Перенапряжения, которые возникают в электросети, сопровождаются, как правило, выходом из строя электрических приборов. Кроме того, перенапряжения, могут привести к таким негативным последствиям как пожар или даже гибель людей. В данной статье рассмотрены устройства, которые применяются для защиты от перенапряжения в сети. Довольно часто в наших домах и квартирах можно наблюдать то, что напряжение в розетках несколько отличается от положенных 220 В. Зависит это от разных причин и диапазон таких отклонений напряжения может колебаться от 170 – 380 В до нескольких тысяч В. Не трудно догадаться, что такие перепады напряжения часто становятся причиной выхода из строя бытовой техники. Понятно, что пониженное напряжение может привести к не корректной работе электрооборудования, а повышенное к выходу его из строя, особенно это касается таких устройств как компьютеры, телевизоры, плазменные панели, холодильники и т.п. Перенапряжением называется такое значение установившегося напряжения, которое превышает значение предельно допустимого напряжения. Государственным стандартом качества электрической энергии установлены нормы отклонения напряжения в точке подключения потребителей электрической энергии. Существует понятие допустимое и предельно допустимое значение напряжения. Эти значения равны соответственно ±5 и ±10 % от номинального значения напряжения и в точках общего присоединения потребителей. То есть нормальным считается напряжение: 1) Самой распространенной причиной перенапряжения для бытовых потребителей является обрыв нулевого провода (N). Нулевой провод при несимметричных нагрузках выравнивает фазные напряжения у потребителя электроэнергии. При обрыве или отгорании нулевого провода ток будет циркулировать между фазами. Часть потребителей получит повышенное напряжение, вплоть до 380 В, а часть заниженное. 2) Неправильное или ошибочное подключение в электрощитовой, когда вместо нулевого провода вы подключаете фазный, при этом в дом приходит не 220 В, а 380 В. 3) Во время грозовых разрядов, удар молнии в линию электропередачи, возникают импульсные перенапряжения которые по величине могут достигать нескольких тыс. В. 4) Регулирования напряжения на подстанциях энергосистем. — применение стабилизаторов напряжения предохраняет вашу сеть от перепадов напряжения, делая эксплуатацию электротехники безопасной. Большинство таких приборов имеют дисплей, на котором отображается напряжение сети, график скачков напряжения и т.п. Стабилизаторы оснащены функцией контроля напряжения, если значение напряжения сети выходит за диапазон контроля стабилизатора, например ниже 150 В или выше 260 В, то стабилизатор блокируется и отключает от сети потребителя. Как только напряжение сети возобновляется до допустимых значений, стабилизатор снова включается . — реле напряжения защищает и отключает бытовую технику при возникновении недопустимых перепадов напряжения и автоматически включает потребителей после восстановления его допустимых значений. Реле напряжения широко используется для защиты от перенапряжения бытовых электроприборов. Целесообразно использовать реле напряжения в квартирах так как в таких сетях не редко возникают опасные перенапряжения из за обрыва нулевого провода. Реле напряжения по своей структуре могут использоваться для защиты как одного конкретного потребителя, так и для защиты всего дома или квартиры. При защите одного или группы потребителей, реле напряжения подключается по схеме приемник – реле — розетка, то есть прибор подключается к реле, затем само реле включается в розетку. Для защиты от перенапряжения всего дома или квартиры, реле напряжения устанавливается на DIN-рейку в распределительном щитке. — комбинированное использование датчика повышенного напряжения (ДПН) и УЗО такой способ борьбы с перенапряжением получил широкое распространение благодаря незначительной цене. Принцип работы весьма прост: ДПН контролирует наличие напряжения сети, УЗО отключает сеть при возникновении перенапряжения. Защита от перенапряжения в сети – очень важное мероприятие, которое позволит не только продлить срок службы электропроводки, но и повысит безопасность при скачках напряжения. Если не защитить линию от перенапряжения. то можно не только вывести из строя всю бытовую технику, но и подвергнуть свое жилье пожару, не говоря уже о собственном здоровье. Далее мы рассмотрим основные причины возникновения перенапряжения, а также устройства, которые позволят уберечь электропроводку от губительных последствий данного явления. Чаще всего перенапряжение в сети 220 и 380 Вольт возникает по следующим причинам: Наглядный видео пример действия перенапряжения Как Вы видите, на перегрузку в однофазной и трехфазной сети влияет множество факторов, в том числе и природные. Поэтому домашнюю проводку нужно обязательно защитить, чтобы не стать жертвой несчастного случая. В современном мире существует множество различных устройств для защиты от перенапряжения в сети, которые несложно подключить своими руками. Изделия могут эффективно справляться не только с перепадами напряжения, но и со сверхтоками, которые также губительно влияют на домашнюю проводку. Среди наиболее полезных для применения в доме и квартире выделяют: Купив все эти устройства для защиты от перенапряжения в сети 220 и 380 Вольт можно не беспокоиться о том, что пострадает бытовая техника, электропроводка и главное – Ваша жизнь в опасной ситуации. Видео пример срабатывания ДПН и УЗО Как правило, в электрических сетях напряжение должно находиться в пределах, определенных техническими нормативами, но иногда оно может и отклоняться от допустимых параметров. Предельно допустимое напряжение должно находиться в пределах ±10% от номинальных параметров напряжения, таким образом для однофазной сети в оно будет равно от 198 до 242 В, а для трехфазной сети от 342 до 418 В. И любые отклонения от данных значений будут называться перенапряжениями. Перенапряжения имеют разную природу и от этого различаются длительностью и величиной. Обычно длительные перенапряжения возникают из-за какой-либо поломки понижающего трансформатора на подстанции или обрыва нулевого провода в сети. Пути разноса перенапряжения Данные перенапряжения обладают сравнительно небольшими показателями, но действуют достаточно долгое время и представляют реальную угрозу для человека, и для вашего оборудования. Долгое повышение напряжения может случиться из-за неравномерного распределения нагрузок по всем фазам во внешней сети. Именно тогда возникнет перекос фаз, при котором напряжение на загруженной фазе будет ниже, а на незагруженной естественно выше номинального. Краткие по времени всплески напряжения могут появиться из-за переключений в энергосети или во время включения достаточно сильных реактивных нагрузок. Сильные импульсные перенапряжения возникают в результате воздействия грозовых разрядов. И напряжение может достигнуть десятков киловольт. Данные импульсы длятся в течение сотни микросекунд, и специальные защитные автоматы просто не успевают на них среагировать, потому