При выходе из строя электропроводки иногда случается, что индикатор показывает в розетке две фазы, а электроприборы при этом не работают. Такая неисправность является достаточно распространенной, но начинающий или неопытный электрик может долго над этим ломать голову. Рассмотрим такую ситуацию. Вы сверлите стену, подключив дрель в розетке. Отверстие почти уже досверлено, как вдруг на счетчика сработал автомат. Вы включаете автомат, но в результате ни один электроприбор не работает. Проверяете розетку – в обоих гнездах индикатор сигнализирует о наличии фазы. Что это все значит? В квартиру через счетчик и автоматы заходит только одна фаза. В розетке должна быть одна фаза и ноль, а в приведенной выше ситуации индикатор свидетельствует о наличии в обоих гнездах розетки одной и той же фазы. Наиболее вероятной причиной возникновения неисправности в данном случае является повреждение (разрыв) нулевого провода, идущего к розетке, в процессе сверления стены. Наличие фазы там, где должен быть ноль обусловлено тем, что она проходит через нагрузку – постоянно включенную лампочку или какой-нибудь другой электроприбор. Как правило, все нулевые провода в доме или квартире замыкаются на нулевую шину электрического щита. фаза будет появляться в розетке. Проверить это очень легко – нужно просто выключить все электроприборы, которые имеются в квартире. Итак, вы выключили из розеток все потребители электроэнергии, выключили все выключатели, а две фазы в розетке все равно присутствуют. Причина этого может заключаться в следующем. В процессе сверления ноль был перебит сверлом и замкнут на фазу. Такая же ситуация может возникнуть при коротком замыкании, когда оплетка проводов плавится и проводники замыкаются. В любом случае необходимо отключить все электроприборы, после чего обследовать место сверления и устранить неисправность. Причина появления двух фаз в розетке может быть самой банальной – это может произойти просто по причине перегорания предохранителя (пробки) или выключения автомата защиты сети на электрощите. Возможна ли ситуация, когда в розетке появляются действительно две разные фазы. Автор этой статьи однажды сталкивался и с этим. При этом сгорел телевизор, холодильник и несколько лампочек, так как напряжение между разными фазами действительно составляла 380, а не 220 вольт. Причина заключалась в замыкании одной из трех фаз, идущих по воздушной линии электропередач, на нулевой провод (дело было в частном секторе). Для того чтобы иметь достоверную информацию о наличии фазы и напряжении в сети вашей квартиры, одного фазоуказателя не достаточно. Для измерения напряжения лучше приобрести комбинированный прибор — мультиметр, измеряющий напряжение, силу тока и сопротивление. Для домашних нужд подойдет самый дешевый. В любом случае нельзя забывать о мерах безопасности, так как даже через нагрузку можно получить весьма ощутимый электрический удар. Похожие материалы на сайте: О распространенной неисправности проводки, когда в обоих разъемах розетки 220 В — фаза. О том, почему это происходит и чем опасно. От первого лица и немного неформально. Есть одна характерная неисправность электропроводки, которая способна поставить в тупик начинающего или неопытного электрика. Чтобы пояснить, о чем речь, приведу рассказ одного из знакомых: «Приходит ко мне в субботу соседка – бабушка одинокая. И просит разобраться с электрикой в квартире. Дескать, ничего не работает, а свет, вроде не отключали. Ну, я, понятное дело, выхожу на площадку и проверяю автоматические выключатели. Все в порядке, все автоматы включены. Беру индикатор: фаза проходит. Захожу в квартиру к бабушке, проверяю первую же розетку. Первый разъем – «фаза». Проверяю второй разъем – тоже «фаза»! Что за бред! Перехожу к другой розетке: та же картина. Две фазы. Откуда две фазы? Ну, положим, ладно, «ноль» может пропасть. Но откуда вторая фаза может появиться в розетке 220 вольт? В квартиру же только одна фаза заведена. Ничего я не понял, извинился перед бабусей, и пришлось ей до понедельника ожидать электрика из ЖЭКа. А что там за беда была, я так и не понял.» Сразу попрошу специалистов не смеяться над рассказом моего знакомого. Он совсем не глупый человек, просто не электрик по профессии. А я пролью немного света на темную историю, приключившуюся с ним. Если бы у героя рассказа кроме индикаторной отвертки при себе был тестер, и он умел бы им пользоваться, то он смог бы сделать одно интересное наблюдение. Напряжение между двумя «фазами» в розетке отсутствовало. Это значит, что «фаза» была одноименная. Оно и понятно, иначе бы технике и светильникам в квартире не поздоровилось бы. Но откуда же все-таки «фаза» попала на проводник, который прежде был нулевым? Она просто прошла через нагрузку, то есть, например, через лампочку коридорного светильника, который всегда включен, и… и все. Оказалось, что дальше ей идти просто некуда. Причина всей катавасии в том, что вводной нулевой рабочий проводник оборван. Он может просто отломиться на нулевой шине в щите, для алюминиевого провода это проще простого. Когда такое происходит, ток в цепи, разумеется, пропадает. Нет тока – нет и падения напряжения. Поэтому «фаза» одна и та же, что на входе, что на выходе лампочки. Получается «фаза» в обоих проводах. Ну, а поскольку все нулевые провода квартиры имеют прямое электрическое соединение между собой на все той же нулевой шине квартирного щитка, то «заблудившаяся фаза» появляется и в розетке тоже. Достаточно было выключить все выключатели и отключить от розеток все приборы в квартире, чтобы аномалия исчезла. Ну, а для исправления ситуации было достаточно зачистить и вновь подключить отвалившийся нулевой провод, предварительно, конечно, выключив вводной пакетник. Здесь отдельно стоит заметить, что, хотя «фаза» на нулевом проводнике в подобных ситуациях и кажется призрачной и ненастоящей, опасность она может представлять собой вполне реальную. Даже через нагрузку вас может очень неплохо «дернуть», ведь человеку и надо-то всего около 7 миллиампер для очень неприятных ощущений. Опять же для того, чтобы избежать поражения током в подобных ситуациях, нельзя производить защитное зануление корпусов электроприборов непосредственно в месте их подключения, без отдельной заземляющей линии и повторного заземления. Ведь если пренебречь этим запретом, то при обрыве нулевого провода можно получить фазу прямо на корпусе прибора, пусть и «не совсем настоящую». Электрик Инфо — электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров. Информация и обучающие материалы для начинающих электриков. Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок. Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+ Перепечатка материалов сайта запрещена. Здравствуйте, уважаемые читатели сайта sesaga.ru. Иногда в электрической проводке возникает интересная неисправность, которая приводит неопытного электрика или простого любителя в затруднительное положение. Такой неисправностью является возникновение второй фазы в розетке. которая там оказывается на месте нуля, что заставляет сильно призадуматься. На самом же деле на обоих гнездах розетки присутствует одна и та же фаза, так как в однофазной электрической сети переменное напряжение 220В формируется одним фазным и одним нулевым проводниками, и второй фазы там быть не может. Но именно понимание этого и вызывает некоторое недоумение, когда на месте штатного нуля обнаруживается фаза. Если бы в розетке действительно оказалась вторая фаза, то напряжение между обеими фазами составило бы 380В и все включенные бытовые приборы пришлось бы нести в ремонтную мастерскую. Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу. Возьмем, к примеру, замкнутую электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания. От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу. Так вот, провод, по которому ток течет к лампе, называют фазным или просто фазой (L ), а провод, по которому ток возвращается от лампы, называют нулевым или просто нулем (N ). При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением (фазой). Остальная же часть фазного и нулевого проводов будут обесточены. При разрыве нулевого провода движение тока также прекратится, но теперь под фазным напряжением окажутся фазный провод, оба вывода лампы и часть нулевого провода, отходящего от цоколя лампы к месту разрыва. Убедиться в наличии фазы на обоих выводах лампы и на нулевом проводе, отходящем от лампы, можно индикаторной отверткой. Но если на этих же выводах и проводе измерить напряжение вольтметром, то он ничего не покажет, так как в этой части цепи присутствует одна и та же фаза, которую относительно себя измерить нельзя. Вывод: между одной и той же фазой никакого напряжения нет. Напряжение есть только между нулевым и фазным проводом. Совет. Для определения наличия фазы и напряжения в электрической сети необходимо совместное использование индикаторной отвертки и вольтметра. В качестве вольтметра можно использовать мультиметр . А теперь перейдем к практике и рассмотрим некоторые ситуации с нулем, которые можно самостоятельно определить и по возможности устранить без привлечения службы коммунэнерго: 1. Обрыв нуля во входном щитке дома или квартиры ;2. Обрыв нуля на входе или внутри распределительной коробки ;3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции . Во входном щитке дома или квартиры нулевой провод может оборваться на вводном автоматическом выключателе или на нулевой шине. Как правило, ослабляется винтовое соединение, из-за чего теряется контакт между проводом и зажимом, или, в редких случаях, нулевой провод обламывается на зажиме и повисает в воздухе. Также из-за плохого контакта между зажимом и проводом происходит нагрев и обгорание провода и, как следствие, между ними образуется большое переходное сопротивление в виде нагара. которое постепенно переходит в обрыв. При отсутствии нуля все электрические приборы в доме работать не будут. Но если останется включенный в розетку хоть один бытовой прибор или останется включенный выключатель света, фаза через радиокомпоненты блока питания бытовой техники или нить накала лампы беспрепятственно пройдет на нулевую шину, а с шины на все нулевые провода электрической проводки. И как следствие, на обоих гнездах розеток и контактах выключателей будет присутствовать фаза. Это объясняется тем, что все нулевые провода электрической проводки соединяются вместе на нулевой шине. Для определения такой неисправности достаточно отключить из розеток все бытовые приборы и отключить все выключатели света или выкрутить лампочки. После этих действий вторая фаза из розеток и контактов выключателей пропадет. Лечится неисправность восстановлением контактов на зажимах вводного автомата или на нулевой шине. При обрыве нулевой жилы перед распределительной коробкой или в самой коробке проблема с нулем и работой электрооборудования будет именно в том помещении дома или квартиры, в которое распределяет напряжение данная коробка. При этом в соседних помещениях все будет работать в штатном режиме. На рисунке выше видно, что перед левой распределительной коробкой произошел разрыв нулевой жилы провода, и фаза через нить накала лампы (нагрузку) попадает на розеточный ноль. При поиске такой неисправности вскрывается проблемная коробка и находится скрутка общего нуля (она самая толстая в коробке). Жилы скрутки отрезаются, заново разделываются и опять скручиваются вместе. Совет. Если провод медный, то скрутку желательно пропаять. Когда ноль обрывается перед распределительной коробкой, как показано на верхнем рисунке, для поиска обрыва часто приходится вскрывать в стене штробу с этим проводом, чтобы найти место повреждения. При поиске такой неисправности сначала в коробке находят скрутку с общим нулем и раскручивают на отдельные жилы. Затем каждая нулевая жила вызванивается до розеток и до потолка. Жила, которая не прозвонится, и будет являться входящим проводом в коробку. Далее этот провод продергивается и вскрывается штукатурка в стене для поиска места повреждения провода. Однако такая неисправность относится к разряду трудновыполнимых, потому как ковырять стену мало кто берется – проще проложить новую трассу. Может возникнуть ситуация, когда при сверлении отверстия, вкручивании самореза или забивании гвоздя в стену нарушается электрическая проводка. В довесок к этому, повреждение проводки сопровождается коротким замыканием, из-за которого провод повреждается полностью или частично. Лечится такая неисправность вскрытием места повреждения и восстановлением поврежденного участка провода. Иногда при такой неисправности можно также наблюдать две фазы в розетке.В момент замыкания происходит сварка фазной и нулевой жилы вместе, и поэтому фаза беспрепятственно попадает на нулевую жилу. Причем даже при выключенном из розеток электрооборудования и отключенных выключателей освещения фаза будет присутствовать на тех розетках и выключателях, на которые подается напряжение от этого провода. Лечится неисправность восстановлением поврежденного участка проводки. Если же остались вопросы, то в дополнение к статье посмотрите видеоролик, где также раскрыта тема обрыва нуля. В этой статье мы рассмотрели только самые распространенные неисправности, возникающие в однофазной электрической сети при повреждении нулевой жилы провода. Теперь если у Вас в розетке появятся две фазы. Вы сможете легко определить и устранить подобную неисправность.Удачи! Виктор Филюк 22. Apr. 2016 в 21:11 В принципе написано просто, доступно и внятно.Кому интересно, то нужно вникнуть в суть. и все станет предельно ясно. Автору Спасибо. Статья получилась достаточно интересной, и. главное ,полезной. Хотелось, что-бы Вы сделали статью о том случае, где действительно при обрыве нуля на вводе. появляется две фазы в розетке. Такое случается в многоквартирных домах довольно часто. С таким описанием, какое делаете Вы, получится просто отличная статья.Буду ждать с нетерпением.СПАСИБО ВАМ — ТАК ДЕРЖАТЬ. Сергей 23. Apr. 2016 в 09:07 Добрый день, Виктор!Озадачили Вы меня своим комментарием.Я считал, что в статье описал все основные варианты с проблемой нуля, которые можно устранить самостоятельно.А какие варианты еще могут быть?Спасибо. Виктор Филюк 23. Apr. 2016 в 12:31 Сергей, Здравствуйте.Я имел в виду. тот вариант ,при котором появлятся напряжение 38о вольт в квартирах многоквартирного дома ( с трехфазним вводом в дом — то есть подключение происходит четырьмя проводами, а именно фаза А. фазаВ, фазаС, и ноль. Так вот, при обрыве нуля в соответствующем месте. в некоторых квартирах появляется напряжение на входе именно в 2 фазы, то-есть 380 вольт. Самому пришлось это видеть, и скажу ,что точно напряжение в розетке было 380в.Это была конечно авария.Паяльник нагрелся до рабочей температуры за 10 секунд.Хорошо. что не сгорел вовсе.А причиной всему был перегоревший нулевой провод. Так вот, я и хотел бы. что-бы Вы со своим умением очень просто, и доступно выкладывать материал ,(мне чесно очень понравилось) рассказали об таком случае.Думаю. это было-бы интересно не только мне, но другим читателям.Спасибо. Сергей 23. Apr. 2016 в 20:56 Было такое недавно,решили вопрос подключив на другую линию. Источники: http://electricvdome.ru/rozetki-i-vukluchateli/dve-fazi-v-rozetke.html, http://electrik.info/main/sekrety/498-dve-fazy-v-vashey-rozetke-220-volt-eto-bolee-realno-chem-vy-dumaete.html, http://sesaga.ru/dve-fazy-v-rozetke-prichiny-chto-delat.html electricremont.ru Здравствуйте, уважаемые читатели сайта sesaga.ru. Иногда в электрической проводке возникает интересная неисправность, которая приводит неопытного электрика или простого любителя в затруднительное положение. Такой неисправностью является возникновение второй фазы в розетке, которая там оказывается на месте нуля, что заставляет сильно призадуматься. На самом же деле на обоих гнездах розетки присутствует одна и та же фаза, так как в однофазной электрической сети переменное напряжение 220В формируется одним фазным и одним нулевым проводниками, и второй фазы там быть не может. Но именно понимание этого и вызывает некоторое недоумение, когда на месте штатного нуля обнаруживается фаза. Если бы в розетке действительно оказалась вторая фаза, то напряжение между обеими фазами составило бы 380В и все включенные бытовые приборы пришлось бы нести в ремонтную мастерскую. Не вдаваясь в технические подробности можно сказать так, что однофазная электрическая сеть это такой способ передачи электрического тока, когда к потребителю (нагрузке) переменный ток течет по одному проводу, а от потребителя возвращается по другому проводу. Возьмем, к примеру, замкнутую электрическую цепь, состоящую из источника переменного напряжения, двух проводов и лампы накаливания. От источника напряжения к лампе ток течет по одному проводу и, пройдя через нить накала лампы, раскалив ее, ток возвращается к источнику напряжения по другому проводу. Так вот, провод, по которому ток течет к лампе, называют фазным или просто фазой (L), а провод, по которому ток возвращается от лампы, называют нулевым или просто нулем (N). При разрыве, например, фазного провода, цепь размыкается, движение тока прекращается и лампа гаснет. При этом участок фазного провода от источника напряжения и до места разрыва будет находиться под током или фазным напряжением (фазой). Остальная же часть фазного и нулевого проводов будут обесточены. При разрыве нулевого провода движение тока также прекратится, но теперь под фазным напряжением окажутся фазный провод, оба вывода лампы и часть нулевого провода, отходящего от цоколя лампы к месту разрыва. Убедиться в наличии фазы на обоих выводах лампы и на нулевом проводе, отходящем от лампы, можно индикаторной отверткой. Но если на этих же выводах и проводе измерить напряжение вольтметром, то он ничего не покажет, так как в этой части цепи присутствует одна и та же фаза, которую относительно себя измерить нельзя. Вывод: между одной и той же фазой никакого напряжения нет. Напряжение есть только между нулевым и фазным проводом. Совет. Для определения наличия фазы и напряжения в электрической сети необходимо совместное использование индикаторной отвертки и вольтметра. В качестве вольтметра можно использовать мультиметр. А теперь перейдем к практике и рассмотрим некоторые ситуации с нулем, которые можно самостоятельно определить и по возможности устранить без привлечения службы коммунэнерго: 1. Обрыв нуля во входном щитке дома или квартиры;2. Обрыв нуля на входе или внутри распределительной коробки;3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции. Во входном щитке дома или квартиры нулевой провод может оборваться на вводном автоматическом выключателе или на нулевой шине. Как правило, ослабляется винтовое соединение, из-за чего теряется контакт между проводом и зажимом, или, в редких случаях, нулевой провод обламывается на зажиме и повисает в воздухе. Также из-за плохого контакта между зажимом и проводом происходит нагрев и обгорание провода и, как следствие, между ними образуется большое переходное сопротивление в виде нагара, которое постепенно переходит в обрыв. При отсутствии нуля все электрические приборы в доме работать не будут. Но если останется включенный в розетку хоть один бытовой прибор или останется включенный выключатель света, фаза через радиокомпоненты блока питания бытовой техники или нить накала лампы беспрепятственно пройдет на нулевую шину, а с шины на все нулевые провода электрической проводки. И как следствие, на обоих гнездах розеток и контактах выключателей будет присутствовать фаза. Это объясняется тем, что все нулевые провода электрической проводки соединяются вместе на нулевой шине. Для определения такой неисправности достаточно отключить из розеток все бытовые приборы и отключить все выключатели света или выкрутить лампочки. После этих действий вторая фаза из розеток и контактов выключателей пропадет. Лечится неисправность восстановлением контактов на зажимах вводного автомата или на нулевой шине. При обрыве нулевой жилы перед распределительной коробкой или в самой коробке проблема с нулем и работой электрооборудования будет именно в том помещении дома или квартиры, в которое распределяет напряжение данная коробка. При этом в соседних помещениях все будет работать в штатном режиме. На рисунке выше видно, что перед левой распределительной коробкой произошел разрыв нулевой жилы провода, и фаза через нить накала лампы (нагрузку) попадает на розеточный ноль. При поиске такой неисправности вскрывается проблемная коробка и находится скрутка общего нуля (она самая толстая в коробке). Жилы скрутки отрезаются, заново разделываются и опять скручиваются вместе. Совет. Если провод медный, то скрутку желательно пропаять. Когда ноль обрывается перед распределительной коробкой, как показано на верхнем рисунке, для поиска обрыва часто приходится вскрывать в стене штробу с этим проводом, чтобы найти место повреждения. При поиске такой неисправности сначала в коробке находят скрутку с общим нулем и раскручивают на отдельные жилы. Затем каждая нулевая жила вызванивается до розеток и до потолка. Жила, которая не прозвонится, и будет являться входящим проводом в коробку. Далее этот провод продергивается и вскрывается штукатурка в стене для поиска места повреждения провода. Однако такая неисправность относится к разряду трудновыполнимых, потому как ковырять стену мало кто берется – проще проложить новую трассу. Может возникнуть ситуация, когда при сверлении отверстия, вкручивании самореза или забивании гвоздя в стену нарушается электрическая проводка. В довесок к этому, повреждение проводки сопровождается коротким замыканием, из-за которого провод повреждается полностью или частично. Лечится такая неисправность вскрытием места повреждения и восстановлением поврежденного участка провода. Иногда при такой неисправности можно также наблюдать две фазы в розетке.В момент замыкания происходит сварка фазной и нулевой жилы вместе, и поэтому фаза беспрепятственно попадает на нулевую жилу. Причем даже при выключенном из розеток электрооборудования и отключенных выключателей освещения фаза будет присутствовать на тех розетках и выключателях, на которые подается напряжение от этого провода. Лечится неисправность восстановлением поврежденного участка проводки. Если же остались вопросы, то в дополнение к статье посмотрите видеоролик, где также раскрыта тема обрыва нуля. В этой статье мы рассмотрели только самые распространенные неисправности, возникающие в однофазной электрической сети при повреждении нулевой жилы провода. Теперь если у Вас в розетке появятся две фазы, Вы сможете легко определить и устранить подобную неисправность.Удачи! sesaga.ru На рис. 4.4 показана схема трехфазной цепи, фазы которой электрически не связаны друг с другом. Такую трехфазную цепь называют несвязанной. Так как в несвязанной трехфазной цепи каждая из фаз источника соединяется с приемником двумя проводами, то в этом случае имеется шесть соединительных проводов. Несвязанные трехфазные цепи неэкономичны, и обычно их не применяют. С целью уменьшения числа соединительных проводов в трехфазной системе используют связанные цепи, в которых фазы источника (или приемника) соединяются между собой звездой или треугольником. Трехфазная система создана и внедрена в практику русским ученым М. О. Доливо-Добровольским в 90-х годах XIX столетия, который изобрел все звенья этой системы - генераторы, трансформаторы, линии электропередачи и двигатели трехфазного тока. При соединении фаз источника звездой (рис. 4.5, а) концы фаз X, Y, Z объединены в общую точку N, называемую нейтральной, а начала фаз А, В, С с помощью проводов соединены с приемником тремя проводами, которые называются линейными. Такую трехфазную систему называют трехпроводной. При соединении фаз источника треугольником (рис. 4.5, б) необходимо подключить конец каждой фазы к началу следующей, т. е. конец X первой фазы — с началом В второй фазы, конец Y второй фазы—с началом С третьей фазы и конец Z третьей фазы — с началом А первой фазы. Начала фаз А, В, С с помощью проводов соединяют с приемниками. Следует отметить, что при соединении треугольником фазы источника создают замкнутый контур и на первый взгляд может показаться, что в контуре при отключенных приемниках может возникнуть ток короткого замыкания, однако этого не происходит, так как в симметричной трехфазной системе сумма мгновенных значений э. д. с. Следовательно, при холостом ходе источника ток в его фазах не возникает. Соединение отдельных фаз трехфазных приемников звездой или треугольником осуществляют таким же образом, как и соединение звездой или треугольником источников. При соединении источника, например, звездой приемники могут быть соединены различным способом, т. е. одни — звездой, а другие — треугольником и т. д. Если нагрузка несимметричная, т. е. сопротивления фаз приемника не равны между собой, то при соединении источника и приемников звездой необходимо применять помимо трех линейных проводов четвертый, нейтральный про- вод, соединяющий нейтральные точки N и N' источника и приемника (далее рис. 4.7, а). Напряжение между началом и концом фазы источника называют фазным (Uф). Например, при соединении звездой фазными являются напряжения между началами фаз и нейтральной точкой источника N (рис. 4.5, а). Фазными токами (Iф) называются токи, проходящие через каждую фазу источника или приемника. Напряжения между началами А, В, С фаз источника или между линейными проводами называются линейными напряжениями Uл, а токи в линейных проводах - линейными токами Iл. При анализе трехфазных цепей важно знать условные положительные направления э. д. с., напряжений и токов, ибо от их выбора зависят знаки в уравнениях, составляемых по законам Кирхгофа, а также направления векторов на векторных диаграммах. Как уже указывалось (см. п. 4.1), за условное положительное направление э. д. с. в каждой фазе источника принимают направление от ее конца к началу, а за условное положительное направление напряжения в каждой фазе источника принимают направление от начала фазы к ее концу, направление же фазных токов совпадает с направлением э. д. с. в каждой фазе источника (рис. 4.5, а, б). За условные положительные направления линейных напряжений принимают направление от начала одной фазы к началу другой, в частности напряжение UAB направлено от А к В, напряжение UBC — от В к С, напряжение VCA — от С к А. Линейные токи, проходящие через линейные провода, всегда направлены от источника к приемнику (рис. 4.5, а, 6). Фазные напряжения и токи приемников направлены в одну и ту же сторону. Согласно второму закону Кирхгофа, э. д. с. фазы АХ при соединении звездой (рис. 4,5, а) откудагде— внутреннее сопротивление фазы А источника. Аналогично находят напряжения в двух других фазах: На практике приемники подключают не к отдельному источнику, а к сети, питающейся от системы параллельно работающих генераторов. Поэтому обычно пренебрегают внутренними сопротивлениями фаз источников и считают фазные э. д. с. равными фазным напряжениям. Чтобы найти связь между фазными и линейными напряжениями, при соединении источников э. д. с. звездой согласно с выбранными условными положительными направлениями фазных и линейных напряжений по второму закону Кирхгофа можно записать следующие соотношения: (4.5) Для симметричных источников Если принять потенциал нейтральной точки источникато потенциалы начала его фаз будут равны фазным напряжениям: а линейные напряжения равны: (4.6) По соотношениям (4.5), зная значения фазных напряжений, можно построить векторные диаграммы фазных и линейных напряжений источника при соединении его фаз звездой (рис. 4,6, а, б), которые будут представлять собой симметричную систему векторов, так как система фазных и линейных напряжений трехфазных генераторов, питающих электрическую сеть, вследствие их конструктивных особенностей симметрична. Векторная диаграмма, представленная на рис. 4.6, а, соответствует симметричной системе фазных и линейных напряжений при соединении источников звездой. В этом случае на диаграмме как фазные, так и линейные напряжения соответственно равны и сдвинуты соответственно друг относительно друга на угол 2л/3. Кроме того, из векторной диаграммы видно, что векторы линейных напряжений UAB, UBC, UCA опережают по фазе соответственно векторы фазных напряжений UA, UB, Uc на угол 2π/6. Векторную диаграмму фазных и линейных напряжений источника при соединении звездой можно представить и так, как показано на рис. 4.6, б, где линейные напряжения изображены векторами, соединяющими соответствующие векторы фазных напряжений. Из векторных диаграмм рис. 4.6, а, б можно получить соотношение, связывающее между собой фазные и линейные напряжения симметричного источника при соединении звездой. Так, для фазы A В общем случае при соединении фаз симметричного источника звездой связь между линейными и фазными напряжениями описывается выражением (4.7) Таким образом, при соединении фаз симметричного источника звездой линейные напряжения в раз больше фазных напряжений. Для приемников низкого напряжения номинальными являются Uл = 380 B и Uф = 220 B; Uл = 220 B и Uф = 127 B. Следует отметить, что в практике эксплуатации синхронных генераторов фазы их трехфазных обмоток соединяют только звездой, так как при отклонении э. д. с. источника от синусоидальной формы из-за наличия высших гармоник сумма мгновенных значений э. д. с. не будет равна нулю. При соединении фаз синхронного генератора треугольником при холостом ходе в его обмотках будут возникать токи, которые будут вызывать их нагревание и снижение к. п. д. генератора. Из рис. 4.5, б видно, что при соединении фаз источника треугольником линейные напряжения равны фазным: Итак, независимо от способа соединения фаз источника линейные напряжения между линейными проводами трехфазной цепи одинаковы и сдвинуты по фазе относительно друг друга на угол 2π/3, вследствие чего сумма их мгновенных значений или векторов всегда равна нулю. Однако значения линейных напряжений при соединении фаз источника треугольником будут в раз меньше, чем значения линейных напряжений при соединении фаз того же источника звездой. studfiles.net В РЕЖИМЕ ХОЛОСТОГО ХОДА: Амплитудные значения фазных напряжений равны между собой UА=UВ=UC =UФ Векторная диаграмма фазных напряжений Напряжение между началами двух фаз, или между двумя линейными проводами называется линейным напряжением. Амплитудные значения линейных напряжений равны между собой UАВ=UВС=UСА =UЛ Векторная диаграмма линейных напряжений Соотношение между фазным и линейным напряжением при соединении звездой СТАНДАРТНЫЕ НАПРЯЖЕНИЯ ТРЕХФАЗНОГО ТОКА 127 В 220 В 380 В 660 В и т.д. СОЕДИНЕНИЕ ОБМОТОК ГЕНЕРАТОРА И ПОТРЕБИТЕЛЯ ЗВЕЗДОЙ Токи, протекающие по линейным проводам, называются линейными, а по фазе – фазными. Соотношение между линейным и фазным током при соединении звездой Обозначение линейных и фазных токов IА IВ IС ТОК В НУЛЕВОМ ПРОВОДЕ РАВЕН ГЕОМЕТРИЧЕСКОЙСУММЕ ФАЗНЫХ ТОКОВ 1.РАВНОМЕРНАЯ ИЛИ СИММЕТРИЧНАЯ НАГРУЗКА ФАЗ – это одинаковая нагрузка всех трех фаз, т.е. в каждую фазу включено одинаковое количество активных и реактивных элементов. ZФ = ZA=ZB=ZC UА=UВ=UC =UФ IА=IВ=IC =IФ Неравномерная нагрузка фаз Равномерная нагрузка фаз Задача В трехфазную сеть включена звездой равномерная нагрузка. Фазные токи имеют значения 2 А каждый. Определить ток в нулевом проводе. Решение Дано: IА=IВ=IC =2 А Ток в нулевом проводе равен геометрической сумме Найти: I0 фазных токов Следовательно, чтобы определить ток в нулевом проводе необходимо построить векторную диаграмму. ПОРЯДОК ПОСТРОЕНИЯ ВЕКТОРНОЙ ДИАГРАММЫ 1. Задаемся масштабом по току. В качестве масштаба выбираем такое число, чтобы значение фазных токов делилось на него без остатка. Для данной задачи МI = 1 А/кл 2. Определяем длины векторов фазных токов 3. Строим вектора фазных токов под углом 120 градусов друг относительно друга. Находим геометрическую сумму фазных токов. Для этого используем метод силового многоугольника. Каждый следующий вектор строим из конца предыдущего с учетом его направления. При равномерной нагрузке фаз тока в нулевом проводе нет, и нулевой провод не прокладывается. Используется трехфазная трехпроводная система. 2.НЕРАВНОМЕРНАЯ ИЛИ НЕСИММЕТРИЧНАЯ НАГРУЗКА ФАЗ ZФ → ZA≠ZB≠ZC UА=UВ=UC =UФ IФ→ IА≠IВ≠IC ЗАДАЧА В трехфазную сеть включена звездой неравномерная нагрузка. Ток в фазе А равен 10 А, ток в фазе В равен 6 А, ток в фазе С равен 2А. Определить ток в нулевом проводе. Дано: Решение IА=10 А Ток в нулевом проводе равен геометрической сумме IВ=6 А фазных токов IC =2 А Найти: Следовательно, чтобы определить ток в нулевом проводе I0 необходимо построить векторную диаграмму. ПОРЯДОК ПОСТРОЕНИЯ ВЕКТОРНОЙ ДИАГРАММЫ 1. Задаемся масштабом по току. В качестве масштаба выбираем такое число, чтобы значение фазных токов делилось на него без остатка. Для данной задачи МI = 2 А/кл 2. Определяем длины векторов фазных токов 3. Строим вектора фазных токов под углом 120 градусов друг относительно друга. Находим геометрическую сумму фазных токов. Для этого используем метод силового многоугольника. Каждый следующий вектор строим из конца предыдущего с учетом его направления. 4. Измеряем длину вектора тока в нулевом проводе. 5. Определяем ток в нулевом проводе Тема. РОЛЬ НУЛЕВОГО ПРОВОДА В НУЛЕВОЙ ПРОВОД НЕ СТАВЯТ ПРЕДОХРАНИТЕЛИ, ЧТОБЫ НЕ БЫЛО ОБРЫВА. НУЛЕВОЙ ПРОВОД НУЖЕН ДЛЯ РАВНОМЕРНОГО РАСПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПО ФАЗАМ. Тема. СОЕДИНЕНИЕ ТРЕУГОЛЬНИКОМ infopedia.suНапряжение между началом и концом фазы , или между линейным и нулевым проводом называется фазным напряжением. Напряжение между 2 фазами
Фаза на нулевом проводе - Всё о электрике в доме
Как в обычной розетке может появиться две фазы
Почему в розетке две фазы?
Почему после отключения всех электроприборов от сети в розетке все равно наблюдается две фазы?
Две фазы в розетке. Причины. Что делать?
Немного теории.
1. Обрыв нуля во входном щитке дома или квартиры.
2. Обрыв нуля на входе или внутри распределительной коробки.
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.
Понравилась статья — поделитесь с друзьями:
Две фазы в розетке. Причины. Что делать?
Немного теории.
1. Обрыв нуля во входном щитке дома или квартиры.
2. Обрыв нуля на входе или внутри распределительной коробки.
3. Замыкание нулевой жилы на фазную при механическом повреждении изоляции.
4.2. Способы соединения фаз источника трехфазного тока и соотношения между его линейными и фазными напряжениями
Напряжение между началом и концом фазы , или между линейным и нулевым проводом называется фазным напряжением
Поделиться с друзьями: