интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

2. Основные параметры полевого транзистора. Напряжение отсечки полевого транзистора


теория и практика — Сайт инженера Задорожного С.М.

Интерес к статическим параметрам полевого транзистора с p-n-переходом на затворе, таким как начальный ток стока и напряжение отсечки, проявляется чаще всего инженерами и радиолюбителями либо как к приводимым в справочниках характеристикам для сравнения транзисторов различных типов, либо в связи с подбором близких по параметрам транзисторов для дифференциального каскада. В настоящей статье речь пойдёт об использовании статических параметров при расчёте схем на полевых транзисторах.

Определения

На рис.1. приведено условное графическое обозначение полевого транзистора с n-каналом и управляющим p-n-переходом на затворе:

Рис.1 Условное графическое обозначение полевого с n-каналом и p-n-переходом на затворе.

Обозначение его выводов соответственно следующее:

G (Gate) — затвор;S (Source) — исток;D (Drain) — сток.

Основными статическими параметрами полевого транзистора с p-n-переходом на затворе являются начальный ток стока и напряжение отсечки. Начальный ток стока полевого транзистора определяется как ток, протекающий через его канал при заданном постоянном напряжении сток-исток и равном нулю напряжении затвор-исток. В англоязычной технической документации этот параметр обозначают как IDSS.

Напряжение отсечки — это такое пороговое значение напряжения затвор-исток, по достижении которого ток через канал полевого транзистора уже не изменяется и практически равен нулю. Его также измеряют при фиксированном значении напряжения сток-исток и в англоязычной документации обозначают как VGS(off) или реже как Vp.

В качестве усилительного элемента полевой транзистор работает при достаточно большом напряжении сток-исток VDS — на графике семейства выходных характеристик транзистора это значение напряжения расположено в области насыщения. Это значит, что величина тока через канал полевого транзистора, — ток стока ID, — зависит в основном лишь от величины напряжения затвор-исток VGS. Эту зависимость тока стока полевого транзистора ID от входного напряжения затвор-исток VGS описывает так называемая передаточная характеристика транзистора. Для транзисторов с управляющим p-n-переходом её обычно аппроксимируют следующим выражением:

(1)

Таким образом ток стока полевого транзистора с изменением напряжения на его затворе изменяется по квадратичному закону. Графически эту зависимость иллюстрирует приведенная на рис.2 диаграмма:

Рис.2. Пример аппроксимации зависимости тока стока ID от напряжения затвор-исток VGS квадратичной функцией при начальном токе стока IDSS = 9,5 mA и напряжении отсечки VGS(off) = -2,8 V.

В таком изменении тока стока ID с изменением напряжения затвор-исток VGS и проявляются усилительные свойства полевого транзистора. Количественно эти свойства характеризует такой его параметр как крутизна, определяемая как:

(2)

Понятно, что значение крутизны, выраженное через статические параметры полевого транзистора IDSS и VGS(off), можно получить дифференцируя выражение для передаточной характеристики (1) по dVGS:

То есть для транзистора с известными значениями начального тока стока IDSS и напряжения отсечки VGS(off) при заданном напряжении затвор-исток VGS крутизну передаточной характеристики можно рассчитать по формуле:

(3)

или, учитиывая равенство:

получаем еще одно выражение для крутизны при заданном токе стока ID:

(4)

Установка рабочей точки

На рис.3 приведены основные схемы включения полевого транзистора с управляющим p-n-переходом на затворе:

а) усилительный каскад с общим истоком;б) истоковый повторитель;в) двухполюсник — стабилизатор тока.

а)

б)

в)

Рис.3 Основные схемы включения полевого транзистора с управляющим p-n-переходом на затворе.

Во всех этих схемах для установки требуемого значения тока стока ID служит включенный в цепь истока резистор RS. Потенциал затвора полевого транзистора равен потенциалу нижнего по схеме вывода этого резистора, поэтому ток стока ID, напряжение затвор-исток VGS и сопротивление RS элементарно связаны между собой законом Ома:

(5)

Расчет сопротивления RS для установки требуемого тока стока ID для полевого транзистора с известными значеними начального тока стока IDSS и напряжения отсечки VGS(off) также можно произвести на основании выражения для передаточной характеристики (1):

откуда получаем равенство:

(6)

Разделим обе части равенства (6) на RS и, с учётом выражения (5), получим:

Соответственно выражение для значения сопротивления RS примет следующий вид:

(7)

Теория и практика

Исходя из приведенных математических выкладок логично предположить, что, измерив значения начального тока стока IDSS и напряжения отсечки VGS(off) — основных статических параметров полевого транзистора с управляющим p-n-переходом на затворе, — можно определить крутизну передаточной характеристики транзистора в заданной рабочей точке или установить рабочую точку транзистора так, чтобы получить требуемое значение крутизны, рассчитать параметры других элементов схемы, и пр. Но практические результаты чаще всего оказываются далеки от расчетных.

Такое несоответствие теории и практики отмечается и в ряде авторитетных публикаций на тему работы полевого транзистора. Так, например, в [1] один и тот же абзац содержит и утверждение о том, что передаточная характеристика полевого транзистора «достаточно точно определяется квадратичной зависимостью» в соответствии с формулой (1), и оговорку, что на практике с помощью прибора зафиксировать величину соответствующего напряжения отсечки VGS(off) очень трудно, и поэтому обычно измеряют напряжение затвор-исток при ID = 0,1·IDSS, а затем, подставив эти значения в формулу (1), вычисляют уже соответствующее ей значение напряжения отсечки по формуле:

(8)

В [2] также отмечается, что измеренное значение напряжения отсечки VGS(off), при котором величина тока стока ID становится нулевой или равной нескольким микроамперам, «не всегда будет удовлетворять равенству (1), поэтому удобнее вычислять величину как функцию VGS и экстраполировать полученную прямую линию до значения тока ID=0″.

Поскольку речь идёт о наиболее точном определении передаточной характеристики полевого транзистора с управляющим p-n-переходом на затворе, то величина напряжения отсечки VGS(off) конкретного транзистора важна лишь как параметр в выражении (1), при котором это выражение наиболее соответствует реальной передаточной характеристике этого транзистора. То же самое можно сказать и о величине начального тока стока IDSS. Таким образом может оказаться, что прямое измерение статических параметров полевого транзистора особого практического смысла не имеет, поскольку эти параметры не описывают с достаточной точностью передаточную характеристику транзистора.

На практике при проектировании схем усилительных каскадов на полевых транзисторах с управляющим p-n-переходом на затворе режим их работы никогда не выбирают таким, чтобы напряжение затвор-исток VGS было близким к напряжению отсечки VGS(off) или к нулю. Следовательно, нет никакой необходимости описывать передаточную характеристику (1) на всём её протяжении от ID=0 до ID=IDSS, достаточно сделать это для некоего рабочего участка от ID1=ID(VGS1) до ID2=ID(VGS2). Для этого решим следующую задачу.

Пусть путём измерения получены значения тока стока ID1 и ID2 соответственно для двух отстоящих друг от друга значений напряжения затвор-исток VGS1 и VGS2:

(9)

Решив систему уравнений (9) относительно значений начального тока стока и напряжения отсечки мы получим более соответствующие реальной передаточной характеристике параметры формулы (1).

Сначала определим значение . Для этого разделим второе уравнение на первое чтобы сократилось и получилось одно уравнение с одним неизвестным, которое решаем:

Таким образом искомое значение напряжения отсечки для формулы (1) определяется выражением:

(10)

А соответствующее значение начального тока стока вычисляется путём подстановки полученного по формуле (10) значения напряжения отсечки в следующее выражение, полученное из формулы (1):

(11)

Экспериментальные данные

Вычисленные по формулам (10) и (11) значения напряжения отсечки и начального тока стока после подстановки в формулу (1) должны дать более точное соответствие этой формулы передаточной характеристике реального полевого транзистора. Чтобы это проверить были проведены контрольные измерения параметров двенадцати полевых транзисторов четырёх типов — по три транзистора каждого типа.

Порядок измерений для каждого транзистора был следующим. Сначала измерялись начальный ток стока IDSS и напряжение отсечки VGS(off) полевого транзистора. Затем были измерены значения напряжений затвор-исток VGS1 и VGS2 для двух соответствующих им значений тока стока ID1 и ID2, несколько отстоящих от нулевого значения при VGS=VGS(off) и начального тока стока IDSS. Подстановка VGS1, VGS2, ID1 и ID2 в формулы (10) и (11) давала искомые значения и . Чтобы иметь возможность затем сравнить, какая же пара параметров полевого транзистора, — IDSS и VGS(off) или и , — после подстановки в формулу (1) даёт более точное соответствие этой формулы передаточной характеристике реального полевого транзистора, ток стока полевого транзистора устанавливался примерно равным половине измеренного значения его начального тока стока IDSS, то есть где-то посередине передаточной характеристики транзистора, с последующим измерением соответствующего этому току напряжения затвор-исток. Полученные таким образом значения ID0 и VGS0 — это координаты произвольно выбранной рабочей точки полевого транзистора на его передаточной характеристике. Осталось подставить теперь значение VGS0 в формулу (1) сначала с парой параметров IDSS и VGS(off), а затем с и , и сравнить оба вычисленных значения тока стока с измеренным ID0.

Результаты измерений параметров двенадцати полевых транзисторов приведены в таблице ниже.

Транзистор Измеренные значения статических параметров Значения статических параметров по формулам(10) и (11) VGS0,В ID0,мА Значение тока стока ID, вычисленное по формуле (1) с параметрамиIDSS и VGS(off) Значение тока стока I’D, вычисленное по формуле (1) с параметрамиI’DSS и V’GS(off)
IDSS,мА VGS(off),В I’DSS,мА V’GS(off),В ID,мА Ошибка,% I’D,мА Ошибка,%
1 КП303В 2,95 -1,23 2,98 -1,35 -0,40 1,52 1,33 -12,5 1,47 -3,6
2 КП303В 2,89 -1,20 2,95 -1,32 -0,40 1,48 1,28 -13,1 1,43 -3,2
3 КП303В 2,66 -1,16 2,70 -1,24 -0,36 1,41 1,26 -10,2 1,35 -3,8
4 2П303Е 12,06 -4,26 12,73 -4,90 -1,49 6,49 5,09 -21,5 6,16 -5,2
5 2П303Е 11,24 -3,94 11,69 -4,50 -1,37 6,06 4,79 -20,9 5,67 -6,5
6 2П303Е 10,92 -3,77 11,26 -4,31 -1,29 5,91 4,73 -20,0 5,53 -6,3
7 2N3819 10,64 -3,47 10,76 -3,91 -1,08 5,90 5,05 -14,4 5,64 -4,4
8 2N3819 10,22 -3,51 10,29 -3,90 -1,06 5,73 4,98 -13,1 5,46 -4,8
9 2N3819 10,30 -3,38 10,46 -3,80 -1,07 5,67 4,81 -15,2 5,40 -4,8
10 2N4416A 8,79 -2,98 9,05 -3,27 -1,04 4,46 3,71 -16,9 4,20 -5,9
11 2N4416A 10,10 -3,22 10,31 -3,55 -1,18 4,98 4,04 -19,0 4,58 -8,0
12 2N4416A 10,92 -3,93 12,66 -4,32 -1,63 5,36 4,09 -23,6 4,92 -8,2

Выделенные цветом значения погрешностей говорят сами за себя. Если же сравнивать графики передаточной характеристики, подобные приведенному на рис.2, то линия, построенная по значениям (; ), пройдёт гораздо ближе к точке (VGS0; ID0), чем построенная по измеренным значениями напряжения отсечки и начального тока стока (VGS(off); IDSS).

Результаты будут ещё более точными, если в качестве точек (VGS1; ID1) и (VGS2; ID2) взять границы более узкого отрезка передаточной характеристики полевого транзистора, на котором он будет работать в реальной схеме. Особо следует отметить, что данный метод определения статических параметров полевых транзисторов незаменим для транзисторов с большим начальным током стока, например для таких как J310.

©Задорожный Сергей Михайлович, 2012г., г.Киев

Литература:

  1. Бочаров Л.Н., «Полевые транзисторы»; Москва, издательство «Радио и связь», 1984;
  2. Титце У., Шенк К., «Полупроводниковая схемотехника»; перевод с немецкого; Москва, издательство «Мир», 1982.

sezador.radioscanner.ru

Полевые транзисторы

Полевые транзисторы — это полупроводниковые приборы, которые ста­новятся все более популярными в современной электронике. Их рабо­та основана на использовании полупроводникового токонесущего канала, сопротивление которого управляется электрическим полем.Тем самым обеспечивается управление величиной тока, протекающего по каналу.

Полевые транзисторы называют также униполярными транзисторами, поскольку перенос заряда в них осуществляется только основными носителями. Ток этих носителей протекает в полупроводнике только одного типа — или n-типа, или p-типа. В отличие от полевого работа обычного транзистора основана на переносе как неосновных, так и основных носи­телей заряда. Это связано с тем, что ток в них протекает через прямосмещенный переход база-эмиттер (основные носители) и обратносмещенный переход база-коллектор (неосновные носители). Поэтому обычные транзисторы называют биполярными транзисторами.

У полевого транзистора три электрода: исток s (source), затвор g (gate) и сток d (drain). Эти электроды соответствуют эмиттеру, базе и коллектору биполярного транзистора.

Полевые транзисторы малы по размерам и имеют очень высокое входное сопротивление.Они менее чувствительны к изменениям температуры по сравнению с биполярными транзисторами и поэтому менее склонны к тепловому пробою. Следует также отметить простоту разработки схем на основе полевых транзисторов, в которых используется меньше компонентов, чем в аналогичных схемах на биполярных транзисторах.

Полевые транзисторы просты в изготовлении и лучше подходят для использования в интегральных схемах, чем их собратья — биполярные транзисторы.

Существуют два типа полевых транзисторов: транзисторы с управляющим pn-переходом и транзисторы со структурой металл-оксид-полупроводник (МОП-транзистор).

Транзистор с управляющим pn-переходом

 

Рассмотрим канал из полупроводника n-типа (канал n-типа), к которо­му приложено постоянное напряжение VDD(рис. 26.1(а)). По каналу от тока к истоку будет протекать ток, называемый током стока Id. Если теперь внутри п-канала путем диффузии создать область      р-типа, называемую затвором (рис. 26.1(б)), то образуется рп-переход. Точно так же, как в случае обычного рп-перехода, в области перехода формируется слой, обедненный основными носителями заряда. Видно, что обедненный слой ограничивает протекание тока по каналу, уменьшая эффективную шири­ну последнего. Другими словами, он увеличивает сопротивление канала. Ширину обедненного слоя можно увеличить, т. е. еще больше ограничить протекание тока, если подать на переход напряжение VGS, которое сме­стит переход в обратном направлении (рис. 26.1(б)). Изменяя величину напряжения обратного смещения на затворе, можно управлять величи­ной тока стока ID. На рис. 26.2 показано поперечное сечение структуры полевого транзистора рассматриваемого типа.

Принцип работы полевого транзистора с управляющим рн-переходом

Рис. 26.1. Принцип работы полевого транзистора с управляющим рп-переходом.

Рис. 26.2

Рис. 26.2.   Поперечное сечение структуры

полевого транзистора с управляющим рп-переходом.

Рис. 26.3. Условные обозначения транзисторов

с управляющим рп-переходом.

Применяются также полевые транзисторы с каналом p-типа, питае­мые от источника отрицательного напряжения – VDD. Условные обозна­чения обоих типов транзисторов с управляющим pn-переходом приведены на рис. 26.3.

 

Выходные характеристики

Семейство выходных характеристик транзистора с управляющим рп-переходом в схеме с общим истоком показано на рис. 26.4. Они ана­логичны выходным характеристикам биполярного транзистора. Эти ха­рактеристики показывают зависимость выходного тока ID от выходного напряжения VDS(напряжения между стоком и истоком) для заданных Значений напряжения на затворе VGS(напряжения между затвором и истоком).

Диапазон изменения смещающего напряжения затвор-исток доволь­но велик (несколько вольт) в отличие от биполярного транзистора, где напряжение база-эмиттер практически постоянно.

Видно, что при увеличении (по абсолютной величине) напряжения на затворе ток стока уменьшается. Это уменьшение происходит до тех пор, пока расширяющийся обедненный слой перехода затвор-канал не пере­кроет весь канал, останавливая протекание тока. В этом случае говорят, что полевой транзистор находится в состоянии отсечки.

Напряжение отсечки

рассмотрим выходную характеристику для VGS= 0 (рис. 26.4). При уве­личении напряжения VDS(от нулевого значения) ток стока постепенно увеличивается, пока не достигает точки Р, после которой величина тока практически не изменяется. Напряжение в точке Р называется напря­жением отсечки. При этом напряжении обедненный слой, связанный с обратносмещенным переходом затвор-канал, почти полностью перекры­вает канал. Однако протекание тока IDв этой точке не прекращается, поскольку благодаря этому току как раз и создается обедненный слой. Все кривые семейства выходных характеристик имеют свои точки отсеч­ки: P1, P2 и т. д. Если соединить эти точки друг с другом линией, то правее ее лежит область отсечки, являющаяся рабочей областью полевого транзистора.

 

Усилитель на полевом транзисторе с общим истоком

Схема типичного усилителя ЗЧ на полевом транзисторе показана на рис. 26.5. В этой схеме через резистор утечки R1 отводится на шасси очень малый ток утечки затвора. Резистор R3 обеспечивает необходимое обратное смещение, поднимая потенциал истока выше потенциала затво­ра.

 Семейство выходных характеристик транзистора с управляющим рн-переходом

Рис. 26.4. Семейство выходных характеристик транзистора с управляющим рп-переходом.

 УЗЧ на н-канальном полевом транзисторе с управляющим пн-переходом

Рис. 26.5. УЗЧ на п-канальном полевом транзисторе с управляющим рп-переходом.

Кроме того, этот резистор обеспечивает также стабильность режима усилителя по постоянному току. R2 – нагрузочный резистор, который может иметь очень большое сопротивление (до 1,5 МОм). Развязыва­ющий конденсатор С2 в цепи истока устраняет отрицательную обратную связь по переменному току через резистор R3. Следует отметить, что раз­делительный конденсатор С1 может иметь небольшую емкость (0,1 мкФ) благодаря высокому входному сопротивлению полевого транзистора.

При подаче сигнала на вход усилителя изменяется ток стока, вызы­вая, в свою очередь, изменение выходного напряжения на стоке транзи­стора. Во время положительного полупериода входного сигнала напря­жение на затворе увеличивается в положительном направлении, обратное напряжение смещения перехода затвор-исток уменьшается и, следовательно, увеличивается ток IDполевого транзистора. Увеличение ID приводит к уменьшению выходного (стокового) напряжения, и на выходе воспроизводится отрицательный полупериод усиленного сигнала. И на­оборот, отрицательному полупериоду входного сигнала соответствует по­ложительный полупериод выходного сигнала. Таким образом, входной и выходной сигналы усилителя с общим истоком находятся в противофазе.

Одно из преимуществ полевого транзистора – очень малый ток утечки затвора, величина которого не превышает нескольких пикоампер (10-12 A). Поэтому в схеме усилителя па рис. 26.5 затвор находится практически при нулевом потенциале. Ток полевого транзистора протекает от стока к истоку и обычно отождествляется с током стока ID (который, очевидно, равен току истока IS).

Рассмотрим схему на рис. 26.5. Полагая ID = 0,2 мА, вычисляем потенциал истока:           VS = 0,2 мА · 5 кОм = 1 В. Это величина напряжения обратного смещения управляющего    pn-перехода.

Падение напряжения на резисторе R2 = 0,2 мА · 30 кОм = 6 В.

Потенциал стока VD = 15 – 6 = 9 В.

Линия нагрузки

Линию нагрузки можно начертить точно так же, как для биполярного транзистора. На рис. 26.6 показана линия нагрузки для схемы па же. 26.5.

Если ID = 0, то VDS= VDD = 15 В. Это точка Х на линии нагрузки.

Если VDS= 0, то почти все напряжение VDDисточника питания па­дает на резисторе R2. Следовательно, ID = VDD / R2= 15 В / 30 кОм = 0,5 мА. Это точка Y на линии нагрузки. Рабочая точка Q выбирается таким образом, чтобы транзистор работал в области отсечки.

Выбранная рабочая точка Q (точка покоя) на рис. 26.6 определяется величинами:               ID = 0,2 мА, VGS= - 1 В, VDS= 9 В.

МОП-транзистор

В полевом транзисторе этого типа роль затвора играет металлический электрод, электрически изолированный от полупроводника тонкой пленкой диэлектрика, в данном случае оксида. Отсюда и название транзистора «МОП» - сокращение от «металл-оксид-полупроводник».

Канал п-типа в МОП-транзисторе формируется за счет притяже­ния электронов из подложки р-типа диэлектрическим слоем затвора (рис. 26.7). Ширину канала можно изменять, подавая на затвор электрический потенциал. Подача положительного (относительно подложки)

 Линия нагрузки усилителя на полевом транзисторе

Рис. 26.6. Линия нагрузки усилителя на полевом транзисторе (рис. 26.5).

Поперечное сечение МОП-транзистора

Рис. 26.7. Поперечное сечение МОП-транзистора.

потенциала приводит к расширению канала п-типа и увеличению тока через этот канал, подача отрицательного потенциала вызывает сужение канала и уменьшение тока. Для МОП-транзистора с каналом р-типа си­туация изменяется на обратную.

Существует два типа МОП-транзисторов: транзисторы, работающие в режиме обогащения, и транзисторы, работающие в режиме обедне­ния. Транзистор, работающий в режиме обогащения, находится в состоянии отсечки тока (нормально выключен), когда напряжение смеще­ния VGS= 0.

Выходные характеристики МОП-транзистора с каналом н-типа

 

Рис. 26.8. Выходные характеристики МОП-транзистора с каналом п-типа, ра­ботающего в режиме обогащения, и условное обозначение этого транзистора.

 Выходные характеристики МОП-транзистора с каналом n-типа

Рис. 26.9. Выходные характеристики МОП-транзистора с каналом n-типа, ра­ботающего в режиме обеднения, и условное обозначение этого транзистора.

Протекание тока начинается только при подаче напряже­ния смещения на затвор. Выходные характеристики п-канального МОП-транзистора с каналом п-типа, работающего в режиме обогащения, и его условное обозначение показаны на рис. 26.8.

МОП-транзистор, работающий в режиме обеднения, проводит ток, ко­гда напряжение смещения на затворе отсутствует (нормально включен). Для МОП-транзистора с каналом    n-типа ток стока увеличивается при подаче на затвор положительного напряжения и уменьшается при подаче отрицательного напряжения (рис. 26.9).

Условное обозначение МОП-транзистора с каналом р-типа показано на рис. 26.10. Заметим, что прерывающаяся жирная линия указывает на МОП-транзистор, работающий в режиме обогащения (нормально выключен).

                                

Условное обозначение МОП-транзистора с каналом р-типа

Рис. 26.10. Условное обозначение МОП-транзистора с каналом         р-типа.

Усилитель на МОП-транзисторе с каналом р-типа, работающий в режиме обеднения

 

Рис. 26.11. Усилитель на МОП-транзисторе с каналом р-типа, рабо­тающий в режиме обеднения.

Сплошная линия используется для обозначения МОП-транзистора, работающего в режиме обеднения (нормально включен). Вывод подлож­ки обозначается буквой «Ь», обычно он соединяется с выводом истока. На рис. 26.11 схема типичного усилителя с общим истоком на МОП-транзисторе с каналом р-типа, работающего в режиме обеднения. Ис­пользуется источник питания с отрицательным напряжением. Положи­тельное напряжение смещения между затвором и истоком VGSсоздается обычным образом с помощью резистора R3 в цепи истока.

В этом видео рассказывается о типах полевых транзисторов:

Добавить комментарий

radiolubitel.net

ПРОБНИК ПОЛЕВЫХ ТРАНЗИСТОРОВ

   В радиолюбительских конструкциях все чаще встречаются полевые транзисторы (ПТ), особенно в схемах УКВ аппаратуры. Но многие отказываются от их сборки, хотя схемы простые, проверенные временем, так как в них применяются ПТ к которым предъявляются особые требования по описанию схем. В журналах и интернете описано много приборов и испытателей ПТ (5,6), но они сложны, ведь в домашних условиях сложно измерить основные параметры ПТ. Приборы для испытания ПТ очень дороги и покупать их ради подбора двух, трех ПТ нет смысла.

 

Схема испытателя для полевых транзисторов (уменьшенная)

   В домашних условиях возможно измерить, приблизительно, основные параметры ПТ и подобрать их. Для этого необходимо иметь как минимум два прибора, одним из которых измеряют ток, а другим напряжение, и два источника питания. Собрав схему (1, 2) вначале необходимо резистором R1 установить нулевое напряжение на затворе VT1, движок R1 в нижнем положение резистором R2 установить напряжение сток-исток Uси VT1 по справочнику, для проверяемого транзистора, обычно 10-12 вольт. Затем подключают прибор PA2, переведенный в режим измерения тока, в цепь стока и снимают показание, Iс.нач это начальный ток стока, его еще называют током насыщения ПТ при заданном напряжение сток-исток и нулевом напряжение затвор-исток. Затем медленно перемещая движок R1 за показанием PA2 и как только ток упадет практически до нуля (10-20 мкА) измерить напряжение между затвором и истоком, данное напряжение будет напряжением отсечки Uотс..

Работа ПОЛЕВЫХ ТРАНЗИСТОРОВ

   Чтобы измерить крутизну характеристики SмА/В ПТ нужно снова устанавливают нулевое напряжение Uзи резистором R1, PA2 покажет Iс.нач. Резистором R1 так же медленно увеличивают напряжение Uзи до одного вольта по PA1, для упрощения расчета, PA2 покажет меньший ток Ic.измер. Если теперь разность двух показаний PA2 разделить на напряжение Uзи получившийся результат будет соответствовать крутизне характеристики: 

   SмА/В=Iс.нач - Iс.измер/Uзи.

   Так проверяются транзисторы с управляющим с p-n переходом и каналом p-типа, для ПТ n-типа нужно поменять полярность включения Uпит на обратное.

   Существуют также полевые транзисторы с изолированным затвором. Существуют две разновидности МДП-транзисторов с индуцированным и со встроенным каналами.

   Транзисторы первого типа можно использовать только в режиме обогащения. Транзисторы второго типа могут работать как в режиме обеднения, так и в режиме обогащения канала. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами или МОП-транзисторами (металл - оксид- полупроводник).

   В МОП-транзисторах с индуцированным каналом проводящий канал между сильнолегированными областями истока и стока и, следовательно, заметный ток стока появляются только при определенной полярности и при определенном значении напряжения на затворе относительно истока (отрицательного при р-канале и положительного при n-канале). Это напряжение называют пороговым (Uпор). Так как появление и рост проводимости индуцированного канала связаны с обогащением его основными носителями заряда, эти транзисторы могут работать только в режиме обогащения.

   В МОП - транзисторах со встроенным каналом проводящий канал, изготавливается технологическим путем, образуется при напряжении на затворе равном нулю. Током стока можно управлять, изменяя значение и полярность напряжения между затвором и истоком. При некотором положительном напряжении затвор - исток транзистора с р - каналом или отрицательном напряжении транзистора с n -каналом ток в цепи стока прекращается. Это напряжение называют напряжением отсечки (Uотс ). МОП - транзистор со встроенным каналом может работать как в режиме обогащения, так и в режиме обеднения канала основными носителями заряда.

   Работа МОП-транзистора с индуцированным p-каналом. При отсутствии смещения (Uзи = 0; Uси = 0) приповерхностный слой полупроводника обычно обогащен электронами. Это объясняется наличием положительно заряженных ионов в пленке диэлектрика, что является следствием предшествующего окисления кремния и фотолитографической его обработки.

   Напряжение на затворе, при котором индуцируется канал, называют пороговым напряжением Unoр. Так как канал возникает постепенно, по мере увеличения напряжения на затворе, то для исключения неоднозначности в его определении обычно задается определенное значение тока стока, при превышении которого считается, что потенциал затвора достиг порогового напряжения Unop.

   В транзисторах с встроенным каналом ток в цепи стока будет протекать и при нулевом напряжении на затворе. Для прекращения его необходимо к затвору приложить положительное напряжение (при структуре с каналом p-типа), равное или большее напряжения отсечки Uотc.

   При приложении отрицательного напряжения канал расширяется и ток увеличивается. Таким образом, МДП-транзисторы с встроенными каналами работают как в режиме обеднения, так и в режиме обогащения.

   Иногда в структуре полевого МОП транзистора между истоком и стоком присутствует встроенный диод. На работу транзистора диод не влияет, поскольку в схему он включен в обратном направлении. В последних поколениях мощных МОП-транзисторов встроенный диод используется для защиты транзистора.

   Основными параметрами полевых транзисторов считаются;

 1. Начальный ток стока Iс.нач - ток стока при напряжении между затвором и истоком, равном нулю. Измеряют при заданном для транзистора данного типа значении постоянного напряжения Uси.

 2. Остаточный ток стока Iс.ост - ток стока при напряжении между затвором и истоком, превышающем напряжение отсечки.

 3. Ток утечки затвора Iз.ут - ток затвора при заданном напряжении между затвором и остальными выводами, замкнутыми между собой.

 4. Обратный ток перехода затвор - сток Iзс.о - ток, протекающий в цепи затвор - сток при заданном обратном напряжении между затвором и стоком и разомкнутыми остальными выводами.

 5. Обратный ток перехода затвор - исток Iзи.о - ток, протекающий в цепи затвор - исток при заданном обратном напряжении между затвором и истоком и разомкнутыми остальными выводами.

 6. Напряжение отсечки Uотс - напряжение между затвором и истоком транзистора с р-n переходом или изолированным затвором, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения (обычно 10 мкА).

 7. Пороговое напряжение полевого транзистора Uпор - напряжение между затвором и истоком транзистора с изолированным затвором, работающего в режиме обогащения, при котором ток стока достигает заданного низкого значения (обычно 10 мкА).

 8. Крутизна характеристик полевого транзистора S - отношение изменения тока стока к изменению напряжения на затворе при коротком замыкании по переменному току на выходе транзистора в схеме с общим истоком.

ПРОБНИК ПОЛЕВЫХ ТРАНЗИСТОРОВ самодельный

   Для этих измерений необходимо ввести еще и переключатель полярности напряжения между затвором и истоком. Комутируя этим переключателем полярность подаваемую на затвор проверяемого транзистора измеряют параметры ПТ. Процедура довольно долгая, а как быть если в наличие только один тестер. И в этом случае возможно проверить полевой транзистор, процесс проверки тот же что и описан выше, но только еще более длительный, так как нужно будет сделать очень много переключений и других операций. Такой способ для проверки и подборки ПТ не пригоден при покупке в магазинах и радиорынках.

   Как известно собрать вольтметр постоянного тока намного проще чем миллиамперметр, имея одну и туже головку, а комбинированные приборы есть у каждого радиолюбителя, даже у начинающих. Собрав прибор по схеме приведенной на рисунке, можно значительно облегчить процедуру проверки ПТ во много раз. Данный прибор могут сделать даже начинающие радиолюбители не имеющие опыта работы с ПТ. Прибор питается от 9 вольт от стабилизированного преобразователя напряжения собранной по схеме из журнала Радио (3).

   Принцип измерений параметров ПТ. Установив переключатели SA1-SA3, SB2 в нужное полжения, в зависимости от типа и канала проверяемого ПТ, подключают любой тестер, стрелочный или цифровой (предпочтительней), в гнезда XS1, XS2, переведенном в режим измерения постоянного тока, к гнездам XS3 подключить в соответствие с цоколем ПТ и включают прибор переключателем SA4.

   Все компоненты прибора установлены в подходящий корпус, размер которого зависит от размеров компонентов и примененной головки PA1. На лицевой стороне расположены PA1, SA1-SA3, XS1-XS2, R1, R2 с соответствующими надписями обозначающими функции. Преобразователь установлен в корпусе прибора, из которого выведен разъем для подключения к батарейке GB1.

Детали пробника

Детали пробника ПТ

   PA1 - микроамперметр типа М4200 с током 300 мкА, со шкалой на 15 В, возможно использовать другие, от его габаритов завесит размер корпуса, при подборе R3, R4 при настройке, R1, R2 - СП4-1, СПО-1 сопротивлением от 4,7 кОм до 47 кОм, R3, R4 - МЛТ-0,25, С2-23 и другие. Переключатели SA1 - 3П12НПМ, 12П3Н ,ПГ2, ПГ3, П2К, SB1 - П2К. Тумблеры SA2 - SA4 - МТ-1, П1Т-1-1 и другие.

   Трансформатор ТР1 в преобразователе выполнен в ферритовом броневом магнитопроводе внешним диаметром 30 и высотой 18 мм. Обмотка I содержит 17 витков провода ПЭЛ 1,0, обмотка II - 2х40 витков провода ПЭЛ 0,23. Возможно использовать другой сердечник с соответствующим перерасчетом.

   Транзисторы VT1 - КТ315, КТ3102, VT2, VT3 - КТ801А, КТ801Б, VT4 - КТ805Б и другие, диоды VD1, VD2 - КД522, КД521, VD4-VD7 - КД105, КД208, КД209 или диодный мост КЦ407, микросхема DD1 - К555ЛН1, К155ЛН1.

   В качестве XS3 используется кроватка для микросхем установленная на печатной плате и распаянная под тип ПТ (расположение выводов) для того чтобы не загибать выводы ПТ или другой разъем распаянный соответствующим образом. Монтаж объемный. На дно (задняя крышка) установлена плата преобразователя.

Настройка испытателя полевых транзисторов

   Налаживание прибора практически не требуется. Правильно собранный преобразователь, из исправных деталей, начинает работать сразу, выходное напряжение 15 В устанавливают подстроечным резистором R4 контролируя напряжение вольтметром.

   Затем движки резисторов R1, R2 устанавливают в нижнее по схеме положение, что соответствует нулевым напряжениям. Переключатель SA3 переводят в положение 1,5 В, а SA2 в положение Uзи. Подключив контрольный вольтметр к движку R1 перемещают его контролируя показание PA1 по контрольному вольтметру и если оно отличается подбирают сопротивление резистора R3. После подбора резистора R3 переключают SA3 в положение 15 В и далее перемещают движок R3 контролируя напряжение и если оно также не соответствует подбирают R4. Таким образом настраивают внутренний вольтметр прибора. После всех настроек закрывают заднюю крышку, прибор готов к работе.

ПРОБНИК ПОЛЕВЫХ ТРАНЗИСТОРОВ 2

   Как показывает практика, для радиолюбителя важны следующие положения:

   1. Проверить исправность ПТ. Для этого обычно достаточно убедиться, что параметры его стабильны, не «плывут» и находятся в пределах справочных данных.

   2. Выбрать по определенным характеристикам из имеющихся у радиолюбителя всего нескольких экземпляров ПТ те, что больше подходят для применения в собираемой схеме. Обычно здесь работает качественный принцип «больше - меньше».

   Например, нужен полевой транзистор с большей S или меньшим напряжением отсечки. И из нескольких экземпляров выбирают тот, у которого лучше (больше или меньше) выбранный показател. Таким образом, высокая точность измеряемых параметров на практике часто не столь важна, как можно было бы думать.Тем не менее, предлагаемый прибор позволяет с достаточно высокой точностью проверить работоспособность и важнейшие характеристики ПТ.

Работа с прибором

   Перед включением прибора переключателем SA1 устанавливают тип канала, SB2 устанавливают в обогащенный режим, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ, цифровой тестер с автоматическим изменением предела предпочтителен так как не нужно будет переключать пределы при измерениях. Переводят SA2 в положение Uси, а SA3 в положение 15 В. 

   Вставляют полевой транзистор в разъем XS3 в соответствие с цоколем проверяемого ПТ. Включив прибор резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Переводят SA2 в положение Uзи, а SA3 в 1,5 В. Нажимают кнопку SB1 "Измер." при этом тестер PA2 покажет какое то значение, например 0,8 мА на пределе 1 мА, это значение указывает начальный ток стока Iс.нач. Записывают это значение для данного ПТ. Затем медленно перемещают движок R1 "Uзи" контролируя при этом напряжение на затворе по PA1, напряжение Uзи увеличивают до тех пор пока ток стока Iс измеряемый тестером PA2 не уменьшится до минимального заданного как правило 10-20 мкА, переключая PA2 на пределы ниже. Как только ток уменьшится до заданного значения, снимают показание с PA1 (например 0,9 В), это напряжение является напряжением отсечки ПТ Uотс., его так же записывают.

   Для измерения крутизну характеристики SмА/В устанавливают тестер PA2 на тот предел который был установлен первоначально для данного транзистора и уменьшают Uзи до нуля, PA2 покажет Iс.нач. Резистором R1 медленно увеличивают Uзи до 1 В по PA1, PA2 покажет меньший ток Iс.измер. Если теперь вычесть из Iс.нач Iс.измер это и будет соответствовать численному значению крутизны характеристики SмА/В ПТ. Цифровой тестер с автоматическим изменением пределов предпочтительнее.

   Таким образом можно будет подобрать ПТ с близкими параметрами из одной партии с одинаковыми или разными буквенными индексами, ведь разные индексы указывают лишь на разброс параметров ПТ, так КП303А имеют Uотс. - 0,3-3,0 В, SмА/В - 1-4, а КП303В Uотс. - 1,0 - 4,0 В, SмА/В - 2-4, но некоторые ПТ с разными индексами могут иметь одинаковые значения при заданом напряжение сток-исток Uси. что не мало важно при подборке ПТ.

   Измерение параметров полевых транзисторов МОП-типа с встроенным каналом, режим обеднения. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обеднения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ. У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус "К" разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1, микроамперметр PA2 покажет какой-то ток это и будет начальный ток стока Iс.нач.

   При увеличение напряжения Uзи ток стока Iс будет уменьшатся и при определенном значение станет минимальным около 10 мкА, снятое показания с РА2 будет напряжением отсечки Uотс.

   Для проверки транзистора в режиме обогащения переключатель SB2 переводят в положение "Обогащения" и увеличивают напряжение на затворе Uзи при этом ток стока Iс будет увеличиваться.

   Как было сказано выше, МОП-транзисторы с индуцированным каналом могут работать только в режиме обогащения. Измерение параметров полевых транзисторов МОП-типа с индуцированным каналом. Переключателем SA1 устанавливают тип канала, SB2 устанавливают в режим обогащения, резисторы R1, R2 устанавливают в нулевые положения, подключают к гнездам XS1 и XS2 тестер переведенный в режим для измерения тока на предел который указан в справочнике для данного ПТ. Переводят SA2 в положение Uси, а SA3 в положение 15 В. Вставляют ПТ в разъем XS3 в соответствие с цоколем проверяемого ПТ. 

   У двузатворных или с подложкой ПТ второй затвор, подложку подключают к контакту корпус "К" разъема XS3. Резистором R2 устанавливают напряжение сток-исток Uси указанное в справочнике для данного транзистора. Затем переводят SA2 в положение Uзи, а SA3 в положение 1,5 В. PA2 переводят в режим измерения минимального тока. Включив прибор нажимают кнопку SB1. При Uзи = 0 ток стока Iс = 0.

   Увеличивая напряжение Uзи следят за изменением тока стока Iс и при некотором напряжение Uзи ток стока начнет увеличиваться это будет пороговым напряжением Uпор. При дальнейшем его увеличение будет увеличиваться ток стока Iс.

   Данным прибором можно измерять параметры Iс.нач, Uотс., S ма/В ПТ средней и большой мощности, подав необходимое напряжение на внешний разъем XP1, по справочникам для данного ПТ, с добавлением необходимых пределов измерений внутренним вольтметром PA1, добавив необходимое число резисторов на переключатель SA3. Диоды VD5, VD6 при этом защищают преобразователь от внешнего напряжения.

   Если не требуется измерений точных значений Iс.нач и Uотс., а только подобрать ПТ с близкими параметрами, можно вместо PA2 включить индикаторы применяемые в бытовой технике для контроля уровней сигналов, М4762, М68501, М4248, М4223 и подобные, добавив к данным индикаторам переключатель и шунты на разные токи. Все остальные измерения производят по описанному выше методу. Данным прибором пользуюсь уже более шести лет. Он очень помогает при конструирование аппаратуры на полевых транзисторах, где к ним применяются особые требования.

   Литература:

 1. Простейшие способы проверки исправности электрорадиоэлементов в ремонтных и любительских условиях, стр. 70, 300 практических советов. Бастанов В.Г. - Моск. рабочий 1986 г. 2. Измерение параметров и применение полевых транзисторов, - "Радио", 1969, №03, стр. 49-51 3. Стабилизированный преобразователь напряжения - Радио №11 1981 стр. 61 (за рубежом). 4. Занимательные эксперименты: некоторые возможности полевого транзистора - "Радио", номер 11, 1998г. Б.Иванов 5. Приставка для проверки транзисторов. Радио № 1 – 2004, стр. 58-59. 6. Испытатель полевых транзисторов - А. П. Кашкаров, А. Л. Бутов - Радиолюбителям схемы для дома стр. 242-246, МРБ-1275 2008г. 7. Измерение параметров полевых транзисторов, - "Радио", 2007, №09, стр. 24-26. 8. Меерсон А.М. Радиоизмерительная техника (3-е изд.). МРБ - Выпуск 0960 стр. 363-367. (1978)

   Конструкцию прислал на конкурс:Слинченков Александр Васильевич г. Озерск, Челябинская обл.

   Форум по измерителям и тестерам

   Обсудить статью ПРОБНИК ПОЛЕВЫХ ТРАНЗИСТОРОВ

radioskot.ru

Ответы на вопросы по полевым транзисторам

  1. Устройство и принцип действия полевых транзисторов

Полевым транзистором называется полупроводниковый прибор, в котором ток создаётся только основными носителями зарядов под действием продольного электрического поля, а управляющее этим током осуществляется поперечным электрическим полем, которое создаётся напряжением, приложенным к управляющему электроду.

Несколько определений:

  • Вывод полевого транзистора, от которого истекают основные носители зарядов, называется истоком.

  • Вывод полевого транзистора, к которому стекают основные носители зарядов, называется стоком.

  • Вывод полевого транзистора, к которому прикладывается управляющее напряжение, создающее поперечное электрическое поле называется затвором.

  • Участок полупроводника, по которому движутся основные носители зарядов, между p-n переходом, называется каналом полевого транзистора.

Поэтому полевые транзисторы подразделяются на транзисторы с каналом p-типа или n-типа.

Принцип действия рассмотрим на примере транзистора с каналом n-типа.

1) Uзи = 0; Ic1 = max;

2) |Uзи| > 0; Ic2 < Ic1

3) |Uзи| >> 0; Ic3 = 0

На затвор всегда подаётся такое напряжение, чтобы переходы закрывались. Напряжение между стоком и истоком создаёт продольное электрическое поле, за счёт которого через канал движутся основные носители зарядов, создавая ток стока.

1) При отсутствии напряжения на затворе p-n переходы закрыты собственным внутренним полем, ширина их минимальна, а ширина канала максимальна и ток стока будет максимальным.

2) При увеличении запирающего напряжения на затворе ширина p-n переходов увеличивается, а ширина канала и ток стока уменьшаются.

3) При достаточно больших напряжениях на затворе ширина p-n переходов может увеличиться настолько, что они сольются, ток стока станет равным нулю.

Напряжение на затворе, при котором ток стока равен нулю, называется напряжением отсечки.

Вывод: полевой транзистор представляет собой управляемый полупроводниковый прибор, так как, изменяя напряжение на затворе, можно уменьшать ток стока и поэтому принято говорить, что полевые транзисторы с управляющими p-n переходами работают только в режиме обеднения канала.

  1. Чем объяснить высокое входное сопротивление полевого транзистора?

Т.к. управление полевым транзистором осуществляется электрическим полем, то в управляющем электроде практически нет тока, за исключением тока утечки. Поэтому полевые транзисторы имеют высокое входное сопротивление, порядка 1014Ом.

  1. От чего зависит ток стока полевого транзистора?

Зависит от подаваемых напряжений UсииUзи.

  1. Схемы включения полевых транзисторов.

Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).

На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.

  1. В чем отличие полевого транзистора от биполярного?

В полевом транзисторе управление током осуществляется электрическим полем, создаваемым приложенным напряжением, а не с помощью тока базы. Поэтому в управляющем электроде практически нет тока, за исключением токов утечки.

  1. Статический режим включения транзистора. Статические характеристики полевых транзисторов.

К основным характеристикам относятся:

  • Стокозатворная характеристика (рис. а) – это зависимость тока стока (Ic) от напряжения на затворе (Uси) для транзисторов с каналом n-типа.

  • Стоковая характеристика (рис. б) – это зависимость Ic от Uси при постоянном напряжении на затворе Ic = f (Uси) при Uзи = Const.

Основные параметры:

  • Напряжение отсечки.

  • Крутизна стокозатворной характеристики. Она показывает, на сколько миллиампер изменится ток стока при изменении напряжения на затворе на 1 В.

  1. Поясните влияние на ток стока напряжений Uзи и Uси.

Влияние подводимых напряжений в транзисторе в управляемом иллюстрируется на рисунке:

  1. Как влияет нагрузка на ток стока.

  2. Три основных рабочих режима транзистора.

В различных видах полевых транзисторов и при различных внешних напряжениях затвор может оказывать два вида воздействий на канал: в первом случае (например, в полевых транзисторах с управляющим p-n-переходом при напряжениях на электродах, соответствующих рис. 2-1.5) он препятствует протеканию тока через канал, уменьшая число носителей зарядов, проходящих через него (такой режим называют режимом обеднения канала), во втором случае (например, в МДП-транзисторах с индуцированным каналом, включенных в соответствии с рис. 2-1.7) затвор, наоборот, стимулирует протекание тока через канал, увеличивая число носителей зарядов в потоке (режим обогащения канала). Часто просто говорят орежиме обедненияирежиме обогащения. Заметим, что МДП-транзисторы с индуцированным каналом могут находиться в активном режиме только в случае режима обогащения канала, а для МДП-транзисторов со встроенным каналом это может быть и режим обогащения, и режим обеднения. В полевых транзисторах с управляющим p-n-переходом попытка приложить прямое смещение на этот переход вызывает его открытие и протекание существенного тока в цепи затвора. Реальные процессы в транзисторе в этом случае сильно зависят от его конструкции, практически никогда не документируются и трудно предсказуемы. Поэтому говорить о режиме обогащения для полевых транзисторов с управляющим переходом не принято да и просто бессмысленно.

Режим насыщения— характеризует состояние не всего транзистора в целом, как это было для биполярных приборов, а только токопроводящего канала между истоком и стоком. Данный режим соответствует насыщению канала основными носителями зарядов. Такое явление какнасыщениеявляется одним из важнейших физических свойств полупроводников. Оказывается, что при приложении внешнего напряжения к полупроводниковому каналу, ток в нем линейно зависит от этого напряжения лишь до определенного предела (напряжение насыщения), а по достижении этого предела стабилизируется и остается практически неизменным вплоть до пробоя структуры. В приложении к полевым транзисторам это означает, что при превышении напряжением сток—исток некоторого порогового уровня оно перестает влиять на ток в цепи. Если для биполярных транзисторов режим насыщения означал полную потерю усилительных свойств, то для полевых это не так. Здесь наоборот, насыщение канала приводит к повышению коэффициента усиления и уменьшению нелинейных искажений. До достижения напряжением сток—исток уровня насыщения ток через канал линейно увеличивается с ростом напряжения (т.е. ведет себя так же, как и в обычном резисторе). Автору неизвестно какого-либо устоявшегося названия для такого состояния полевого транзистора (когда ток через канал идет, но канал ненасыщен), будем называть егорежимом ненасыщенного канала(он находит применение в аналоговых ключах на полевых транзисторах). Режим насыщения канала обычно является нормальным при включении полевого транзистора в усилительные цепи, поэтому в дальнейшем при рассмотрении работы транзисторов в схемах мы не будем делать особого акцента на этом, подразумевая, что между стоком и истоком транзистора присутствует напряжение, достаточное для насыщения канала.

  1. Чем характеризуется ключевой режим работы транзистора?

Ключевым называют такой режим работы транзистора, при котором он может быть либо полностью открыт, либо полностью закрыт, а промежуточное состояние, при котором компонент частично открыт, в идеале отсутствует. Мощность, которая выделяется в транзисторе, в статическом режиме равна произведению тока, протекающего через выводы сток-исток, и напряжения, приложенного между этими выводами.

В идеальном случае, когда транзистор открыт, т.е. в режиме насыщения, его сопротивление межу выводами сток-исток стремится к нулю. Мощность потерь в открытом состоянии представляет произведение равного нулю напряжения на определённую величину тока. Таким образом, рассеиваемая мощность равна нулю.

В идеале, когда транзистор закрыт, т.е. в режиме отсечки, его сопротивление между выводами сток-исток стремится к бесконечности. Мощность потерь в закрытом состоянии есть произведение определённой величины напряжения на равное нулю значение тока. Следовательно, мощность потерь равна нулю.

Выходит, что в ключевом режиме, в идеальном случае, мощность потерь транзистора равна нулю.

  1. Что называют усилительным каскадом?

Соединение нескольких усилителей, предназначенное для увеличения параметров электрического сигнала. Подразделяют на каскады предварительного усиления и выходные каскады. Первые предназначены для повышения уровня сигнала по напряжению, а выходные каскады – для получения требуемых тока или мощности сигнала.

studfiles.net

2. Основные параметры полевого транзистора

Ток насыщенияIс0– ток в цепи стока транзистора, включенного по схеме с общим истоком, при затворе накоротко замкнутым с истоком (т.е. приUзи=0).

Ток стока в рабочей точке можно определить по формуле:

Iс= Iс0(1 Uзи Uотс)2, (1)

где Uотс–напряжение отсечки.

Уравнение (1) является приближенным для характеристики передачи любого полевого транзистора (особенно с малыми напряжениями отсечки).

Напряжение отсечкиUотс–один из основных параметров, характеризующих ПТ. При напряжении на затворе, численно равным напряжению отсечки, практически полностью перекрывается канал полевого транзистора, и ток стока при этом стремится к нулю.

В справочных данных на ПТ всегда указывается, при каком значении тока стока произведены измерения напряжения отсечки. Так, например, для транзисторов КП307Е напряжения Uотс=0.52.5В получены при токе стока 0.01 мА.

Крутизна проходной характеристики.Входное сопротивление полевых транзисторов со стороны управляющего электрода составляет 107109Ом. Так как входные токи ПТ чрезвычайно малы, то управление током в выходной цепи осуществляется входным напряжением. Поэтому усилительные свойства полевого транзистора, как и электронных ламп, целесообразно характеризовать крутизной проходной характеристики.

Крутизна полевых транзисторов S=Iс Uзи, приUис=const.

Максимальное значение крутизны характеристики Sмаксдостигается приUзи=0. При этом численное значение Sмаксравно проводимости канала ПТ при нулевых смещениях на его электродах.

Крутизна характеристики полевых транзисторов на 12 порядка меньше, чем у биполярных транзисторов, поэтому при малых сопротивлениях нагрузки коэффициент усиления каскада на ПТ меньше коэффициента усиления аналогичного каскада на биполярном транзисторе.

В большинстве случаев крутизну характеристики полевых транзисторов можно считать частотно–независимым параметром. Поэтому быстродействие электронных схем на ПТ ограничено в основном паразитными параметрами схемы. Выражение для крутизны характеристики в рабочей точке ПТ получим, используя (1)

S= Sмакс(1UзиUотс)2,(2)

где Uзи–напряжение затвор–исток, при котором вычисляетсяS;

Sмакс=2(Ic0Uотс). (3)

Соотношение (3) позволяет по двум известным параметрам рассчитать третий. Для большинства маломощных ПТSлежит в пределах 210 мА/В.

Напряжение пробоя.Механизм пробоя полевого транзистора можно объяснить возникновением лавинного процесса в переходе затвор–канал. Обратное напряжение диода затвор–канал изменяется вдоль длины затвора, достигая максимального значения у стокового конца канала. Именно здесь происходит пробой полевого транзистора.

Пробой не приводит к выходу из строя ПТ с управляющим p–nпереходом. После пробоя в нормальном рабочем режиме эти транзисторы восстанавливают свою работоспособность.

Динамическое сопротивление канала. rкопределяется выражениемrк= UсиIсприUзи=соnst.

Это сопротивление при Uси=0 и произвольном смещении Uзиможно выразить через параметры транзистора

. (4)

При малом напряжении исток–сток вблизи начала координат выходной характеристики ПТ ведет себя как переменное омическое сопротивление, зависящее от напряжения на затворе. Минимальное значение сопротивления канала rк0наблюдается приUзи=0. При увеличении обратного напряжения на затворе сопротивление канала нелинейно увеличивается. Значениеrк0определяется по стоковой характеристике транзистора как тангенс угла наклона касательной к кривойIс=f(Uси) при Uзи=0 в точке Ucи=0.

Для приближенных расчетов имеет место простое соотношение

rк01 Sмакс. (5)

studfiles.net

me12 / Lab_rab_12_13 / Lab_4_MKC

Лабораторная работа № 4

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ПОЛЕВЫХ ТРАНЗИСТОРОВ

Цель работы: изучение свойств полевых транзисторов, приобретение практических навыков анализа характеристик полевых транзисторов.

Работа выполняется в системе моделирования MicroCAP.

В работе необходимо определить характеристики полевых транзисторов.

  1. Теоретическая часть

Полевыми транзисторами называются полупроводниковые элементы, которые в отличие от обычных биполярных транзисторов управляются электрическим полем, т.е. практически без затрат мощности управляющего сигнала.

Существуют две больших группы полевых транзисторов:

  • полевые транзисторы с управляющим p–nпереходом (JFET–JunctionFieldEffectTransistor), в которых изоляция канала от источника управляющего напряжения обеспечивается обратно смещеннымp–nпереходом;

  • полевые транзисторы с МОП (металл – оксид - полупроводник) или МДП (металл – диэлектрик - полупроводник) структурой. Зарубежное обозначение MOSFET(или сокращенноMOS). В этих транзисторах изоляция канала от управляющего электрода обеспечивается с помощью диэлектрика (двуокиси кремния).

МОП – транзисторы бывают двух видов: со встроенным (созданным технологически) каналом и с индуцированным (создается внешним электрическим полем) каналом. Все типы транзисторов могут быть как n– канальные, так иp– канальные. Классификация и условные графические изображения транзисторов приведены на рис.1.

В системе моделирования MicroCAPтранзисторы с управляющимp–nпереходом обозначаются какNJFETиPJFET, МОП – транзисторы какNMOSиPMOS. ВMicroCAPне делается различие между МОП транзисторами со встроенным и индуцированным (наведенным) каналом. Отличить один тип транзистора от другого можно по величине напряжения отсечки или пороговому напряжению – параметрVTOполевого транзистора.DNMOSиDPMOS– это МОП транзисторы с индуцированным каналом, у которых подложка соединена с истоком.

Затвор З (G–gate) – управляющий электрод. Он управляет величиной сопротивления междустокомС (D-drain) иистоком И (S-source). Управляющим напряжением является напряжениеUзи. Большинство полевых транзисторов являются симметричными, т.е. их свойства не изменяются, если электроды С и И поменять местами.

Рассмотрим сначала работу полевого транзистора с управляющим р – nпереходом. Полевой транзистор с управляющимp–n– переходом представляет собой пластину из полупроводникового материала, имеющего электропроводность определенного типа, от которого сделаны два вывода – сток – исток рис.2. Вдоль пластины выполнен электрический переход (p-nпереход или барьер Шотки), от которого сделан третий вывод – затвор. Для включения транзистора напряжениеUсиприкладывают так, чтобы между стоком и истоком протекал ток, а напряжение, приложенное к затвору смещает его в обратном направлении (рис.3).

Сопротивление области сток – исток (канала) зависит от напряжения на затворе. Это обусловлено тем, что размеры перехода увеличиваются с повышением приложенного к нему отрицательного обратного напряжения на затворе. Это приводит к увеличению сопротивления канала. Таким образом, работа полевого транзистора с управляющимp–n- переходом основана на изменении сопротивления канала сток – исток за счет изменения обратного напряженияUзи. НапряжениеUзи, при котором ток стока достигает заданного низкого значения тока стока называется напряжением отсечки полевого транзистора –Uзи отс.

Ширина p–n- перехода, следовательно, и сопротивление канала зависит от тока, протекающего через канал. ЕслиUси> 0, то ток стока, создает по длине канала падение напряжения, которое оказывается запирающим для перехода затвор – канал, это приводит к уменьшению проводимости канала (к увеличению сопротивления). По мере ростаUситок стока как функция напряжения сток – исток, все сильнее отклоняется от линейной. При определенном значении тока наступает режимнасыщения, который характеризуется, тем, что с увеличениемUситок стока (канала) увеличивается незначительно.

Напряжение, при котором наступает режим насыщения, называется напряжением насыщения.

Характеристики полевого транзистора с управляющим p–n– переходом показаны на рис. 4.

Качественно характеристики полевого транзистора подобны характеристикам биполярного транзистора. При этом сток полевого транзистора соответствует коллектору биполярного транзистора, затвор - базе и исток – эмиттеру биполярного транзистора. Так как входной ток полевого транзистора практически равен 0, то входная характеристика не строится.

Из передаточной характеристики видно, что ток стока транзистора протекает при напряжении Uзи = 0. Такие транзисторы называются нормально-открытыми. Значение тока стока приUзи = 0 называется начальным током стокаIC нач. Его величина для маломощных полевых транзисторов может быть равнаIC нач= 1, …, 50 мА. НапряжениеUзине должно превосходить величины 0 В, т.к. в противном случаеp–nпереход между затвором и каналом смещается в прямом направлении и транзистор будет потреблять большой входной ток, при этом теряется основное преимущество полевого транзистора – возможность управления напряжением, а не током.

Напряжение Uзи, при котором ток стока достигает заданного низкого значения называетсянапряжением отсечки полевого транзистора. Дляn– канальных транзисторов напряжение отсечки отрицательное, а дляp– канальных положительное. Величина напряжения отсечки составляет |Uотс| = 0,5 … 5 В.

В выходных характеристиках полевого транзистора можно выделить три области.

Область I– крутая область – может использоваться как омическое управляемое сопротивление. При этом напряжение между стоком и истоком относительно мало.

Область IIназывается пологой или областью насыщения. В усилительных каскадах транзистор работает на пологом (в области насыщения) участке характеристик. ВIIIобласти происходит пробой транзистора.

Как уже отмечалось, напряжение, при котором наступает режим насыщения, называется напряжением насыщения. Как видно из выходных характеристик, напряжение насыщения меняется при изменении напряжения Uзи. Так как влияниеUзииUсина ширину канала у стокового вывода практически одинаково, тоUси насприUзи= 0 равно |Uотс| и

Uси нас= |Uзи отс| - |Uзи|.

Другими словами, напряжения насыщения транзистора можно получить путем наложения передаточной характеристики на выходные и совмещая Uотсс началом координат.

При работе в пологой области передаточная характеристика полевого транзистора, представленная на рис.4 а может быть описана уравнением

,

(1)

где Ic нач– начальный ток стока.

Так как управление полевым транзистором осуществляется напряжением на затворе, то для количественной оценки управляющего действия затвора используют крутизну характеристики

при Uси = const.

Продифференцировав выражение (1) получим формулу для вычисления крутизны транзистора

,

(2)

Максимальное значение крутизны транзистора достигается при Uзи= 0

,

(3)

Максимальная крутизна полевого транзистора составляет Smax= 2, …, 20 мА/В.

Можно отметить, что при равных токах стока полевого и коллектора биполярного транзисторов крутизна полевого транзистора существенно ниже, чем биполярного.

МОП (МДП) транзисторы

Основой МОП (металл – оксид - полупроводник) транзистора является кремниевая подложка с проводимостью p- или n- типа (рис 5). На подложке на малом расстоянии друг от друга созданы две области - истока и стока с проводимостью, противоположной проводимости материала подложки. Между стоком и истоком над поверхностью расположена металлическая пленка - затвор, изолированная от подложки тонким слоем диэлектрика - диоксида кремния SiO2. Отсюда и другие названия приборов этого класса: МДП транзисторы или транзисторы с изолированным затвором.

Участок подложки под затвором между истоком и стоком образует проводящий канал. Работа МОП транзистора основана на изменении концентрации свободных носителей заряда в канале под влиянием электрического поля, создаваемого напряжением, приложенным между затвором и истоком. Для этих приборов характерна взаимозаменяемость стока и истока, т. е. ток в канале может протекать в обоих направлениях в зависимости от полярности напряжения, приложенного к каналу.

В зависимости от устройства канала проводимости различают МОП транзисторы со встроенным и индуцированным (наведенным) каналом. Это в равной мере относится к приборам p- и n- типа. У транзисторов со встроенным каналом канал является элементом конструкции, а у приборов с индуцированным каналом канал, как таковой, отсутствует: он наводится внешним напряжением.

Напряжение питания подают на сток и исток. У транзисторов с каналом n-типа сток должен иметь положительный потенциал относительно истока. Так как подложка образует с каналом диодное соединение, то напряжение на ней должно быть ниже напряжения проводимости. Она может быть соединена с истоком или с точкой схемы, в которой напряжение ниже, чем у истока n– канального и выше чем уp– канального МОП – транзистора. Вывод подложки в большинстве случаев соединяют с истоком.

МОП - транзисторы со встроенным каналом находят применение в аналоговой технике. В дискретной технике употребляется МОП - транзистор с индуцированным каналом.

На рис.6 изображены передаточные характеристики МОП транзисторов со встроенным и индуцированным каналами для n - и p - типов. Эти характеристики показывают зависимость тока стока (канала) транзистора от напряжения затвор - исток. Выходные характеристики МОП – транзистора подобны выходным характеристикам транзистора с управляющим p–nпереходом.

У МОП – транзистора затвор может иметь любую полярность о относительно истока; при этом тока затвора не будет, поскольку затвор гальванически не связан с цепью сток – исток.

Характеристики МОП транзистора со встроенным каналом аналогичны характеристикам транзистора с управляющим p–nпереходом.

Рассмотрим подробнее работу транзистора с индуцированным каналом n-типа. При включении транзистора напряжение на стоке должно быть одной полярности с напряжением на затворе, при котором образуется канал проводимости. Когда на затворе нулевое напряжение, ток в цепи сток - исток отсутствует, так как обе эти области электрически изолированы друг от друга. Когда к затвору транзистора приложено положительное напряжение, в слое полупроводника подложки под затвором происходит инверсия типа проводимости поверхностного слоя между истоком и стоком за счет концентрации свободных электронов.

С ростом положительного смещения на затворе наступает момент, когда концентрация электронов превысит концентрацию дырок, и в материале подложки p - типа образуется тонкий инверсный слой n - типа. Этот слой становится токопроводящим каналом между n- областями истока и стока.

Напряжение затвор - исток, при котором возникает канал и в цепи сток - исток появляется ток, называется пороговым Uпор. Пороговое напряжение лежит в пределах 1,5 - 3 В.

Канал в транзисторах p- типа формируется сходным образом с той лишь разницей, что электроны и дырки меняются местами. МОП - транзисторы с наведенным каналом часто называют транзистором с обогащением.

  1. Задание и порядок выполнения

В режиме DCопределить передаточные и выходные характеристики полевого транзистора с управляющимp–n– переходом и МОП – транзистора. Тип транзисторов выбрать из таблицы вариантов. Для определения характеристик транзистора используйте схему, представленную на рис.3.

По передаточной характеристике транзистора с управляющим p–n– переходом определить напряжение отсечки, начальный ток стока и максимальную крутизну транзистора. Сравнить крутизну транзистора с расчетным значением по формуле (3).

По передаточной характеристике МОП – транзистора определить пороговое напряжение и крутизну транзистора для того же тока стока, для которого определялась крутизна транзистора с управляющим p–n– переходом.

По выходным характеристикам транзисторов определить область насыщения транзисторов.

Постройте выходные характеристики одного из транзисторов для малых положительных и отрицательных значений напряжений |Uси| <Uси нас Что можно сказать о характере изменения характеристик в зависимости от напряжения затвор – исток? Как можно представить транзистор в этом режиме работы?

Таблица вариантов

варианта

Типы транзисторов

С управл. p–nпереходом (JFET)

n – МОП (NMOS)

p – МОП (PMOS)

1

2N3070

$GENERIC

2SJ102

2

2N3822

IRF024

3

2N5545

IRF450

4

2SK112

IRF510

5

2SK113

IRF710

6

2SK117

$GENERIC

7

2SK161

IRF024

8

2SK162

IRF450

9

2SK163

IRF510

10

2SK18

IRF710

11

2SK193

$GENERIC

12

2SK195

IRF024

13

2SK210

IRF450

14

2SK241

IRF510

15

2SK246

IRF710

16

2SK330

$GENERIC

17

2SK367

IRF024

18

2SK389

IRF450

19

2SK455

IRF510

20

2SK505

IRF710

21

2N3070

$GENERIC

22

2N3822

IRF024

23

2N5545

IRF450

24

2N3070

IRF510

25

2N3822

IRF710

  1. Содержание отчета

  • привести схемы проведения экспериментов;

  • привести необходимые графики, полученные при моделировании;

  • ответить на поставленные вопросы при исследовании ключевых схем;

  • сделать выводы.

  1. Контрольные вопросы

  1. Приведите классификацию полевых транзисторов.

  2. Чем отличаются структуры полевых транзисторов с управляющим p–nи МОП транзисторов?

  3. Какие виды МОП транзисторов бывают и чем они отличаются?

  4. Покажите передаточные характеристики транзистора с управляющим p–nпереходом и МОП транзисторов со встроенным и индуцированным каналом.

  5. Что такое напряжение отсечки и пороговое напряжение.

  6. Чем ограничивается ток стока транзистора с управляющим p–nпереходом и МОП транзисторов?

  7. Чему равно максимальное напряжение затвор – исток для n– канального транзистора с управляющимp–nпереходом?

  8. Покажите выходные характеристики полевого транзистора.

  9. Как можно рассматривать выходные характеристики полевых транзисторов при малых напряжениях сток – исток?

studfiles.net

Характеристики и параметры полевого транзистора: схемы, вольт-амперные кривые

рис. 1.89Кратко охарактеризуем различные схемы включения полевого транзистора и рассмотрим его характеристики и параметры.

Схемы включения транзистора.

Для полевого транзистора, как и для биполярного, выделяют три схемы включения. Для полевого транзистора это схемы с общим затвором (ОЗ), общим истоком (ОИ) и общим стоком (ОС). Наиболее часто используются схемы с общим истоком.

Для понимания особенностей работы некоторого электронного устройства очень полезно уметь относить конкретное решение к той или иной схеме включения (если схема такова, что это в принципе возможно).

Моделирующие программы при замене транзистора математической моделью никак не учитывают способ включения транзистора. Важно понять, что если даже на стадии разработки математической модели имеет место ориентация на конкретную схему включения, то на стадии использования эта модель должна правильно моделировать транзистор во всех самых различных ситуациях.

При объяснении влияния напряжения uис на ширину p-n-перехода фактически использовалась схема с общим истоком (см. рис. 1.87) (Статья 1 Устройство и основные физические процессы). Рассмотрим характеристики, соответствующие этой схеме (что общепринято).

Так как в рабочем режиме iз = 0, iu ~ iс, входными характеристиками обычно не пользуются. Например, для транзистора КП10ЗЛ, подробно рассматриваемого ниже, для тока утечки затвора iз ут при t < 85°С выполняется условие iз ут< 2 мкА.

Изобразим схему с общим истоком (рис. 1.89).

Выходные (стоковые) характеристики.

Выходной характеристикой называют зависимость вида iс=f(uис)|uзи =const где f — некоторая функция.

Изобразим выходные характеристики для кремниевого транзистора типа КП10ЗЛ с p-n-переходом и каналом p-типа (рис. 1.90). рис. 1.90

Обратимся к характеристике, соответствующей условию uзи = 0. В так называемой линейной области (uис< 4 В) характеристика почти линейна (все характеристики этой области представляют собой почти прямые линии, веерообразно выходящие из начала координат). Она определяется сопротивлением канала. Транзистор, работающий в линейной области, можно использовать в качестве линейного управляемого сопротивления.

При uис = 3 В канал в области стока перекрывается. Дальнейшее увеличение напряжения приводит к очень незначительному росту тока ic, так как с увеличением напряжения область, в которой канал перекрыт (характеризующаяся очень большим удельным сопротивлением), расширяется. При этом сопротивление на постоянном токе промежутка исток-сток увеличивается, а ток ic практически не изменяется.

Ток стока в области насыщения при uзи= 0 и при заданном напряжении uис называют начальным током стока и обозначают через iс нач. Для рассматриваемых характеристик iс нач = 5 мА при uис= 10 В. Для транзистора типа КП10ЗЛ минимальное значение тока iс начравно 1,8 мА, а максимальное — 6,6 мА. При uис > 22 В возникает пробой p-n-перехода и начинается быстрый рост тока.

Теперь кратко опишем работу транзистора при различных напряжениях uзи. Чем больше заданное напряжение uзи , тем тоньше канал до подачи напряжения uис и тем ниже располагается характеристика.

Как легко заметить, в области стока напряжение на p-n-переходе равно сумме uзи+uис. Поэтому чем больше напряжение uзи , тем меньше напряжение uис, соответствующее началу пробоя.

Когда uзи= 3 В, канал оказывается перекрыт областью p-n-перехода уже до подачи напряжения uис . При этом до пробоя выполняется условие ic = 0. Таким образом,uзи отс = 3 В.Для рассматриваемого типа транзистора минимальное напряжение отсечки +2 В, а максимальное +5 В. Эти величины соответствуют условию ic = 10 мкА. Это так называемый остаточный ток стока, который обозначают через ic отс. Полевой транзистор характеризуется следующими предельными параметрами (смысл которых понятен из обозначений):uис макс,uзсмакс, Pмакc.

Для транзистора КП10ЗЛ uисмакс = 10 В,uзсмакс = 15 В, Pмакc = 120 мВт (все при t = 85°С).

Графический анализ схем с полевыми транзисторами.

Для лучшего уяснения принципа работы схем с полевыми транзисторами полезно провести графический анализ одной из них (рис. 1.91). рис. 1.91

Пусть Ес = 4 В; определим, в каких пределах будет изменяться напряжение uиспри изменении напряжения uзи от 0 до 2 В.

При графическом анализе используется тот же подход, который был использован при анализе схем с диодами и биполярными транзисторами. Для рассматриваемой схемы, в которой напряжение между затвором и истоком равно напряжению источника напряжения uзи, нет необходимости строить линию нагрузки для входной цепи. Линия нагрузки для выходной цепи задается выражением Ес =iс·Rс+uис Построим линию нагрузки на выходных характеристиках транзистора, представленных на рис. 1.92. рис. 1.92

Из рисунка следует, что при указанном выше изменении напряжения uзинапряжение uис будет изменяться в пределах от 1 до 2,6 В, что соответствует перемещению начальной рабочей точки от точки А до точки В. При этом ток стока будет изменяться от 1,5 до 0,7 мА.

Стокозатворные характеристики (характеристики передачи, передаточные, переходные, проходные характеристики). Стокозатворной характеристикой называют зависимость вида iс=f(uзи) |uис =const где f — некоторая функция.

Такие характеристики не дают принципиально новой информации по сравнению с выходными, но иногда более удобны для использования. Изобразим стокозатворные характеристики для транзистора КП10ЗЛ (рис. 1.93). рис. 1.93

Для некоторых транзисторов задается максимальное (по модулю) допустимое отрицательное напряжение uзи, например, для транзистора 2П103Д это напряжение не должно быть по одулю больше чем 0,5 В.

Параметры, характеризующие свойства транзистора усиливать напряжение.

● Крутизна стокозатворной характеристики S (крутизна характеристики полевого транзистора):

S= |diс/duзи|uзи – заданное, uис =const Обычно задается u зи= 0. При этом для транзисторов рассматриваемого типа крутизна максимальная. Для КП10ЗЛS = 1,8…3,8 мА/В при u ис= 0 В, uзи= 0, t = 20°С.

● Внутреннее дифференциальное сопротивление Rис диф (внутреннее сопротивление)

Rисдиф= (duис/ diс) |uис–заданное,uзи= const

Для КП10ЗЛ Rис диф = 25 кОм при u ис= 10 В,uзи=0. 

● Коэффициент усиления

M = (duис/ duзи) |uзи–заданное,iс= const

Можно заметить, что M =S· Rис диф

Для КП10ЗЛ при S = 2 мA/B и Rис диф = 25 кОм М = 2 (мА/В) · 25 кОм = 50.

 ● Инверсное включение транзистора.

Полевой транзистор, как и биполярный, может работать в инверсном режиме. При этом роль истока играет сток, а роль стока — исток.

Прямые (нормальные) характеристики могут отличаться от инверсных, так как области стока и истока различаются конструктивно и технологически.

 ● Частотные (динамические) свойства транзистора.

В полевом транзисторе в отличие от биполярного отсутствуют инжекция неосновных носителей и их перемещение по каналу, и поэтому не эти явления определяют динамические свойства. Инерционность полевого транзистора определяется в основном процессами перезаряда барьерной емкости p-n-перехода. Свое влияние оказывают также паразитные емкости между выводами и паразитные индуктивности выводов.

В справочных данных часто указывают значения следующих дифференциальных емкостей, которые перечислим ниже:

-входная емкость Сзи — это емкость между затвором и истоком при коротком замыкании по переменному току выходной цепи;

-проходная емкость Сзс — это емкость между затвором и стоком при разомкнутой по переменному току входной цепи;

-выходная емкость Сис — это емкость между истоком и стоком при коротком замыкании по переменному току входной цепи.

Для транзистора КП10ЗЛ Сзи < 20 пФ, Сзс << 8 пФ при uис= 10 В и uзи= 0.

Крутизну S, как и коэффициент B биполярного транзистора, в ряде случаев представляют в форме комплексного числа S. При этом, как и для коэффициента B, определяют предельную частоту fпpед. Это та частота, на которой выполняется условие:

| Ś | = 1 / √2 ·Sпт где Sпт — значение S на постоянном токе.

Для транзистора КП103Л данные по fпpед в использованных справочниках отсутствуют, но известно, что его относят к транзисторам низкой частоты (предназначенным для работы на частотах до 3 МГц).

pue8.ru


Каталог товаров
    .