интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Номинальное напряжение переменного тока. Номинальные напряжения электрической сети. Номинальное напряжение как найти


6.5. Выбор номинального напряжения

Номинальное напряжение электрической сети сущест- венно влияет как на ее технико-экономические показатели, так и на технические характеристики. Так, например, при повышении номинального напряжения снижаются потери мощности и электроэнергии, т. е. снижаются эксплуатаци- онные расходы, уменьшаются сечения проводов и затраты металла на сооружение линий, растут предельные мощно- сти, передаваемые по линиям, облегчается будущее разви- тие сети, но увеличиваются капитальные вложения на со- оружение сети. Сеть меньшего номинального напряжения требует, наоборот, меньших капитальных затрат, но приво- дит к большим эксплуатационным расходам из-за роста потерь мощности и электроэнергии и, кроме того, обладает меньшей пропускной способностью. Из сказанного очевид- на важность правильного выбора номинального напряже- ния сети при ее проектировании.

Номинальные напряжения электрических сетей в СССР (табл. 6.4) установлены действующим стандартом (ГОСТ 721–77*).

Таблица 6.4. Номинальные междуфазные напряжения, кВ, для напряжений выше 1 кВ по ГОСТ 721–77* (СТ СЭВ 779–77)

Сети и приемники электроэнергии

Генераторы и син- хронные компенса- торы

Трансформаторы и автотрансформаторы без РПН

Трансформаторы и автотрансформаторы с РПН

Наибольшее рабочее напряжение электро- оборудования

Первич- ные обмотки

Вторич- ные обмотки

Первич- ные обмотки

Вторич- ные обмотки

(3)

(3,15)

(3)/(3,15)

(3,15) и (3.3)

-

(3,15)

(3,6)

6

6,3

6/6,3

6,3 и 6,6

6/6,3

6,3 и 6,6

7,2

10

10,5

10/10,5

10,5 и 11

10/10,5

10,5 и 11

12

20

21

20

22

20/21

22

24

35

-

35

38,5

35 и 36,75

38,5

40,5

110

-

-

121

110 и 115

115 и 121

126

(150)

-

-

(165)

(158)

(158)

(172)

220

-

-

242

220 и 230

230 и 242

252

330

-

330

347

330

330

363

500

-

500

525

500

-

525

750

-

750

787

750

-

787

1150

-

-

-

1150

-

1200

Примечания: 1. Номинальные напряжения, указанные в скобках, для вновь проектируемых сетей не рекомендуются.

2. В знаменателе приведены напряжения для трансформаторов и автотранс- форматоров, присоединяемых непосредственно к шинам генераторного напряже- ния электрических станций или к выводам генераторов.

Экономически целесообразное номинальное напряже- ние зависит от многих факторов: мощности нагрузок, уда- ленности их от источников питания, их расположения отно- сительно друг друга, от выбранной конфигурации электри- ческой сети, способов регулирования напряжения и др. Ориентировочное значение можно определить по зна- чению передаваемой мощности и расстоянию, на которое она передается. Напряжение выбирают, исходя из получен- ного распределения потоков мощности и протяженности участков сети. Чем больше передаваемая по линии мощ- ность и расстояние, на которое она передается, тем выше по техническим и экономическим нормам должно быть но- минальное напряжение электропередачи. Номинальное на- пряжение можно приближенно оценить одним из следую- щих способов: а) по кривым на рис. 6.5, а и б; б) по эмпи- рическим выражениям; в) по табл. 6.5 пропускной способности и дальности передачи линий [10].

Кривые на рис. 6.5 характеризуют экономически целе- сообразные области применения электрических сетей раз-

Рис. 6.5. Области применения электрических сетей разных номинальных напряжений:

а ,б–границы равноэкономичности: 1–1150 и 500 кВ. 2–500 и 220 кВ, 3–220 и 110 кВ. 4–110 и 35 кВ, 5–750 и 330 кВ, 6–330 и 150 кВ, 7–150 и 35 кВ: в–схема сети

ных номинальных напряжений. Это обобщающие зависи- мости, построенные в результате сравнения приведенных затрат для многочисленных вариантов сети с разными и . Кривые на рис. 6.5 ориентировочно характеризу- ют границы равноэкономичности для систем напряжений 110–220–500 кВ (кривые 1– 4) и 110(150)–330–750 кВ (кривые 5– 7). Например, точки кривой 2 соответствуют значениям , для которых равноэкономичны варианты сети при =220 и 500 кВ. Ниже кривой 2 расположена область значений , для которых экономичнее = =220 кВ, выше кривой 2 –область , для которых экономичнее 500 кВ.

Номинальное напряжение можно предварительно определить по известным передаваемой мощности Р, МВт, и длине линии , км, по формуле Стилла:

. (6.23)

Эта формула приемлема для линий длиной до 250 км и передаваемых мощностей, не превышающих 60 МВт. В случае больших мощностей, передаваемых на расстояние до 1000 км, используется формула А. М. Залесского:

. (6.24)

Г. А. Илларионов предложил для предварительного оп- ределения следующее выражение:

. (6.25)

В отличие от эмпирических выражений (6.23), (6.24) формула (6.25) дает удовлетворительные результаты для всей шкалы номинальных напряжений от 35 до 1150 кВ.

Таблица 6.5 характеризует пропускную способность и дальность передачи линий 110–1150 кВ. В таблице уч- тены наиболее часто применяемые сечения проводов, прак- тика их выбора и фактическая средняя длина воздушных линий. Отметим, что номинальное напряжение, равное 400 кВ не стандартное и мало распространенное. В столб- це 4 приведены значения передаваемой мощности, опреде- ленные на основании опыта проектирования для сечений проводов, указанных в столбце 2. Из табл. 6.5 видно, что передаваемая мощность, определенная на основании опыта проектирования, для средних сечений проводов близка к на- туральной мощности электропередачи или совпадает с ней.

При увеличении передаваемой мощности экономически целесообразная дальность передачи уменьшается (рис. 6.5). Предельная дальность передачи для данного соответ- ствует наименьшей передаваемой мощности. Фактическая дальность передачи для ВЛ всех напряжений, как прави- ло, значительно ниже предельной. В столбце 6 табл. 6.5 Таблица 6.5. Пропускная способность и дальность передачи линий 110–1150 кВ

Напряже- ние линии, кВ

Сечение провода, мм2

Передаваемая мощность, МВт

Длина линии элект-ропередачи, км

натураль-ная

При плотнос- ти тока

1,1 А/ мм2*

предель-ная при

КПД=0,9

средняя (между двумя со-седними

ПС)

1

2

3

4

5

6

110

150

70–240

150-300

30

60

13–45

38–77

80

250

25

20

220

330

400

500

750

1150

240–400

2х240–2х400

3х300–3х400

3х300–3х500

5х300–5х400

8х300– 8х500

135

360

500

900

2100

5200

90–150

270–450

620–820

770–1300

1500–2000

4000–6000

400

700

1000

1200

2200

3000

100

130

180

280

300

-

* Для ВЛ 750–1150 кВ при плотности тока 0.85 А/мм2.

приведены средние длины линий электропередачи, т. е. среднее расстояние между двумя подстанциями. Напри- мер, средняя длина линии 500 кВ составляет 280 км. Сред- няя дальность передачи отличается от средней длины ли- нии и определяет среднее расстояние, на которое передается электроэнергия на данном напряжении. Среднюю даль- ность передачи можно оценить как половину средней дли- ны линии соседнего высшего для данной шкалы класса напряжения, которая характеризует расстояние между центрами питания рассматриваемой сети. Например, сред- няя дальность электропередачи по сети 220 кВ равна поло- вине средней длины линии 500 кВ, т.е. 140 км, [10].

Варианты проектируемой электрической сети или от- дельные ее участки могут иметь разные номинальные на- пряжения. Обычно сначала определяют номинальное на- пряжение головных, более загруженных участков. Участ- ки кольцевой сети, как правило, необходимо выполнять на одно номинальное напряжение.

Найденные по рис. 6.5, табл. 6.5 либо по одной из фор- мул (6.23) – (6.25) напряжения округляются до ближай- шего номинального. Все эти три способа позволяют опре- делить по передаваемой мощности и расстоянию, на кото- рое она передается, лишь ориентировочное значение . После определения ориентировочного значения надо для каждой конкретной сети наметить ограниченное число вариантов различных номинальных напряжений для их по- следующего технико-экономического сравнения. В резуль- тате сравнения приведенных затрат (см. § 6.3) для этих вариантов сети при различных номинальных напряжениях можно обоснованно выбрать номинальное напряжение всей сети или отдельных ее участков. При разнице приведен- ных затрат менее 5 % надо выбирать вариант использова- ния более высокого .

Пример 6.2. На рис. 6.5, в показана схема варианта вновь проекти- руемой сети, где длины линий указаны в километрах. Нагрузки подстан- ций равны: МВт, =17 МВт, =36 МВт, 39 МВт, =41 МВт. Определим ориентировочное значение номинального напря- жения сети.

Найдем по первому закону Кирхгофа мощности в линиях, МВт:

= 41 + 17 + 22 == 80;

=41+17=58; =41; = 36 + 39 = 75;

= 39.

Номинальное напряжение можно предварительно определить по эмпирическому выражению (6.23). Напряжения, кВ, определенные по этому выражению, для линий сети равны

Ближайшим стандартным напряжением является 150 кВ (см. табл. 6.4).

По кривым на рис. 6.5 получим, что значения и попадают в об- ласть выше кривой 7, для которой ориентировочное номинальное напря- жение сети 150 кВ. По табл. 6.5 также получим =150 кВ для сети на рис. 6.5,е. Таким образом, эмпирическое выражение (6.23), кривые на рис. 6.5 и табл. 6.5 дают одну и ту же приближенную оценку значе- ния . Однако номинальное напряжение 150 кВ не рекомендуется применять во вновь проектируемых сетях. Поэтому надо сравнить по приведенным затратам варианты использования сетей с номинальным напряжением 110 и 220 кВ.

studfiles.net

Номинальные напряжения электрических сетей. Номинальные напряжения электрической сети

Каждая электрическая сеть характеризуется номинальным напряжением,на которое рассчитывается её оборудование. Номинальное напряжение обеспечивает нормальную работу электропотребителей (ЭП), должно давать наибольший экономический эффект и определяется передаваемой активной мощностью и длиной линии электропередачи.

ГОСТ 21128-75 введена шкала номинальных междуфазных напряжений электрических сетей и приёмников до 1000 В переменного тока: 220,380, 660 В.

ГОСТ 721-77 введена шкала номинальных междуфазных напряжений электрических сетей переменного тока свыше 1000 В:

0,38, 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750, 1150.

В табл. 2.1. представлена классификация электрических сетей, где показано деление на сети низшего (НН), среднего (СН), высшего (ВН), сверхвысокого (СВН) и ультравысокого (УВН) напряжения.

Нагрузка ЭП не остаётся постоянной, а меняется в зависимости от из­менения режима работы (например, в соответствии с ходом технологическо­го процесса производства), поэтому напряжение в узлах сети постоянно от­клоняется от номинального значения, что снижает качество электроэнергии и влечёт за собой убытки. Исследования показали, что для большинства электроприёмников устойчивая зона ограничена значениями отклонений напряжения

Исследования показали, что для большинства элек­троприёмников устойчивая зона ограничена значениями отклонений напря-

Как правило, напряжение в начале линии больше напряжения в конце и отличается на величину потерь напряжения

Для приближения напряжения потребителя U 2 к номинальному напря­жению электрической сети и обеспечения качественной энергией номинальные напряжения генераторов напряжения сети установлены ГОСТом на 5 % больше номинального

Так как первичные обмотки повышающих трансформаторов непосред­ственно должны быть одинаковыми подключены к зажимам генераторов, то их номинальные напряжения

Первичные обмотки понижающих трансформаторов являются потреби­телями по отношению к сетям, от которых они питаются, поэтому должно выполняться условие

В последнее время промышленность выпускает понижающие транс­форматоры напряжением 110-220 кВ с напряжением первичной обмотки на 5 % больше номинального напряжения сети

Вторичные обмотки как понижающих, так и повышающих трансфор­маторов являются источниками по отношению к питаемой ими сети. Номи­нальные напряжения вторичных обмоток имеют значения на 5-10 % больше номинального напряжения этой сети

Это делается для того, чтобы компенсировать падение напряжения в питае­мой сети. На рис. 2.1 представлена эпюра напряжения, которая наглядно ил­люстрирует вышесказанное.

2.2. Режимы нейтралей электрических сетей

Нулевая точка (нейтраль) трехфазных электрических сетей может быть заземлена наглухо (рис. 2.2, а), заземлена через высокоомное сопротивление (рис. 2.2, б) или же изолирована от земли (рис. 2.2, в).

Режим нейтрали в электрических сетях до 1000 В определяется безо­пасностью обслуживания сетей, а в сетях выше 1000 В - бесперебойностью электроснабжения, экономичностью и надежностью работы электроустано­вок. Правилами устройства электроустановок (ПУЭ) работа электроустано­вок напряжением до 1000 В допускается как с глухозаземленной, так и с изо­лированной нейтралью.

Конец работы -

Эта тема принадлежит разделу:

ЛЕКЦИЯ 1. ОБЩАЯ ХАРАКТЕРИСТИКА СИСТЕМ ПЕРЕДАЧИ И РАСПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ. МОДЕЛИРОВАНИЕ ЭЛЕМЕНТОВ ЭЛЕКТРИЧЕСКИХ СИСТЕМ

План... Основные понятия и определения...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Характеристика системы передачи электрической энергии Основу системы передачи электрической энергии от электрических станций, её производящих, до крупных районов электропотребления или распределительных узлов ЭЭС составляют развитые се

Характеристика систем распределения электрической энергии Назначение распределительных сетей - доставка электроэнергии непосредственно потребителям напряжением 6-10 кВ, распределение электроэнергии между подстанциями 6-110/0,38-35 кВ район

Система передачи и распределения электрической энергии В п. 1.3 приведена характеристика систем передачи и распределения ЭЭ. Рассмотрим взаимосвязи этих систем на примере. В качестве примера рассмотрим упрощённую принципиальную

Режим нейтрали сетей до 1000 В с глухозаземленной нейтралью Наиболее распространенные - четырёхпроводные сети трехфазного то­ка напряжением 380/220, 220/127, 660/380 (рис. 2.3) (числитель соответствует линейн

levevg.ru

Среднее номинальное напряжение - Большая Энциклопедия Нефти и Газа, статья, страница 3

Среднее номинальное напряжение

Cтраница 3

Приняв для каждой электрической ступени среднее номинальное напряжение, считают, что номинальные напряжения всех элементов, включенных на данной ступени, равны ее среднему номинальному напряжению. Это допущение для некоторых элементов установки может не соответствовать действительности, так как их действительные номинальные напряжения могут несколько отличаться от указанных средних значений. Однако ошибка в вычислении токов короткого замыкания получается незначительной.  [31]

Расчет ведется в системе относительных единиц, поэтому надо дринять базовые условия: за базовую мощность принимаем номинальную мощность системы, аа базовое напряжение - среднее номинальное напряжение ступени к.  [32]

Из данных табл. 4.17 следует, что при деструктирующем действии среды ( бутилкаучук - HNO3), не вызывающем образования трещин, разрушение происходит под действием среднего номинального напряжения и расчетные данные совпадают с экспериментальными.  [34]

SH - номинальная мощность генератора, трансформатора МВ-А; SQ - базисная мощность, МВ-А; 1 - базисный ток при Sg, кА; t / cp - среднее номинальное напряжение, кВ; / н - номинальный ток реактора или ветви сдвоенного реактора, кА; х - удельное сопротивление линии, Ом / км; I - длина линии, км.  [35]

Очевидно, что парные промежуточные пластины имеют бесконечно большое множество сочетаний величин зазоров Z - и Zy. Поэтому при подсчете средних номинальных напряжений был выбран наиболее неблагоприятный случай, когда Z; 0, a Z / - var.  [37]

Предизбиратель в этом случае обычно называется реверсором. Главная часть обмотки рассчитывается на среднее номинальное напряжение, а регулировочная - на половину диапазона регулирования.  [38]

Наиболее удаленную от расчетной точки КЗ часть ЭЭС обычно представляют в виде одного источника энергии с неизменной по амплитуде ЭДС и результирующим эквивалентным сопротивлением. ЭДС этого источника принимают равной среднему номинальному напряжению сети, связывающей удаленную и остальную части ЭЭС, а его результирующее эквивалентное сопротивление определяют, исходя из известного тока от эквиваленти-руемой части системы при КЗ в какой-нибудь узловой точке указанной сети; при отсутствии данных о таком токе результирующее эквивалентное сопротивление оценивают, исходя из параметров выключателей, установленных на какой-нибудь узловой подстанции упомянутой сети.  [39]

При динамической нагрузке периодически изменяющимися силами или моментами проверяется прочность вала в опасных сечениях ( ослабленных конструктивными надрезами) с учетом усталости. По значениям моментов М и Мк определяется среднее номинальное напряжение на изгиб ацт и на кручение ткт и амплитуды этих напряжений аца и гка.  [40]

При динамической нагрузке периодически изменяющимися силами или моментами проверяется прочность вала в опасных сечениях ( ослабленных конструктивными надрезами) с учетом усталости. По значениям моментов М и Мк определяется среднее номинальное напряжение на изгиб аит и на кручение ткт и амплитуды этих напряжений аиа и тка.  [41]

Реактивное сопротивление обратной последовательности обобщенной нагрузки зависит от ее характера. Это сопротивление отнесено к полной рабочей мощности нагрузки и среднему номинальному напряжению той ступени, к которой она присоединена. Сопротивление нулевой последовательности обобщенной нагрузки определяется схемой соединения и трансформаторами, входящими в ее состав. Это сопротивление может быть получено только эквивалентированием распределительной сети нагрузки.  [43]

Для каждой ступени напряжений расчетной схемы надлежит принимать следующие величины средних номинальных линейных напряжений: 230; 115; 37; 20; 10 5; 6 3; 3 15; 0 69; 0 525; 0 4 кв, приближенно считая, что все элементы расчетной схемы, кроме реакторов, имеют соответствующие номинальные напряжения по указанной шкале. Таким образом, линейные коэффициенты трансформации трансформаторов определяются как соотношения средних номинальных напряжений соответствующих ступеней.  [44]

Дуга образуется в большом объеме масла, в котором она может свободно развиваться. Этот способ применяется в выключателях с простым разрывом дуги под маслом для средних номинальных напряжений и малых мощностей отключения.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru

Номинальные напряжения электрических сетей | Электрика,Сантехника

class="eliadunit">

 

Напряжения электрических сетей

Важнейшей характеристикой любой электрической сети является её номинальное напряжение (U ном.). Именно на это напряжение производится расчет всего оборудования ЭС. Определяется номинальное напряжение электросети переправляемой активной мощностью и протяженностью ЛЭП.

Согласно стандартам принята линейка номинальных межфазных напряжений ЭС (электросети) и ЭП (электроприёмников) до 1000 Вольт, а именно: 220 Вольт, 380 Вольт, 660 Вольт. (гост 21128_75).

Для ЭС и ЭП переменного тока выше 1000 Вольт, установлена следующая линейка межфазных напряжений: 380 В, 3000 В, 6000 В, 10000 В, 20000 В, 35000 В, 110000 В, 150 000 В, 220 000 В, 330 000 В, 500 000 В, 750000 В, 1150000 В. (гост 721_77)

Классы электросетей по напряжению

В таблице видим классы электросетей по напряжению. Как видим сети делятся на: электросети низкого (НН), среднего (СН), высокого (ВН), сверх высокого (СВН), ультра высокого (УВН) напряжений.

tabliza 1

Условия нормальной работы электрической сети

Для стабильной работы электроприёмников, должно соблюдаться следующее правило равенства напряжений: номинальное напряжение электроприемников должно равняться номинальному напряжению электросети. Uном.эп =Uном.сети. Но обеспечить такое равенство, при котором не будет, ни потерь, ни убытков на практике не возможно.

Нагрузка электроприёмников не может быть постоянной, она меняется и отклоняется от номинального значения. Принята допустимая зона отклонения напряжения электроприёмника в ±5%.

Кроме этого, протяженность ЛЭП предполагает потерю напряжения на линии, а это значит, что напряжение у приёмника будет меньше, напряжения у источника. Разница напряжений и будет величина потерь.  Это учитывается при проектировании и по ГОСТ, напряжения (ном.) вырабатываемые генераторами, должны быть на 5% больше необходимого напряжения сети.

class="eliadunit">

Напряжения на обмотках трансформаторов ЭС

Повышающие трансформаторы на первичных обмотках должны иметь напряжение равное напряжению генераторов. Напомню, повышающие трансформаторы стоят сразу после генераторов электроэнергии на ТЭЦ или ГЭС.

Первичные обмотки понижающих трансформаторов по отношению к сети являются потребителями, поэтому напряжение на них должно равняться номинальному напряжению сети.  

Посмотрим на вторичные обмотки трансформаторов. Они, у обоих типов трансформаторов, являются источником напряжения для питаемой электросети. Поэтому, напряжение вторичных обмоток трансформаторов должно быть на 5%, а иногда и на 10% больше нужного напряжения  сети.

Все эти 5-10 % нужны для компенсации падения напряжений в электрической сети. Иллюстрация компенсации и падения напряжения смотрим на эпюре напряжений.

ehpyura naprjazhenij

Вводы

Суммируя всё вышесказанное, делаем выводы:

  • U ген. должно быть на 5% больше U ном. сети;
  • U первичных обмоток повышающих трансф-ов должно совпадать с напряжением генераторов, а следовательно должно быть на 5% больше U ном. сети;
  • U вторичных обмоток повышающих трансф-ов должно быть на 5-10% быть больше U ном. сети;
  • U первичных обмоток понижающих трансф-ов должно равняться U ном. сети;
  • U вторичных обмоток понижающих трансф-ов должно быть на 5-10% быть больше U ном. сети.

©Elesant.ru

Другие статьи раздела: Электрические сети

 

 

class="eliadunit">

elesant.ru

Номинальное напряжение переменного тока. Номинальные напряжения электрической сети

Номинальные напряжения электрических сетей общего назначения переменного тока в РФ установлены действующим стандартом (табл. 4.1). Таблица 4.1

Международная электротехническая комиссия (МЭК) рекомендует стандартные напряжения выше 1000 В для систем с частотой 50 Гц, указанные в табл. 4.2. Таблица 4.2

Известен ряд попыток определить экономические зоны применения электропередач разных напряжений. Удовлетворительные результаты для всей шкалы номинальных напряжений в диапазоне от 35 до 1150 кВ дает эмпирическая формула, предложенная Г. А. Илларионовым:

где L - длина линии, км, P - передаваемая мощность, МВт. В России получили распространение две системы напряжений электрических сетей переменного тока (110 кВ и выше): 110-330-750 кВ - в ОЭС Северо-Запада и частично Центра - и 110-220-500 кВ - в ОЭС центральных и восточных регионов страны (см. также п. 1.2). Для этих ОЭС в качестве следующей ступени принято напряжение 1150 кВ, введенное в ГОСТ в 1977 г. Ряд построенных участков электропередачи 1150 кВ временно работают на напряжении 500 кВ. На нынешнем этапе развития ЕЭС России роль системообразующих сетей выполняют сети 330, 500, 750, в ряде энергосистем - 220 кВ. Первой ступенью распределительных сетей общего пользования являются сети 220, 330 и частично 500 кВ, второй ступенью - 110 и 220 кВ; затем электроэнергия распределяется по сети электроснабжения отдельных потребителей (см. пп. 4.5–4.9). Условность деления сетей на системообразующие и распределительные по номинальному напряжению заключается в том, что по мере роста плотности нагрузок, мощности электростанций и охвата территории электрическими сетями увеличивается напряжение распределительной сети. Это означает, что сети, выполняющие функции системообразующих, с появлением в энергосистемах сетей более высокого напряжения постепенно «передают» им эти функции, превращаясь в распределительные. Распределительная сеть общего назначения всегда строится по ступенчатому принципу путем последовательного «наложения» сетей нескольких напряжений. Появление следующей ступени напряжения связано с ростом мощности электростанций и целесообразностью ее выдачи на более высоком напряжении. Превращение сети в распределительную приводит к сокращению длины отдельных линий за счет присоединения к сети новых ПС, а также к изменению значений и направлений потоков мощности по линиям. При существующих плотностях электрических нагрузок и развитой сети 500 кВ отказ от классической шкалы номинальных напряжений с шагом около двух (500/220/110 кВ) и постепенным переходом к шагу шкалы около четырех (500/110 кВ) является техническии экономически обоснованным решением. Такая тенденция подтверждается опытом передовых в техническом отношении зарубежных стран, когда сети промежуточного напряжения (220–275 кВ) ограничиваются в своем развитии. Наиболее последовательно такая техническая политика проводится в энергосистемах Великобритании, Италии, Германии и других стран. Так, в Великобритании все шире используется трансформация 400/132 кВ (консервируется сеть 275 кВ), в Германии - 380/110 кВ (ограничивается в развитии сеть 220 кВ), в Италии - 380/132 кВ (консервируется сеть 150 кВ) и т. д. Наибольшее распространение в качестве распределительных получили сети 110 кВ как в ОЭС с системой напряжений 220–500 кВ, так и 330–750 кВ. Удельный вес линий 110 кВ составляет около 70 % общей протяженности ВЛ 110 кВ и выше. На этом напряжении осуществляется электроснабжение промышленных предприятий и энергоузлов, городов, электрификация железнодорожного и трубопроводного транспорта; они являются верхней ступенью распределения электроэнергии в сельской местности. Напряжение 150 кВ получило развитие только в Кольской энергосистеме и для использования в других регионах страны не рекомендуется. Напряжения 6-10–20-35 кВ предназначены для распределительных сетей в городах, сельской местности и на промышленных предприятиях. Преимущественное распространение имеет напряжение 10 кВ; сети 6 кВ сохраняют значительный удельный вес по протяженности, но, как правило, не развиваются и по возможности заменяются сетями 10 кВ. К этому классу примыкает имеющееся в ГОСТ напряжение 20 кВ, получившее ограниченное распространение (в одном из центральных районов г. Москвы). Напряжение 35 кВ используется для создания ЦП сетей 10 кВ в сельской местности (реже используется трансформация 35/ 0,4 кВ).

Каждая электрическая сеть характеризуется номинальным напряжением,на которое рассчитывается её оборудование. Номинальное напряжение обеспечивает нормальную работу электропотребителей (ЭП), должно давать наибольший экономический эффект и определяется передаваемой активной мощностью и длиной линии электропередачи.

ГОСТ 21128-75 введена шкала номинальных междуфазных напряжений электрических сетей и приёмников до 1000 В переменного тока: 220,380, 660 В.

ГОСТ 721-77 введена шкала номинальных междуфазных напряжений электрических сетей переменного тока свыше 1000 В:

0,38, 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750, 1150.

В табл. 2.1. представлена классификация электрических сетей, где показано деление на сети низшего (НН), среднего (СН), вы

levevg.ru

Номинальное напряжение - электрическая сеть

Номинальное напряжение - электрическая сеть

Cтраница 1

Номинальное напряжение электрической сети существенно влияет на ее технико-экономические показатели. При повышении номинального напряжения снижаются потери мощности и электроэнергии, т.е. снижаются эксплуатационные расходы, уменьшаются сечения проводов и затраты на сооружение линии, растут предельные мощности, передаваемые по линиям, облегчается будущее развитие сети, но увеличиваются капитальные вложения на сооружение сети.  [1]

Номинальные напряжения электрических сетей и присоединяемых к ним источников питания и приемников потребления электроэнергии установлены Государственным общесоюзным стандартом.  [2]

Номинальные напряжения электрических сетей и присоединяемых к ним источников питания и приемников электроэнергии установлены Государственным общесоюзным стандартом.  [3]

Номинальные напряжения электрических сетей, генераторов, трансформаторов, приемников электрической энергии и наивысшие рабочие напряжения, длительно допустимые по условиям работы изоляции, установлены ГОСТ 721 - 62 ( срок введения - 1 / 1 1963 г.) для электросетей постоянного и переменного тока частоты 50 гц.  [4]

Номинальное напряжение электрической сети существенно влияет как на ее технико-экономические показатели, так и на технические характеристики. Так, например, при повышении номинального напряжения снижаются потери мощности и электроэнергии, т.е. снижаются эксплуатационные расходы, уменьшаются сечения проводов и затраты металла на сооружение линий, растут предельные мощности, передаваемые по линиям, облегчается будущее развитие сети, но увеличиваются капитальные вложения на сооружение сети. Сеть меньшего номинального напряжения требует, наоборот, меньших капитальных затрат, но приводит к большим эксплуатационным расходам из-за роста потерь мощности и злектрознергии и, кроме того, обладает меньшей пропускной способностью. Из сказанного очевидна важность правильного выбора номинального напряжения сети при ее проектировании.  [5]

Номинальным напряжением электрических сетей, приемников электрической энергии, генераторов и трансформаторов называется то напряжение, при котором они предназначены длительно работать.  [6]

Время зажигания ламп при номинальном напряжении электрической сети должно составлять не более 10 с, а время выхода ламп на предельные характеристики - не более 15 мин.  [7]

ГОСТ 721 - 62 устанавливает номинальные напряжения электрических сетей постоянного и переменного тока частотой 50 Гц, генераторов, трансформаторов, приемников электрической энергии и наивысшие рабочие напряжения, длительно допустимые по условиям работы изоляции.  [8]

В ГОСТ 1516 - 68 указаны номинальные напряжения электрических сетей ( классы напряжения) и наибольшие рабочие напряжения электрооборудования.  [9]

Класс напряжения обмотки трансформатора совпадает с номинальным напряжением электрической сети, в которую обмотка включается. Классом напряжения трансформатора считают класс напряжения обмотки ВН. Каждому классу напряжения трансформатора соответствуют: номинальное рабочее напряжение, длительно допустимое максимальное рабочее напряжение и определенные испытательные переменные напряжения при 50 Гц и импульсное.  [10]

ГОСТ устанавливается на 5 или 10 и выше соответствующего номинального напряжения электрической сети.  [12]

Номинальные напряжения приемников электрической энергии численно равны номинальным напряжениям электрических сетей. Поясним, что понимается под этим названием.  [13]

Конструкция, тип и исполнение светильников должны соответствовать номинальному напряжению электрической сети и условиям окружающей среды. Ниже приведены допустимые напряжения для питания различных светильников.  [14]

Эта величина, соответствующая номинальному напряжению приемников электроэнергии, и называется номинальным напряжением электрической сети.  [15]

Страницы:      1    2

www.ngpedia.ru

Номинальное напряжение Википедия

У этого термина существуют и другие значения, см. Напряжение.
Эта статья или раздел описывает ситуацию применительно лишь к одному региону (Россия), возможно, нарушая при этом правило о взвешенности изложения.

Вы можете помочь Википедии, добавив информацию для других стран и регионов.

Номинальное напряжение — это базисное напряжение из стандартизированного ряда напряжений, определяющих уровень изоляции сети и электрооборудования.

Действительные напряжения в различных точках системы могут несколько отличаться от номинального, однако они не должны превышать наибольшие рабочие напряжения, установленные для продолжительной работы.

Номинальным напряжением у источников и приёмников электроэнергии (генераторов, трансформаторов) называется такое напряжение, на которое они рассчитаны в условиях нормальной работы. Номинальные напряжения электрических сетей и присоединяемых к ним источников и приёмников электрической энергии устанавливаются ГОСТом.

Стандартизированный ряд напряжений

Установки до 1000 В

Ряд номинальных напряжений трехфазных четырехпроводных или трехпроводных систем переменного тока 50 Гц, В[1]

Установки свыше 1000 ВРяд номинальных напряжений (наибольших рабочих напряжений) для сети и приёмники электрической энергии, кВ[2]Номинальноенапряжение Наибольшеерабочеенапряжение
3 3,6
6 7,2
10 12
15 17,5
20 24
35 40,5
110 126
150 172
220 252
330 363
400 420
500 525
750 787
1150 1200

Номинальные напряжения для электрических генераторов, синхронных компенсаторов, вторичных обмоток силовых трансформаторов приняты на 5-10 % выше номинальных напряжений соответствующих сетей, чем учитываются потери напряжения при протекании тока по линиям.

Примечания

  1. ↑ ГОСТ 29322-2014
  2. ↑ ГОСТ 721-77

wikiredia.ru


Каталог товаров
    .