Как правило, диоды и тиристоры и прочие полупроводниковые элементы подбираются по номинальным напряжениям и токам. Но иногда возникают ситуации когда выбранных номиналов не достаточно для нормальной работы устройств. В таком случае иногда используют параллельное или последовательное соединение вентилей. Последовательное – для повышения напряжения, проводимого элементами, а параллельное для увеличения тока устройства. Мы рассмотрим такие включения на примере диодов и тиристоров. Последовательное включение вентилей как правило применяют в высоковольтных установках. Такой способ включения позволяет сэкономить на согласующих трансформаторах (а они как правило дорогие), а также убрать из цепи еще одно звено преобразования энергии (понижающий и повышающий трансформаторы). Но эта система не так проста как кажется на первый взгляд. Поскольку каждый из вентилей имеет свою вольт – амперную характеристику и не всегда они совпадают. Схема включения таких элементов показана ниже: Поскольку вентили включены последовательно, то согласно закону Кирхгофа, обратное напряжение, приложенное к тиристорам поделится на количество тиристоров включенных в цепь. В нашем случае на два. Но как упоминалось выше, каждый тиристор имеет свою вольт – амперную характеристику, она приведена ниже: Как мы можем видеть из характеристики, при протекании одного и того же обратного тока через вентили, напряжения UR1 и UR2 будут различны. В нашем случае UR1> UR2. Это нужно учитывать, так как UR1 может быть больше допустимого значения, что может привести к выходу из строя устройства. В еще более тяжелом состоянии оказывается тиристор с меньшим временем восстановления запирающих свойств в динамических режимах. К нему будет прикладываться суммарное напряжение всей системы UR , что может привести к самопроизвольному открытию тиристора или пробоя его структуры. Поэтому перед включением тиристоров в последовательную цепь проводят их подборку по свойствам восстановления их запирающих свойств с помощью специального устройства или проверка проводится заводом изготовителем по предварительному согласованию. Так как идеально подобрать все вентили не удается, то применяют различные схемы для защиты их от неравномерного распределения напряжения. В целях выравнивания напряжения на отдельных приборах применяют шунтирующий резистор Rш, примерное сопротивление которого считается по формуле: Где: n – число приборов, которые включены последовательно; U – максимально допустимое напряжение прибора, В; Um – максимальное напряжение ветви с устройствами, В; IRm – максимальный обратный ток (в закрытом состоянии) в амплитудных значениях, А. Мощность данного резистора мы можем рассчитать из известных каталожных данных URSM и полученного сопротивления шунтирующего резистора: Для выравнивания напряжения в переходных режимах параллельно к тиристору подключают конденсатор, где его емкость рассчитывается по формуле: Где: n – число приборов, которые включены последовательно; ∆QRR – наибольшая разность зарядов восстановления устройств, Кл; максимально допустимое напряжение прибора, В; Ек – максимальное напряжение, приложенное к цепи с включенными приборами, В. Параллельно включенный конденсатор эффективно выравнивает напряжение в переходных режимах, но при этом увеличивается ток на интервале отпирания. Чтоб ограничить этот ток применяют демпфирующий резистор RД. Методика расчета этого резистора не приводится в данной статье, но как правило сопротивление этого резистора не превышает несколько десятков Ом. Схема показана ниже: Чтоб ограничить скорость нарастания потенциала в закрытом состоянии, которое может вызывать самопроизвольное включение тиристора, параллельно к демпфирующим резисторам RД подключают диоды ДД, они имеют возможно меньшее время восстановления: Также выравнивание потенциалов могут осуществлять с помощью лавинных диодов или стабилитронов, которые подключают параллельно. Максимальное значения напряжения диодов или стабилитронов должно быть либо немного меньше или равно напряжению переключения тиристора. Также данные устройства должны иметь минимальный разброс по пробою: Если выравниванию подлежит и прямое и обратное напряжение, то применяют такую схему: Если не предъявляют жестких требований к разбросу, то может использоваться такой вариант: Также данные схемы требуют постоянного контроля за работой каждого тиристора, так как при выходе из строя одного, возрастет потенциал на других элементах, что может привести к выходу из строя целого плеча элемента. Идея включения последовательно не очень хороша и имеет свои изъяны. Поэтому следует при использовании приведенных выше схем оценить их экономическую и техническую целесообразность. elenergi.ru Последовательным называется соединение, когда ток последовательно проходит через несколько потребителей. В схеме на рис.9 последовательно включены три резистора. Здесь и далее источник ЭДС, питающий схему, не отображается. Однако, не нужно забывать, что он есть и создаёт на входных клеммах напряжение питания . В схеме можно измерить четыре напряжения: общее для всей цепи и напряжения на каждом из резисторов. Напряжение на этой и других схемах обозначается стрелкой, направленной от “+” к “-”. Главное свойство последовательной цепи состоит в том, что ток одинаков во всех участках цепи. Это можно понять, представив, что мы имеем дело с водой, последовательно протекающей по нескольким трубам. Сколько бы ни было труб, во всех протекает одно и тоже количество воды. В электрической схеме мы имеем дело не с водой, а с движущимся по проводам потоком электронов. Но принцип остаётся в силе: сколько электронов начало движение от верхней клеммы, столько же их подойдёт к нижней клемме. Рис.9 Последовательное соединение резисторов Главное свойство последовательной цепи состоит в том, что ток одинаков во всех участках цепи. Это можно понять, представив, что мы имеем дело с водой, последовательно протекающей по нескольким трубам. Сколько бы ни было труб, во всех протекает одно и тоже количество воды. В электрической схеме мы имеем дело не с водой, а с движущимся по проводам потоком электронов. Но принцип остаётся в силе: сколько электронов начало движение от верхней клеммы, столько же их подойдёт к нижней клемме. Общее напряжение, приложенное к цепи, равно сумме напряжений на всех элементах, входящих в цепь: Общее сопротивление всей цепи равно сумме всех сопротивлений: Последовательное соединение применяется, например, в елочной гирлянде. В ней, можно соединить последовательно 22 низковольтные лампочки, каждая рассчитана на 10 В. Общее напряжение составит 220В. Главный недостаток последовательного соединения состоит в том, что обрыв одного сопротивления выключает (разрывает) всю цепь. При перегорании одной лампочки в гирлянде, она погаснет вся. Пример 5. Расчёт цепи с последовательным соединением резисторов. Последовательно соединены , , , общее напряжение . Найти ток в цепи и напряжение на каждом сопротивлении. Решение: 1) Найдем общее сопротивление всей цепи: 2) Найдем ток в цепи по закону Ома: 3) Найдем напряжение на каждом из сопротивлений, входящих в цепь: Если все сопротивления в цепи одинаковые, то напряжения на них будут равны. Если сопротивления разные, то напряжение будет больше, где будет больше сопротивление. Пример 6. Расчёт цепи с последовательным соединением резисторов. Последовательно соединены два резистора (см. рис.10). Рис. 10. Схема к задаче Известно: , . Вольтметр, подключённый к резистору R1 показывает . Найти напряжение на втором резисторе и общее напряжение , приложенное к схеме. Решение: 1) Найдем общее сопротивление цепи: 2) Найдем ток в цепи: 3) Найдем напряжение на втором резисторе: 4) Найдем общее напряжение Применение последовательного соединения в технике. Реостат Реостат – это электротехническое устройство, служащее для регулирования тока в цепи. Он представляет собой спираль из высокоомной проволоки, намотанную на керамический цилиндр. Спираль имеет два вывода. Вдоль реостата может перемещаться движок – подвижный контакт, который является третьим выводом реостата. (На схеме обозначен стрелкой.) Реостат применятся, например, с целью регулирования яркости лампы. Рис.11. Реостат и схема включения реостата В схеме на рис.11 показано, что реостат включён последовательно с лампой накаливания. Используя свойства последовательного соединения, запишем: В знаменателе формулы здесь записана сумма сопротивлений реостата и лампы, образующая общее сопротивление цепи. Ток проходит от верхней входной клеммы, по левой части реостата до движка, затем переходит на движок и далее, по пути наименьшего сопротивления, проходит по проводу мимо правой части реостата. Далее ток проходит по лампе и попадает на нижнюю входную клемму. При перемещении движка реостата слева направо, возрастает сопротивление той части реостата по которой проходит ток. В результате, в соответствии с формулой, ток в цепи, а, следовательно, и яркость лампы уменьшаются. Пример 7. С помощью реостата регулируют напряжение на лампе (рис. 11). Движок реостата находится в среднем положении. Известно: что сопротивление всей обмотки реостата Rр составляет 200 Ом, а сопротивление лампы . В среднем положении движка напряжение на лампе . Общее напряжение, приложенное к цепи, составляет 100В. Решение: 1) Найдем ток в цепи. Реостат и лампа соединены последовательно. В среднем положении реостата работает только половина его обмотки. Поэтому: 2) Найдем напряжение на лампе Uл Делитель напряжения Рассмотрим применение последовательного соединения в схеме делителя напряжения: Рис. 12. Делитель напряжения Делителем напряжения называется схема, состоящая из двух резисторов, включённых последовательно, которая позволяет получить на выходе напряжение, меньше чем на входе. Такая схема часто используется в электротехнике или электронике. Например, источник ЭДС дает 10 В, а нам нужно только 5В. Потребуется делить напряжения. В схеме делителя резисторы R1 и R2 соединены последовательно. На входные (левые) клеммы схемы подаётся входное напряжение, общее для двух резисторов. С выходных (правых) клемм можно снять выходное напряжение. Оно всегда будет меньше, чем входное. Это следует из свойств последовательного соединения: , следовательно: , то есть напряжение на выходе делителя (на резисторе R2) всегда меньше чем на входе. Здесь мы впервые используем термин падение напряжения на сопротивлении R1. Смысл его в том, что на сопротивлении R1 падает (теряется) избыточное, ненужное напряжение. Верхний по схеме резистор называется гасящим плечом делителя. На нём гасится (падает) излишек напряжения. Нижний резистор называется рабочим плечом, т.к. с него снимается напряжение, которое будет подано для работы какого-то устройства или схемы. Степень уменьшения напряжения делителя определяется соотношением плеч делителя. Если необходимо уменьшить Uвых , то гасящее плечо нужно увеличить и наоборот. Чтобы изменить величину напряжения на выходе делителя нужно отключить резистор R1 и заменить его резистором другой величины. Потенциометр Потенциометр - это, фактически, тот же делитель напряжения, но позволяющий плавно регулировать величину напряжения выходного напряжения Uвых. В качестве потенциометра используется реостат (см. рис.11) включённый по схеме потенциометра. Движок реостата, обозначенный на схеме стрелкой, разбивает всю обмотку реостата (его полное сопротивление) на две части. Верхняя часть полного сопротивления реостата (R1) образует гасящее плечо делителя напряжения. Нижняя – рабочее (R2). Рис. 13. Регулирование напряжения с помощью потенциометра Перемещая движок реостата вверх или вниз, можно плавно регулировать величину выходного напряжения. В верхнем положении движка реостата напряжение на выходе будет равно напряжению на входе. В нижнем положении движка напряжение на выходе станет равно нулю. Потенциометр применяется, например, в качестве регулятора громкости в радиоприёмнике. Читайте также: lektsia.com Cтраница 1 Последовательное соединение потребителей не всегда удобно, поскольку при отключении одного из них ток прекращается во всей цепи и одновременно отключаются все потребители. [1] Последовательным соединением потребителей называется такое соединение ( рис. 6.5), при котором через все потребители проходит один и тот же ток. [3] При последовательном соединении потребителей они включаются в цепь поочередно друг за другом без разветвлений проводов между ними. Форма линий, обозначающих при этом соединительные провода, не играет роли, и потому схема цепи при одном и том же типе соединения может выглядеть по-разному. [4] При последовательном соединении потребителей их общее сопротивление равно сумме сопротивлений отдельных потребителей; величина тока в любой точке цепи одинакова, а напряжение между различными точками замкнутой цепи различное. [6] При последовательном соединении потребителей ( сопротивлений) величина тока в любой точке цепи одинакова, и напряжение на зажимах каждого потребителя зависит от величины сопротивления и тока в нем. [7] Тем не менее последовательное соединение потребителей приходится применять в том случае, когда напряжение источника тока превышает нормальное напряжение, на которое рассчитан потребитель. [8] Резонанс в цепи при последовательном соединении потребителей носит название резонанса напряжений. [10] Совершенно иначе обстоит дело при последовательном соединении потребителей, при котором изменение сопротивления одного из них тотчас же влечет за собой изменение напряжения на других связанных с ним потребителях. При выключении или обрыве электрической цепи в одном из потребителей и в остальных последовательно включенных потребителях прекращается ток. Отсюда видно, что параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение. В частности, электрические лампы и двигатели, предназначенные для работы при определенном ( номинальном) напряжении всегда включаются параллельно. [11] Следовательно, второе свойство цепи с последовательным соединением потребителей состоит в том, что напряжения на последовательно соединенных потребителях распределяются прямо пропорционально величинам их сопротивлений. [12] Итак, четвертое свойство цепи с последовательным соединением потребителей состоит в том, что ее общее сопротивление равно сумме сопротивлений потребителей. [14] Как распределяются токи, напряжения и мощности при последовательном соединении потребителей. [15] Страницы: 1 2 www.ngpedia.ruПоследовательное соединение потребителей. Напряжение последовательное
Последовательное включение полупроводниковых приборов
Последовательное соединение потребителей
⇐ ПредыдущаяСтр 3 из 7Следующая ⇒
Последовательное соединение - потребитель - Большая Энциклопедия Нефти и Газа, статья, страница 1
Последовательное соединение - потребитель
Поделиться с друзьями: