050-6.jpg(r - плотность заряда в "избранной" системе).

Для характеристики полей в материальных средах помимо H. э. и. вводят ещё вектор поляризации среды Ре (E), равный дипольноту моменту единицы объёма. Обычно оба эти вектора объединяются в вектор электрической индукции, или электрич. смещения, D = E + + 4pPe. Источниками поля D являются свободные заряды (3050-7.jpgD = 4pr), источниками поля E - совокупность свободных (r) и связанных (rсв) зарядов 3050-8.jpgE = 4p(r + rсв),= -3050-9.jpg.Pе· В линейных средах, где Pe есть линейная ф-ция E, имеет место принцип суперпозиции, согласно к-рому поле, создаваемое суммой зарядов 3050-10.jpg , равно векторной сумме полей, создаваемых парциальными зарядами 3050-11.jpg.

В классич. электродинамике иногда вводят "естеств." значение H. о. п., E*кл = т2eс4/|е|3= 6·1015 СГСЭ, выражаемое через фундам. константы и равное приблизительно H. э. п. на поверхности заряж. тела, служащего классич. моделью электрона (заряд е= -4,8.10-10 СГСЭ, радиус rе= 2,8·10-13 см). Однако в таких сильных полях становятся существенными квантовые эффекты; в квантовой электродинамике критич. значение H. э. п. для частицы с массой т и зарядом е равно E*кв = m2с3/3050-12.jpg|е|. Работа по перемещению частицы в таком поле на расстояние комптоновской длины волны -l- = (2p/h)/mc равна энергии покоя частицы. Для электрона E*кв = 4,4·1013 СГСЭ; при Е> E*кв происходит эфф. рождение электронно-позитронных пар (см. Рождение пар ).Отношение E*кв/E*кл - 1/137, т. е. равно постоянной тонкой структуры.

Для прецизионных измерений статич. и медленно изменяющихся электрич. полей обычно используют Штарка эффект .Повседневные рабочие измерения часто производят опосредованно, через значение прикладываемых напряжений или через величины наведённых эдс на зондах и щупах.

Лит. см. при ст. Электрическое поле.

      Предметный указатель      >>   

www.femto.com.ua


Каталог товаров
    .