что самые современные виды автоматов имеют время срабатывания единицы миллисекунд, и это может быть причиной выхода из строя и повреждения изоляции между фазой и нейтралью. Хотя, это не приведет к короткому замыканию и не нарушит работу сети, но приведет к небольшой утечке тока в месте повреждения изоляции. И если будет проходить между фазой и нейтралью, то не будет фиксироваться и автоматами защиты, и это приведет к повышенному нагреву изоляции и ускоренному процессу ее старения. По истечении времени сопротивление изоляции на данном участке значения уменьшается, и ток утечки возрастет. Последствия воздействия данных негативных факторов на электронное оборудование и электропроводку в доме могут быть катастрофическими, поэтому для домашней сети необходимо устройство защиты от перенапряжений. Возможность применения разных УЗИП для выполнения определенных защитных функций характеризуется по техническим показателям, отраженным в маркировке конкретного прибора. Он точно определяет параметр остаточного напряжения, которое появляется на выводах УЗИП после прохождения разрядного тока. Постоянный ток, который подается к нагрузке, защищенной УЗИП. Этот параметр важен для УЗИП, включаемых в сеть последовательно с защищенным оборудованием. Большое количество устройств защиты от импульсных перенапряжений подключаются параллельно цепи, и этот параметр у них, как правило, не отмечается. Для более надежной и качественной защиты домашней электрической проводки от перенапряжений нужно создать многоуровневую систему защиты из УЗИП разных классов. УЗИП 1 класса рассчитано на ток 60 кА, УЗИП 2 класса на ток 40 кА. УЗИП 3 класса на ток 10 кА. При введении многоступенчатой системы защиты от перенапряжений в сети необходимо обеспечить соответствующую мощность каждой ступени, т.е. их максимальный ток не должен превысить их номинальные показатели. И в первую очередь нужно создать качественную систему заземления и защиты от перенапряжения. Варисторы — это резисторы полупроводниковые, и при их работе применяется эффект снижения сопротивления полупроводникового материала при повышении приложенного напряжения, благодаря этому они являются более эффективными устройствами импульсной защиты. Варистор нужно включать параллельно защищаемому оборудованию и при нормальной работе он будет находиться непосредственно под действием рабочего напряжения защищаемого механизма. При рабочем режиме ток, проходящий через варистор очень мал, и он в данных условиях представляет собой изолятор. При появлении импульса напряжения сопротивление варистора резко уменьшится до долей ома. В данном случае через него кратковременно будет протекать ток в нескольких тысяч ампер. После гашения данного импульса напряжения он снова приобретет очень высокое сопротивление. В соответствии с системой защиты производится выбор УЗИП. Обязательно учитываются все технические показатели устройств, которые указаны в каталоге и нанесены на лицевую часть корпуса прибора. Прибор УЭ-18/380 предназначен для защиты электрической сети от кратковременных перенапряжений, вызванных грозовыми процессами. Данное устройство обеспечивает защиту и относится к УЗИП 3-го класса и выполнено на варисторах. Для качественной защиты от длительных перенапряжений, связанных с авариями в электрической сети, прибор необходимо подключать после УЗО и заземлять. Именно при таком подключении будет создаваться ток утечки, и обеспечиваться срабатывание УЗО. При установке и монтаже УЗИП нужно, чтобы расстояние между ступенями защиты было не меньше 10 м по кабелю электрического питания. Исполнение данного требования достаточно важно для правильной последовательности включения защитных устройств. У защиты класса В первая ступень устанавливается за пределами дома во входном специальном щите. От защищаемой зоны все ограничители перенапряжений можно разделить на классы или виды. Приборы 1 типа защищают объекты от внешних атмосферных и коммутационных перенапряжений, проходящих через разрядники класса А внешних электрических сетей. Как правило, они монтируются на вводном устройстве жилого дома и ограничивают величину перенапряжений до 4,0 кВ, сопутствуют защите вводных счетчиков и электрического оборудования распределительного щита. Специальное устройство импульсной защиты необходимо для предотвращения всевозможных повреждений домашней бытовой техники от сильных импульсных перенапряжений, которые вызваны различными авариями в питающей сети либо грозовыми разрядами. Данные устройства называются также ограничителями перенапряжений (ОП). Обычно они выполнены на базе разрядников либо варисторов и имеют специальные индикаторные устройства, которые сигнализируют о их поломке. УЗИП на базе варисторов производятся со специальным креплением на DIN-рейку. Источники: http://electricvdome.ru/zachita-ot-perenaprjazhenija/zachita-ot-perenaprjazhenija-v-seti.html, http://samelectrik.ru/ustrojstva-zashhity-ot-perenapryazheniya-v-seti.html, http://domsdelat.ru/elektroprovodka/ustrojstvo-relejnoj-zashhity-ot-perenapryazheniya-doma.html electricremont.ru Для обеспечения контроля над входным напряжением и перепадов напряжения для сети 220 Вольт в квартире или частном доме используют релейное автоматическое устройство Барьер. Основные элементы устройства: Говоря простым языком, с применением данного автомата, осуществляется защита от перенапряжения сети. Что в свою очередь подразумевает безопасное использование бытовой техники и электроприборов. Если напряжение в сети выше или ниже допустимых пределов, то устройство электрозащиты автоматически отключает подачу электричества. Все элементы устройства располагаются на печатной плате. Но основную функцию (защитное отключение) выполняет реле, через которое проходит электричество. Так же к силовым элементам данного устройства, которые расположены на плате, относят резисторы, диоды и блок питания. Элементом, выполняющим более тонкую работу, является контроллер, на основе которого обеспечивается контроль над измерением напряжения, светодиодными индикаторами и силовыми реле. Обратите внимание! Подбор автоматического устройства по мощности, необходимо осуществлять согласно мощности всех потребителей. Данный автомат устанавливается непосредственно в распределительный щиток. Корпус изделия предполагает установку на DIN – рейку. Занимаемое пространство соответствует трем однополюсным автоматам защитного отключения. К техническим данным устройства относят: срабатывание происходит в пределах о 120 до 400 В, мощность автоматов варьируется от 16 до 80 А (Ампер). При падении напряжения да нижнего предела, срабатывание происходит через 0,2 секунды, при превышении допустимого предела, автомат отключается через 1 секунду. Контроль трехфазного напряжения, осуществляется посредством специальных устройств электрозащиты. Данные устройства используют как в промышленных, так и в бытовых целях. Автоматический прибор служит для: Данное устройство обеспечивает включение и отключение нагрузки при работе от генератора. Для его работы не требуется использование дополнительных пусковых устройств. В промышленности данные устройства используют для обеспечения безопасной работы различных видов оборудования и агрегатов. В бытовых условиях, он применяется для стабильной работы, например электропечей или духовок. Работа устройства основана на том, что при скачках напряжения от электродвигателей, пускателей магнитных, или трансформаторных подстанций, он отключает подачу электроэнергии на данный участок электросети. Установка устройства производится на DIN – рейку. Сечение проводов подключаемых в клеммы устройства достигает 35мм2. На регулировочной панели, расположены два переключателя, которые отвечают за настройку прибора на максимальное и минимальное значение напряжения, при котором он должен срабатывать. Так же, панель прибора оснащена различными индикаторами, указывающими на то, что напряжение превышено или наоборот, меньше допустимого значения. Осуществляется индикация напряжения в каждой из трех фаз и клеммы для управления устройством дистанционно. Важно знать! Данные устройства, предназначены для работы только с трехфазными электросетями. Работа происходит следующим образом: после подключения его к сети, загораются индикаторы трех фаз. Если напряжение соответствует допустимым значениям, то загорается желтый знак. Для того, чтобы обеспечить равномерную подачу напряжения к определенному прибору или линии в квартире или доме, используют специальные устройства (стабилизаторы напряжения). В настоящее время, существует несколько видов стабилизаторов. Виды стабилизаторов: Стабилизаторы напряжения, удобно применять в нескольких случаях: дом находится в частном секторе, а электричество подается от подстанции старого образца. По каким – либо причинам, нет необходимости выполнять электромонтажные работы. Магниторезонансные стабилизаторы, являются самыми старыми образцами. Работа данных трансформаторов основывается на электромагнитном насыщении сердечника или дросселя. Стоит отметить, что достойным вариантом их назвать трудно, так как эти приборы зачастую маломощные, сильно искажается синусоидальная кривая напряжения на выходе. По сравнению с другими образцами, данный вид очень шумен при работе и при частом превышении напряжения быстро выходит из строя. Ступенчаты стабилизаторы, по своей сути гораздо надежнее магниторезонансных. Работа данных приборов происходит следующим образом: при помощи ключей, происходит переключение обмоток трансформатора, а выравнивание напряжения происходит ступенчато. Из – за того, что при работе данного трансформатора, напряжение выравнивается очень быстро, его удобно использовать для подключения холодильников, стиральных машин и других устройств и агрегатов оснащенными электродвигателями. Независимо от конструкции и принципа работы, все виды стабилизаторов осуществляют выравнивание различных значений напряжения до оптимальных. Регулировка напряжения в электромеханических трансформаторах происходит при перемещении щетки по обмотке устройства. Данный прибор, является самым практичным из всех представленных, так как напряжение выравнивается очень плавно, при работе отсутствуют помехи, и намного ровнее выходное напряжение. В настоящее время, в схемы с применением автоматов для защиты от перенапряжения, дополнительно встраивают устройства защитного отключения (УЗО), которые служат для обеспечения безопасности человека от поражения электрическим током. Схема состоит из: Стоит отметить, что существует две вариации сборки данной схемы. Одна служит для подключения всей электропроводки и приборов, другая для определенной группы. В первую очередь, к электросети подключается двухполюсной автоматический выключатель. Далее от него провода подключаются к электросчетчику. После в схему встраивается УЗО. Важно понимать, что мощность УЗО, должна быть равна или на порядок превосходить модность вводного автоматического выключателя (например, автомат мощностью 20 А – УЗО мощностью 40 А). Затем, после УЗО, в схему подключается автомат с защитой от перенапряжения, и закончить сборку нужно несколькими однополюсными автоматами на каждую группу (розетки, освещение). Обязательное условие! В данные схемы, устанавливается только двухполюсной вводной автомат. Во второй схеме после счетчика, устанавливается дополнительный автомат (вводной 20 А, дополнительный 16 А). После него подключается защите от перенапряжения, от которой параллельно одна фаза идет на УЗО, с автоматами на розетки, и отдельный автомат на освещение. Большинство устройств для защиты от перенапряжения в сети, для установки и подключения, не требуют особенных знаний и умений. Главное понимать принцип работы и способы применения. 6watt.ru Хотя подача электричества в квартиры и дома регулируется законодательством, жильцам не стоит полностью рассчитывать на то, что соответствующие службы обеспечат подачу электроэнергии нужного качества. Если из-за бросков сетевого напряжения дорогостоящие электроприборы выйдут из строя, получить компенсацию будет практически невозможно. А поскольку неполадки на электролиниях – не редкость, то стоит самостоятельно принять меры, которые помогут уберечь бытовую технику от поломки. Для этого нужна защита от перенапряжения, обеспечить которую можно, установив в сети соответствующий прибор – защитное реле, датчик с УЗО или стабилизатор напряжения. Номинал напряжения, обозначенный на всей бытовой электротехнике, составляет 220В, однако в реальной жизни это значение стабильно далеко не всегда. Это учитывается при изготовлении современных приборов, и они могут устойчиво работать при колебании напряжения от 209 до 231В, а также переносить разброс от 198 до 242В. Если бы небольшие перепады разности потенциалов не были предусмотрены конструкцией бытовой техники, она ломалась бы постоянно. Более значительные отклонения приводят к перегрузке сети, и это снижает эксплуатационный ресурс аппаратуры. Чтобы сгладить колебания напряжения и обеспечить безопасность приборов, достаточно установить стабилизатор. Гораздо опаснее для электротехники перенапряжение (так называется резкий скачок разности потенциалов). Перенапряжение может длиться как короткое, так и достаточно продолжительное время. Оно может быть вызвано ударом молнии во время грозы или коммутацией, возникшей из-за неполадок подстанции. Для защиты от них в сеть 220 или 380 Вольт (бытовую или промышленную) включается УЗИП (устройство защиты от импульсных перенапряжений). Его автоматическое срабатывание помогает обезопасить линию при воздействии, например, мощного грозового разряда, от которого не сможет спасти стабилизатор напряжения. Наглядно про УЗИП на видео: Удар молнии приводит к появлению мощного электромагнитного импульса, под влиянием которого в расположенных рядом с местом разряда проводниках возникают электрические потенциалы, и происходит резкий скачок напряжения. Длится он всего около 0,1 с, но величина разности потенциалов при этом составляет тысячи вольт. Понятно, что при поступлении такого напряжения в домашние и производственные сети последствия могут быть очень тяжелыми. Такое явление может произойти при включении в линию или выключении приборов, дающих высокую индуктивную нагрузку. К ним относятся блоки питания, электромоторы, а также мощные инструменты, запитывающиеся от сети. Этот эффект обусловлен законами коммутации. Моментальное изменение величины тока в соленоиде, а также разности потенциалов на конденсаторе произойти не может. Когда цепь с такой нагрузкой соединяется или размыкается, то в месте контакта отмечается появление вызванного самоиндукцией и коммутационными процессами электрического потенциала. Течение переходного процесса всегда сопровождается выбросом напряжения, которое обладает полярностью, обратной входному. Небольшая емкость проводников в сети вызывает резонанс, длящийся короткое время и вызывающий высокочастотные колебания. По завершении переходного процесса они затухают. Сколько продлится перенапряжение и какова будет его величина, зависит от следующих показателей: Поскольку изоляция проводов рассчитана на величину напряжения, значительно превышающую номинал, пробоя чаще всего не случается. Если электроимпульс действует в течение незначительного времени, то напряжение на выходе блоков питания со стабилизатором не успевает возрасти до критического показателя. Это же касается и обычных лампочек – если резко возросшее напряжение быстро нормализуется, то спираль не успевает не только перегореть, но даже перегреться. Если же изоляционный слой не выдерживает увеличившегося напряжения и происходит его пробой, то появляется электрическая дуга. В этом случае поток электронов проникает сквозь микротрещины, возникшие в изоляции, и идет через газы, которыми наполнены образовавшиеся мельчайшие пустоты. А большое количество тепла, выделяемое дугой, способствует расширению токопроводящего канала. В итоге нарастание тока происходит постепенно, и автомат защиты срабатывает с некоторым опозданием. И хотя оно занимает всего несколько мгновений, их оказывается вполне достаточно для выхода электропроводки из строя. Схема защиты электрической линии от скачков напряжения может включать в себя: Отдельно нужно сказать о блоках бесперебойного питания, через которые в домашних сетях чаще всего подключают компьютеры. Этот прибор не предназначен для защиты от перенапряжения в сети. Его функция заключается в другом: при внезапном отключении света он работает как аккумулятор, позволяя пользователю сохранить информацию и спокойно выключить ПК. Поэтому путать его со стабилизатором напряжения не следует. Для защиты от электроимпульсов, возникающих под действием молнии, устанавливается грозозащитный разрядник вместе с УЗИП. А обезопасить линию от потока электронов, параметры которого не соответствуют рабочим характеристикам сети, можно с помощью специальных датчиков, а также реле перенапряжения. Следует сказать, что как ДПН, так и реле по принципу действия и назначению отличаются от стабилизатора. Задача этих элементов состоит в том, чтобы прекратить подачу электроэнергии в случае превышения величиной перепада максимального порога, указанного в техническом паспорте средства защиты или выставленного регулятором. После нормализации параметров электрической линии происходит самостоятельное включение реле. ДПН для защиты линии следует устанавливать только в паре с устройством защитного отключения. Его задача заключается в том, чтобы при обнаружении неполадок вызвать утечку тока, под воздействием которой сработает УЗО. Наглядно про реле напряжения на видео: Недостаток такой схемы заключается в необходимости ее ручного включения после того, как напряжение придет в норму. В этом плане выгодно отличается стабилизатор напряжения. Это устройство предусматривает регулируемую временную задержку токоподачи, если происходит его срабатывание под воздействием чрезмерного напряжения. Стабилизатор часто используют для подключения кондиционеров и холодильных аппаратов. Продолжительные перенапряжения очень часто происходят из-за обрыва нулевого проводника. Неравномерность нагрузки на фазных жилах становится причиной перекоса фаз – смещения разности потенциалов к проводнику с самой большой нагрузкой. Иначе говоря, под воздействием неравномерного трехфазного электротока на нулевом кабеле, не имеющем заземления, начинает скапливаться напряжение. Ситуация не нормализуется до тех пор, пока повторная авария окончательно не выведет линию из строя или специалист не устранит неисправность. При обрыве нулевого провода в электророзетке будет происходить изменение напряжения в соответствии с нагрузкой, которую пользователи, не знающие о неполадках, будут подключать на различные фазы. Пользоваться неисправной цепью практически невозможно, даже если в линию питания включен хороший стабилизатор. Дело в том, что сетевые параметры, регулярно выходящие за пределы стабилизации, приведут к тому, что прибор будет постоянно выключаться. Наглядно про обрыв ноля и что нужно при этом делать – на видео: Это явление особенно хорошо знакомо людям, проживающим в деревнях и селах. Провалом (проседанием) называется падение величины напряжения ниже допустимого предела. Опасность проседаний заключается в том, что в конструкцию многих бытовых приборов входит несколько блоков электропитания, и недостаток напряжения приведет к тому, что один из них кратковременно выключится. Аппарат среагирует на это выдачей ошибки на дисплее и остановкой работы. Если речь идет об отопительном котле, а неисправность произошла в зимнее время, то дом останется без отопления. Избежать такой ситуации поможет подключение стабилизатора. Этот прибор, зафиксировав проседание, повысит величину напряжения до номинала. Стабилизатор может спасти ситуацию, даже если напряжение в сети упало по вине трансформаторной подстанции. В этой статье мы рассказали, для чего нужна защита от перенапряжения в сети, какими устройствами она обеспечивается и как правильно ими пользоваться. Приведенные рекомендации помогут читателям разобраться в причинах сбоя сетевого напряжения, а также выбрать и установить устройство для защиты электросети. yaelectrik.ru Скачки напряжения распространены в бытовых электросетях. Регулярные сбои параметров сети приводят к быстрому выходу из строя домашней техники. А это уже является прямой угрозой для организма человека. Современные защиты Перенапряжение – состояние электросети, при котором напряжение выходит за лимиты рабочего. Допустимый диапазон для электросетей 0, 38 кВ: 0,198..0,242 для однофазных, 0,342..0,418 для трехфазных. Т.е. отклонение колеблется в пределах 5-10% на вводах к потребителям. Причины возникновения перенапряжений в сети: Бытовая техника рассчитывается на присутствие скачков электроэнергии, превышающих рабочие значения в три раза (до 1000 В). Если происходит аварийная ситуация, то значение скачков может превышать предельно допустимые нормы. При этом происходит перегрев кабелей, пробой изоляционной оболочки, и как следствие искрение и возникновение пожаров. КЗ могут возникать даже на участках электросети без нагрузки. Мерами безопасности являются УЗИП (устройства защиты от импульсных перенапряжений). Различают два вида: Современные меры безопасности УЗИП Виды защит от перенапряжения: Используются для защиты всей сети, так и для каждого электроаппарата в отдельности. Устройства, предназначенные для: Применяются в системах с автоматическим управлением. Импортное оборудование очень требовательно к качеству электросетей. Отсутствие надлежащих мер контроля электричества приводит к быстрому износу и полному выходу из строя электроаппаратов. Реле контроля фаз также предназначено для стабилизации параметров питающей сети. Реле контроля фаз Преимущества: Принцип работы основан на явлении самовозврата параметров. При подаче напряжения устройство осуществляет контроль. Происходит аварийное отключение, когда возникают сбои. Места установки: При одновременном пропадании нескольких фаз, устройство срабатывает без задержки во времени. Устройство автоматического ввода резервного питания Причины срабатывания реле: Различают феррорезонансные, симисторные, релейные стабилизаторные электроприборы и сервоприводные стабилизаторы. В системе трансформатор-конденсатор использует эффект феррорезонанса. Выполняют стабилизацию параметров в выбранном диапазоне нагрузок. Малораспространенный тип из-за сложностей внедрения в бытовые системы электоснабжения и высокой стоимости. Преимущества: Недостатки: Принцип действия – срабатывание сигнала по релейному типу. Разъединение цепи осуществляется симисторами. Преимущества: Недостатки: Используются для предохранения электроаппаратов малой мощности. Прибор включает в себя силовое реле и автотрансформатор. При изменении параметров внешней сети происходит срабатывание релейного элемента и переключение обмоток автотрансформатора. Преимущества: Недостатки: Устроены по схеме реостата. Электропривод при изменениях параметров электросети перемещает подвижные контакты на обмотке автотрансформатора до необходимого положения. Преимущества: Недостатки: Автоматический стабилизатор напряжения Монтаж выполняется в соответствии с требованиями электробезопасности – без нагрузки. Присоединение в цепь выполняют непосредственно после счётчика. Соединение фазного провода – с разрывом. В устройстве имеется три контакта: В случае четырёхконтактного подключения схема аналогична. Фазные жилы и нейтраль, идущие от главного автомата, присоединяются путём разрыва на стабилизатор. Рекомендации: После установки производится пробное включение – без нагрузки. Если происходит отключение сети, то монтаж выполнен с ошибками. Существуют переносные стабилизирующие устройства. Представляют собой короб с вилкой и несколькими розетками для подключения электроприборов. Являются переходниками между питающей сетью и нагрузкой. Эксплуатация стабилизаторов в сетях 380 В: При выборе стабилизирующего аппарата необходимо учитывать: стоимость оборудования, срок эксплуатации, быстродействие, удобство интерфейса, устройство регулировки, характеристику нагрузки бытовой сети. Приборы устанавливают в специально оборудованных помещениях – электрощитовых. Если такого нет, то местом установки могут стать тамбуры, кладовые, подсобки. Главное условие для комнаты – обеспечение качественной вентиляции. При установке стабилизаторов в утопленные полки и ниши, необходимо отступить от стен на 10 см для исключения перегрева соседних поверхностей. Также рядом не должно быть легковоспламеняющихся материалов – пластиковых панелей, синтетических штор и т. д. Подбор стабилизаторов: Однофазный устанавливают для потребителей, запитанных от сети 220 В. В расчётах используют полную мощность, учитывающую (актив и реактив). Для защиты устройств электроосвещения используются стабилизаторы с точностью не менее 3%. Именно с этого значения можно зафиксировать мерцание ламп. Стоит ответить на вопрос, что лучше один стабилизатор на дом или несколько для каждого электроприбора? Для маломощных систем подходит схема установки одного комплекта на вводе. Такой способ защиты экономически оправдан. Если предполагается использование большого количества электроустановок, то целесообразно ставить защиту на каждый прибор или на группу с учётом важности и экономической целесообразности. ИБП используют для подключения дорогостояще техники: телевизоры, холодильники, компьютеры и т. д. Каким образом осуществляется установка реле от защиты от перенапряжения, рассказывает это видео. При проектировании электроснабжения жилого дома следует особое внимание уделить защите сети от перенапряжений. Применение комплексных мероприятий позволяет снизить риск аварийной ситуации до минимума. Также следует не забывать об элементарных правилах использования и содержания электроприборов. Это не только защищает жизнь людей, но и экономит средства на последующие ремонт и замену испорченного электрооборудования. elquanta.ru Для защиты потребителей электроэнергии предусмотрены стабилизаторы напряжения, с возможным вариантом установки, как на входе в домашнюю электрическую сеть, так и для отдельно взятого прибора. Эти устройства осуществляют контроль параметров напряжения в сети с последующим приведением их к номинальному значению. Однако, несмотря на все преимущества систем стабилизации, они имеют существенный недостаток – относительно длительный период времени, в течение которого происходит приведение параметров электросети до номинального значения, что не всегда допустимо для сложной, чувствительной и дорогостоящей электронной техники. Оптимальным вариантом защиты электрических приборов от всплесков и провалов параметров электроэнергии служат реле напряжения (РН). Главным достоинством этих приборов является быстродействие, время срабатывания измеряется в наносекундах. Конструкцией аппарата предусмотрена регулировка порога срабатывания. Реле напряжения осуществляет функции контроля параметров напряжения сети и мгновенного отключения потребителя в случае их недопустимого отклонения от номинала. В качестве рабочего органа выступает электронное устройство, собранное на базе компаратора или микропроцессора. В зависимости от технических условий защищаемого оборудования, определяющих допустимые пределы отклонения текущей величины от номинальной, устройство реле предусматривает возможность выбрать порог чувствительности прибора. На практике находят применение модели, обеспечивающие автоматическую подачу электроэнергии на потребитель после нормализации параметров напряжения, а также, возобновляющие свою работу после нажатия кнопки разблокировки. Решение, какой из двух выше указанных аппаратов защиты выбрать, необходимо решать исходя из конкретных условий. На сегодняшний день выбору потребителя предлагаются реле, выполненных в нескольких конструктивных исполнениях, в зависимости от типа подключения в домашнюю сеть: Все вышеперечисленные типы реле исполнения имеют широкое применение и являются актуальным и проверенным вариантом контроля параметров электросети. Несведущему человеку тяжело определиться, как правильно подобрать реле напряжения, приемлемое для дома или для квартиры. Ответ на вопрос надо искать исходя из тех задач, которые будут возложены на защитное устройство. Вилка-розетка устанавливается непосредственно в квартирной розетке. Выбор этого варианта контроля идеален для защиты от всплесков и спадов напряжений в сети отдельно взятого электроприбора. Цифровое табло, которым оснащено это устройство, высвечивает текущую величину напряжения в сети. Удлинитель по принципу действия идентичен вилке-розетке, отличие составляет то, данное устройство оснащено двумя или более розетками. Приобретая РН для защиты нескольких потребителей, целесообразно выбрать удлинитель. Реле в виде модуля, установленного на дин-рейку, подключается в распределительном щите квартиры или дома и предназначено для защиты от недопустимых скачков напряжения всех электропотребителей квартиры или дома. Конструкция предусматривает работу устройства в режиме максимального и минимального реле, а также выполнять функции реле времени. РН имеют ограничения нагрузки по току, их силовые контакты рассчитаны на максимальную нагрузку 11 кВА. Если суммарная потребляемая мощность потребителей превышает этот номинал, аппарат следует использовать, как реле промежуточное. В качестве разъединителя силовой сети необходимо установить магнитный пускатель или контактор, выбрать который надо с учетом общей нагрузки домашней сети. РН подразделяются на трехфазные и однофазные. Трехфазные модели применяются в сетях 380 вольт для защиты электрических приводов. Для квартирной сети 220 вольт следует выбрать однофазное реле напряжения. Также не менее важно выбрать номинальный ток РН. Для этого первоначально нужно определить потребляемую мощность электроприборов и подобрать характеристики аппарата с запасом в 20-30%. К примеру, если вам нужно выбрать РН для кондиционера, номинальный ток которого 5 Ампер, вполне достаточно приобрести реле, рассчитанное на номинальный ток 10 Ампер. Если же вам нужно защитить всю электропроводку в квартире либо доме, обратите внимание на номинал автоматического выключателя. Если стоит автомат на 25А, нужно выбрать реле на 32А либо 40А. Если же номинальный ток автомата составляет 32А, ток РН должен составлять 40, а лучше 50 А. Чтобы вы понимали, однофазные реле напряжения для установки в розетку рассчитаны на ток от 6 до 16 Ампер. Аппараты, устанавливаемые на DIN-рейку может выдерживать нагрузку от 8 и вплоть до 80А (максимальный ток, при этом номинальный составляет 63А, модель VA-protector 63A). Остается немаловажный вопрос, какую марку аппарата лучше выбрать для обеспечения защиты электрооборудования квартиры. На российском рынке наиболее популярна линейка ZUBR компании DC Electronics. Для справки необходимо отметить, что ZUBR – это устаревшее название бренда, в настоящее время продукция фирмы поставляется в РФ под названием RBUZ. Напоследок рекомендуем просмотреть полезное видео по теме: Советы экспертов Теперь вы знаете, как выбрать реле напряжения для дома и квартиры. Как вы видите, критерии выбора достаточно простые: нужно определиться с вариантом исполнения аппарата, фазностью, номинальным током и маркой. Будет полезно прочитать: samelectrik.ru Основные функциональные возможности УЗМ-51М: Кстати, близким аналогом устройства защиты УЗМ-51 является реле РН-106 (Новатек). Многих интересует, для чего нужно УЗМ-51М. Данный аппарат предназначен для отключения и защиты электрических устройств при выходе параметров сетевого напряжения за установленные пределы. Его применяют для защиты от обрыва нейтрали в бытовых сетях, а также от губительного воздействия скачков высокого напряжения, возникающих при работе электродвигателей, магнитных пускателей, и прочих мощных устройств. Оно поглощает импульсы внутренней цепочкой. Наглядно увидеть, для чего применяется УЗМ-51М вы можете на этом видео: Устройство защиты многофункциональное не может защищать от короткого замыкания и токов утечки, поэтому необходимо принять меры и установить дополнительно автоматические выключатели и УЗО! Ознакомиться с тем, как выглядит УЗМ-51М вы можете на фото ниже: Что касается конструкции аппарата, устройство защиты многофункциональное представляет собой реле контроля напряжения, имеющее на выходе мощное электромагнитное реле, которое дополнительно оснащено варисторной защитой. Клеммы имеют туннельную конструкцию, благодаря чему возможен зажим проводов, сечением не более 35 мм2. Лицевая сторона УЗМ оснащена двумя индикаторами. Первый сигнализирует о состояниях «Норма» и «Авария», соответственно зеленый и красный цвет. Второй, желтого цвета, сигнализирует о включении контактов реле. Помимо этого на лицевой стороне находится кнопка «Тест», предназначенная для ручного управления аппаратом (можно самостоятельно включить нагрузку). Также, как и у реле напряжения, у УЗМ-51М есть регуляторы верхнего и нижнего порога срабатывания защиты. Технические характеристики УЗМ-51М (номинальный и максимальный ток, пороги срабатывания и т.д.) сведены в таблице ниже: Также важно объяснить, как работает УЗМ-51М. После включения устройства в сеть, происходит задержка времени перед включением, в этот момент происходит измерение входного напряжения. Если вольтаж в допустимых пределах, включается зеленый индикатор — устройство готово к работе, подается питание к потребителям. В противном случае загорается желтый индикатор и нагрузка не подключается к сети. Если во время работы УЗМ напряжение приблизилось к верхнему порогу, начинает мерцать желтый светодиод, и когда перешло за него, нагрузка отключается, загорается красная лампочка. Это сигнализирует о выходе за установленные параметры. В том случае, когда напряжение падает к нижнему порогу, начинает мерцать зеленый светодиод, а при выходе за выставленные пределы загорается и мерцает красный индикатор. При нажатии кнопки «Тест», на корпусе устройства, поочередно переключаются красный и зеленый светодиод, а нагрузка отключается от сети. Для возврата в рабочее состояние необходимо повторно нажать кнопку «Тест». На первом рисунке четырех проводная схема подключения. Сверху вход сетевого провода, снизу выход на потребителей. На втором рисунке трехпроводная схема, где фазный провод входит и выходит с устройства, а ноль используется для питания схемы УЗМ. На третьем — схема дистанционного управления УЗМ, ноль через выключатель запитывает устройство, а фаза коммутируется устройством, подавая напряжение на нагрузку. Также рекомендуем просмотреть на схеме, как подключить УЗМ в однофазную сеть квартиры либо дома: Вот мы и рассмотрели особенности подключения, устройство и назначение УЗМ-51М. Надеемся, предоставленная информация была для вас полезной и интересной! Также рекомендуем прочитать: samelectrik.ru Любые бытовые электроприборы, работающие в домашней проводке, создаются изготовителями для питания от гармоничного сигнала синусоиды с напряжением 220 или 380 вольт. Сложная электронная техника использует выпрямленный специальными блоками постоянный ток. Когда форма и амплитуда питающего напряжения изменяется, то она сильно влияет на качество работы бытовых потребителей, снижая их ресурс. Внутри бытовой сети часто случаются нарушения технических нормативов поступающей в дом электроэнергии. Этот вопрос подробно раскрыт в статье, посвященной электрической безопасности частного дома и дачи. Защите бытовой домашней техники необходимо уделять серьезное внимание: Характер протекания тока по оборудованию принят за основу для проектирования электрических приборов и показан на картинке ниже. Приведенные на нижних графиках характеристики носят общий характер. Они меняются в каждом конкретном случае. Однако, следует сразу заметить, что импульс молнии по величине значительно больше, а по времени продолжительнее на 17 крат (350/20=17). Мощность молнии намного превышает импульс обычного перенапряжения сети, обладает повышенными разрушительными способностями по сравнению с ним. Поэтому для устранения последействий молнии применяются специализированные защиты импульсного типа. Сведем их к четырем пунктам: Разберём его на примере, представленном картинкой ниже. Наличие диэлектрического слоя на токопроводящих элементах воздушной линии уменьшает воздействие разряда молнии, влияет на конструкцию работающего УЗИП и его схему подключения. При питании дома от ВЛИ создается система заземления по схеме TN-C-S. УЗИП монтируется между фазными проводниками и PEN. Место расщепления PEN на РЕ и N провода при удалении на 30 метров от здания требует дополнительной защиты. Наличие на доме смонтированной внешней молниезащиты, подвод металлических коммуникаций инженерных систем влияют на электрическую безопасность здания, выбор и схему подключения УЗИП. Электричество поступает по ВЛИ. Здание: При такой ситуации вероятность образования прямого удара молнии в здание резко снижается: Поэтому вполне достаточно защититься от импульсов перенапряжения, обладающих формой 8/20 мкс для тока. Вполне подойдет УЗИП с комбинированным классом защит 1+2+3 в едином корпусе марки DS131VGS-230. Причем, ее защитная функция по устранению импульсов тока молнии формы 10/350 мкс с амплитудой до 12,5 кА вряд ли будет использована. Размах тока от импульсов перенапряжения можно выбрать из диапазона 5÷20 кА с учетом периода грозовых дней. Проще остановиться на максимальном значении. Электричество поступает по ВЛИ. Здание: По сравнению с предыдущим случаем здесь возможен грозовой разряд молнии по трубопроводу силой до 100 кА. Этот ток внутри трубы разветвится на оба конца по 50 кА. С нашей стороны дома эта часть разделится по 25 кА на контур заземления и здание. PEN проводник заберет свою долю в 12,5 кА, а оставшаяся половинка импульса такой же силы сквозь УЗИП станет проникать в фазный провод. Поэтому ее надо будет подавлять. Вполне можно выбрать ту же модель УЗИП, что и ранее, но ее возможность защиты от импульса молнии с формой 10/350 мкс и размахом до 12,5 кА будет абсолютно необходима. Электричество поступает по ВЛИ. В здании: Грозовой разряд в 100 кА попадает по молниеприемнику, разделяется на два потока по 50 кА в заземляющее устройство и электросхему здания. Электричество поступает по ВЛИ. У здания: Разряд молнии в 100 кА после молниеприемника двумя потоками по 50 кА расходится на контур заземления и электрическую схему вводного устройства. Второй поток тоже разделится поровну: 25 кА растекается через трубы водоснабжения, а очередные 25 тоже делятся по 12,5 кА на PEN проводник и фазный провод через УЗИП. Его можно выбрать той же конструкции, как и во втором варианте. В четырех разобранных примерах за основу электроснабжения здания взяты ВЛИ с СИП. У них обрыв нуля, а, следовательно, появление линейного напряжения 380 вместо фазного маловероятно. Посему выбор УЗИП можно ограничивать максимальным напряжением сети. Учитывая рабочие нагрузки в рассмотренных четырех вариантах для УЗИП, последние вполне допустимо монтировать в металлических шкафах внутри дома. С учетом небольших габаритов здания допустимо устанавливать одно устройство УЗИП между потенциалами фазы и PEN проводника. Электричество в здание поступает по воздушной ЛЭП с оголенными проводами. При такой ситуации высока вероятность грозового разряда в провода ВЛ, а у дома используется схема системы заземления ТТ. При подключении к открытым проводам ВЛ на электрическую безопасность дома влияет конструкция ответвления. Ее выполнение возможно: При воздушном ответвлении меньшие риски обеспечивают изолированные по отдельности провода СИП с сечением от 16 мм кв и созданием промежутка относительно фазных и нулевого проводников. В них прямой удар молнии практически нереален, но он может попасть в место разделки около изоляторов на вводе. Тогда на фазе появится 50% от силы грозового разряда. Этот случай необходимо исключать: Без комплексного выполнения этих условий потребуется монтировать УЗИП на 50 кА 10/350 мкс, а при выполнении — ток молнии в открытый фазный провод силой 100 кА разделится на два потока, из которых 50 кА пойдет в сторону здания на столб ввода. Когда он стоит последним на линии, то весь разряд войдет в дом, а если ВЛ проложена дальше, то разделится на наше строение и уйдет к другим. Эти условия являются определяющими при выборе УЗИП по силе разряда молнии. На воздушной ЛЭП с открытыми проводами вероятен обрыв нуля, что требует выбора УЗИП на напряжение до 0,4 кВ, а не 220 вольт. При монтаже УЗИП следует учитывать заводские рекомендации изготовителя, изложенные техническими характеристиками по схемам подключения в разных системах заземления, их особенности. Иначе от применения защиты возможен больший вред, чем польза. Протекание грозы обычно происходит при шквальном ветре, который может оборвать PEN проводник ВЛ во время или перед ударом молнии. Через рабочий ноль потечет фазный ток. При разряде молнии по открытому проводу фазы у нас отрабатывает УЗИП, через который потечет импульс от грозы и ток, сопровождающий обрыв PEN, по цепочке: предохранитель, разрядник, шину РЕ и контур заземления. Все эти элементы обладает определённым электрическим сопротивлением, снижающим величину протекающего тока. Его можно просчитать, определить по закону Ома значение сопровождающего тока, сравнить с характеристиками УЗИП. Если они разрешают эксплуатацию при большей величине, то предохранитель можно не использовать. Для закрепления опубликованного материала рекомендуем к просмотру два видео. Компания «Электромир» своим видеороликом объясняет, почему в любом доме необходимо устанавливать УЗИП. Видео «Вебинар об УЗИП» компании «Дни решений» дает рекомендации на вопросы по выбору и оценке работы устройств импульсной защиты. Задавайте вопросы по изложенной теме в комментариях, делитесь материалом статьи с друзьями в соц сетях. housediz.ruКак выбрать защиту от перенапряжения (УЗИП) для частного дома и дачи. Защита от перенапряжения в сети 380 вольт
Защита от перенапряжения в сети 380 вольт
Защита от перенапряжения в сети
Причины возникновения перенапряжения
Защита от перенапряжения
Устройства защиты от перенапряжения в сети
Основные причины возникновения
Устройства для решения проблемы
Устройство релейной защиты от перенапряжения дома
Чем опасны перенапряжения и с чем связаны?
Последствия перенапряжения в частном доме
сети 220В, устройство и барьер для электросети, реле для 380 вольт в квартире
Защитить электросеть от перепадов напряжения можно при помощи специального устройства Возможно, вы сталкивались с подобными явлениями как, на несколько секунд возрастает яркость свечения лампочки. Это происходит по разным причинам. Например, в грозу молния, попадая в высоковольтные провода, добавляет электрического заряда. Данные явления очень пагубно сказываются на электроприборах и бытовой технике. Для того, чтобы избежать подобного, нужно в схему электрощитка, дополнительно встроить защитное устройство от перенапряжения.
Реле напряжения: барьер для электросети 220В
Защита от перенапряжения в сети 380 Вольт
Существует много разновидностей автоматических приборов для защиты от перенапряжения в сети 380 Вольт, выбирать которые можно на свое усмотрение
Устройство защиты от перенапряжения в квартире: стабилизатор
Схема подключения УЗО с защитой от перенапряжения
Перед тем как подключать УЗО с защитой от перенапряжения, следует сперва грамотно ознакомиться со схемой
Барьер защиты от перенапряжения (видео)
Добавить комментарий
Защита сети 220 вольт от перенапряжения
Допустимые параметры электроэнергии
Разновидности перенапряжений
Перенапряжение в результате коммутации
Опасность перенапряжения
Какими устройствами обеспечивается защита сети от перенапряжения?
Принцип работы защитных устройств
Длительные перенапряжения
Недостаток напряжения (провал)
Заключение
Защита от перенапряжения в частных домах
Причины возникновения
Опасность для электроприборов
Защита от импульсных перенапряжений
Реле контроля фаз
Типы стабилизаторов
Феррорезонансные
Симисторные
Релейные
Сервоприводные
Работа в сетях 220 В
Работа в сетях 380 В
Место установки защитных устройств
Выбор стабилизирующих устройств
Установка реле напряжения. Видео
Как выбрать реле напряжения для квартиры и дома
Из года в год производители бытовых электроприборов и электронной аппаратуры предлагают более сложную и совершенную продукцию. Следствием внедрения достижений научно-технического прогресса является то, что даже самое простейшее электротехническое изделие, используемое в домашнем хозяйстве, оснащено элементами электронного управления и контроля его работы. Техника становится сложнее, ее обслуживание все более комфортным, в то же время проблемы стабильности параметров электроэнергии в сети остаются прежними. Всплески и провалы напряжения пагубно сказываются на работе электроники, сокращают ее срок службы, а также могут привести к безвозвратной потере бытовой техники. Причин, вызывающих нестабильность параметров электроэнергии много, характерными и наиболее часто встречающимися необходимо отметить резкую перегрузку в электросети по току, перекос фаз, аварии на линиях передач, связанные с обрывом или перехлестом проводников и воздействием на них грозовых разрядов, неисправности в схеме электроприбора. Правильный выбор технических средств защиты от перенапряжений обеспечит долгосрочную и безаварийную работу домашнего парка электроприборов. В этой статье мы рассмотрим, как выбрать реле напряжения для квартиры и частного дома. Реле напряжения или стабилизатор — что лучше?
Определяемся с типом подключения
Выбираем фазность и номинальный ток аппарата
принцип работы, назначение и схема подключения
УЗМ расшифровывается, как устройство защиты многофункциональное. Этот универсальный аппарат защитит электрооборудование от скачков напряжения, импульсных помех, повышенного или пониженного напряжения в сети. На сегодняшний день данный вариант защиты все чаще применяется в квартирах и домах, поэтому мы решили рассказать читателям сайта Сам Электрик о том, какой принцип работы, функциональные возможности, назначение и схема подключения УЗМ-51М. Функции устройства
Назначение
Внешний вид и конструкция
Основные параметры
Принцип работы
Схема подключения
Как выбрать защиту от перенапряжения (УЗИП) для частного дома и дачи
Какие импульсы тока могут возникнуть в бытовой домашней сети
Идеальная синусоида и выпрямленный из нее постоянный ток обеспечивают номинальный режим эксплуатации. Его нарушить может импульс, пришедший от:
Практические рекомендации по использованию УЗИП
Алгоритм выбора УЗИП по току молнии
Электрическая энергия в дом может поступать по воздушной линии, оборудованной:
Рассмотрим четыре варианта возможных схем.
Вариант 1
Условия
Решение
Вариант 2
Условия
Решение
Вариант 3
Условия
Решение
На РЕ шине от повторно разветвляется на PEN проводник и фазный провод по 25 кА. Сквозь УЗИП, таким образом, будет протекать импульс с формой 10/350 мкс и силой 25 кА. С такими параметрами и требуется подбирать защиты.
Вариант 4
Условия
Решение
Особенности выбора УЗИП при питании от ВЛИ
Вариант 5
Условие
Решение
Требуется создавать защиту от проникающих импульсов не только от фазных проводов относительно земли, но и от нулевого. Последняя рекомендуется в большинстве случаев, но может не применяться по местным условиям.
Роль предохранителя в защите УЗИП
Поделиться с друзьями: