интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Конвертер величин. 10 кв сколько вольт


1000 вольт это сколько кв: киловольт

Итак, перед вами возникает вопрос: «Сколько вольт в линии электропередачи?» и вам нужно знать напряжение на линии электропередачи в киловольтах (кВ). Стандартные значения можно определить из изоляторов воздушной линии и появления проводов линий электропередачи в полюсах.

Для повышения эффективности передачи электроэнергии и снижения потерь в воздушных и кабельных линиях электрические сети разделены на секции с различными классами напряжения линий электропередач.

Классификация линий электропередач с напряжением

  1. Наименьшие классы напряжения составляют до 1 кВ;
  2. Средний класс напряжения — от 1 кВ до 35 кВ;
  3. Класс высокого напряжения — от 110 кВ до 220 кВ;
  4. Очень высокий класс ВЛ — от 330 кВ до 500 кВ;
  5. Чрезвычайно высокий класс VL — от 750 кВ.

Сколько вольт опасно для людей?

Высокий стресс влияет на человека опасным образом, потому что текущий (переменный или длительный) не может быть поражен только человеком, но также вызывает ожоги.

Сеть 220 В, 50 Гц уже довольно опасна, так как предполагается, что постоянное или переменное напряжение, превышающее 36 вольт, и ток 0,15 А убивают человека. В этом отношении, в некоторых случаях даже поток сети освещения может быть смертельным для людей.

Поэтому высоковольтные провода подвешены на определенной высоте на линиях передачи. Высота линии подачи зависит от поперечного сечения провода, расстояния от провода до поверхности земли, типа опоры,

1000 вольт — сколько квадратных метров?

С повышением рабочего напряжения в проводах в линии электропередачи увеличивается размер и сложность структур мощности полюсов. Если передача напряжения 220/380 В. с использованием обычного железобетона (иногда деревянная) с фарфоровыми изоляторами с линейным подшипником, мощность воздушных линий 500 кВ имеет совершенно иной вид. Сторона 500 кВ представляет собой U-образный U-образный металл высотой до нескольких десятков метров, который прикреплен к трем проводам, перемещаясь от изоляционных струн.

В воздушных линиях с максимальным напряжением линий электропередачи 1150 кВ каждый из трех проводов имеет отдельную металлическую опору для линий электропередач.

Важной ролью в строительстве высоковольтных линий электропередачи является тип линейных изоляторов, внешний вид и конструкция которых зависят от напряжения в линии электропередач.

Поэтому напряжение линии передачи легко узнается при появлении изолятора воздушной линии.

 Болт из фарфоровых изоляторов используется для крепления самых легких кабелей для верхних вод с небольшим объемом 0,4-10 кВ. Изолирующие устройства такого типа имеют значительные недостатки: основная недостаточная прочность на разрыв (предельное напряжение 0,4-10 кВ) и неудовлетворительная процедура для крепления верхних кабелей изоляторов, что создает возможность повреждения на служебных проводах на своих станциях, колеблющихся с якорной подвеской.

Поэтому в последние годы штыревые изоляторы полностью потеряли место в подвеске. Висячие изоляционные изоляторы, используемые в нашей контактной сети, имеют несколько иной вид и размеры.

При напряжении более 35 кВ изоляторов подвеска линии электропередачи использует VL, внешний вид которой представляет собой фарфоровый или стеклянный пластинчатый колпачок из ковкого чугуна и стержня. Для обеспечения того, чтобы изоляционные изоляторы были собраны в венки. Размеры венков зависят от напряжения линии и типа высоковольтных изоляторов.

Приблизительно определить линии, электрическую линию по внешнему виду, обычный человек, что это сложно, но, как правило, это можно сделать простым способом — просто подсчитайте количество и выясните, сколько изоляторов находится в проводных креплениях (в линиях до 220 кВ), или номер проволочный пучок для линий кВ 330 и более ..

Сколько вольт существует в высоковольтных линиях электропередачи?

 Линии низкого напряжения — это LEP-35 кВ (напряжение 35000 вольт) легко определить наиболее визуальные, тк.

в каждом саване у них небольшое количество изоляторов — 3-5 штук.

Линия электропередачи 110 кВ — находится в высоковольтных изоляторах с 6-10 проводами, если количество пластин составляет от 10 до 15, то это 220 кВ.

Если мы увидим, что высоковольтные дуги Račvati (расщепление) тогда — линии электропередачи 330 кВ, если количество проводов подходит для каждой поперечной линии передачи на три (в каждой высоковольтной цепи) — напряжение 500 кВ, если количество проводов составляет четыре сваи Мощность 750 кВ.

 Для более точного определения напряжения линии контактного контакта обратитесь к специалистам местной энергетической компании.

Количество изоляторов на линиях электропередач (в коридоре воздушных линий)

Количество изоляционных изоляторов в наземных волноводах на металлических и железобетонных носителях в чистом воздухе (с нормальным загрязнением воздуха).

Тип изолятора по ГОСТ Линия электропередачи 35 кВ 110 кВ ВЛ 150 кВ ВЛ 220 кВ ВЛ 330 кВ 500 кВ
PF6-A (P-4,5) 3 7 9 13 19
PF6-B (PM-4.5) 3 7 10 14 20
PF6-B (PFE-4,5) 3 7 9 13 19
(ПФЭ-11) 6 8-е место 11 16 21
PF16-A 6 8-е место 11 17 23
PF20-A (PFE-16) 10 14 20
(ПФ-8.5) 6 8-е место 11 16 22
(Р-11) 6 8-е место 11 15 21
PS6-A (PS-4.5) 3 8-е место 10 14 21
PS-11 (PS-8.5) 3 7 8-е место 12-е место 17 24
PS16-A 6 8-е место 11 16 22
PS16-B 6 8-е место 12-е место 17 24
PS22-A 10 15 21
PS30-A 11 16 22

сколько вольт в 0,4 Кв?

10 квт это сколько вольт

Что означает 10/0,4 кВ. Оъясните человеческим языком пожалуйста

  1. Обозначение ступеней напряжения понижающего силового трансформатора: 10 кв.

    / 0,4 кв. У тока нет напряжения — есть только сила тока.

  2. Насколько я понимаю, какое расчетное значение Вольт. кило вольт = 1000 вольт. В вольтах измеряется напряжение тока
  3. Здесь идет разговор о понижающей подстанции с 10 кв на 38о вольт, который используется впромышленности и бытовой сети. Здесь О, 4 округленно 38о вольт
  4. тп 100кв как он понежает до10
  5. Это обозначение понижающего трансформатора.

    10 киловольт-напряжение первичной обмотки. 0,4 киловольт-напряжение вторичной обмотки.

  6. Подстанция или понижающий трансформатор. Высокая сторона 10 килоВольт (10000 v) и низкая сторона 400вольт. .Из-за потерь в ЛЭП фидерные линии питают повышенным напряжением, потребитель получает 380v
  7. Трансформаторная подстанция. Вход 10 кВ (10 000 вольт) , выход 0,4 кВ (380 вольт)
  8. Понижающая подстанция, которая понижает приходящие на не 10000 вольт, до 380 вольт.

    0,4 кВ — это 380 вольт.

Внимание, только СЕГОДНЯ!

vipstylelife.ru

ватт [Вт] киловатт [кВт] • Популярные конвертеры единиц • Конвертер мощности • Компактный калькулятор

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

Мощность этого локомотива GO Train MP40PH-3C (Канада) равна 4000 лошадиных сил или 3000 киловатт. Он способен тянуть поезд из 12 вагонов с 1800 пассажирами

Мощность этого локомотива GO Train MP40PH-3C (Канада) равна 4000 лошадиных сил или 3000 киловатт. Он способен тянуть поезд из 12 вагонов с 1800 пассажирами

Общие сведения

Единицы мощности

Мощность бытовых электроприборов

Мощность в спорте

Динамометры

Общие сведения

В физике мощность — это отношение работы ко времени, в течении которого она выполняется. Механическая работа — это количественная характеристика действия силы F на тело, в результате которого оно перемещается на расстояние s. Мощность можно также определить как скорость передачи энергии. Другими словами, мощность — показатель работоспособности машины. Измерив мощность, можно понять в каком количестве и с какой скоростью выполняется работа.

2 лошадиные силы или 1,5 киловатта и 20 пассажиров

2 лошадиные силы или 1,5 киловатта и 20 пассажиров

Единицы мощности

Мощность измеряют в джоулях в секунду, или ваттах. Наряду с ваттами используются также лошадиные силы. До изобретения паровой машины мощность двигателей не измеряли, и, соответственно, не было общепринятых единиц мощности. Когда паровую машину начали использовать в шахтах, инженер и изобретатель Джеймс Уатт занялся ее усовершенствованием. Для того чтобы доказать, что его усовершенствования сделали паровую машину более производительной, он сравнил ее мощность с работоспособностью лошадей, так как лошади использовались людьми на протяжении долгих лет, и многие легко могли представить, сколько работы может выполнить лошадь за определенное количество времени. К тому же, не во всех шахтах применялись паровые машины. На тех, где их использовали, Уатт сравнивал мощность старой и новой моделей паровой машины с мощностью одной лошади, то есть, с одной лошадиной силой. Уатт определил эту величину экспериментально, наблюдая за работой тягловых лошадей на мельнице. Согласно его измерениям одна лошадиная сила — 746 ватт. Сейчас считается, что эта цифра преувеличена, и лошадь не может долго работать в таком режиме, но единицу изменять не стали. Мощность можно использовать как показатель производительности, так как при увеличении мощности увеличивается количество выполненной работы за единицу времени. Многие поняли, что удобно иметь стандартизированную единицу мощности, поэтому лошадиная сила стала очень популярна. Ее начали использовать и при измерении мощности других устройств, особенно транспорта. Несмотря на то, что ватты используются почти также долго, как лошадиные силы, в автомобильной промышленности чаще применяются лошадиные силы, и многим покупателям понятнее, когда именно в этих единицах указана мощность автомобильного двигателя.

Лампа накаливания мощностью 60 ватт

Лампа накаливания мощностью 60 ватт

Мощность бытовых электроприборов

На бытовых электроприборах обычно указана мощность. Некоторые светильники ограничивают мощность лампочек, которые в них можно использовать, например не более 60 ватт. Это сделано потому, что лампы более высокой мощности выделяют много тепла и светильник с патроном могут быть повреждены. Да и сама лампа при высокой температуре в светильнике прослужит недолго. В основном это проблема с лампами накаливания. Светодиодные, люминесцентные и другие лампы обычно работают с меньшей мощностью при одинаковой яркости и, если они используются в светильниках, предназначенных для ламп накаливания, проблем с мощностью не возникает.

Чем больше мощность электроприбора, тем выше потребление энергии, и стоимости использования прибора. Поэтому производители постоянно улучшают электроприборы и лампы. Световой поток ламп, измеряемый в люменах, зависит от мощности, но также и от вида ламп. Чем больше световой поток лампы, тем ярче выглядит ее свет. Для людей важна именно высокая яркость, а не потребляемая ламой мощность, поэтому в последнее время альтернативы лампам накаливания пользуются все большей популярностью. Ниже приведены примеры видов ламп, их мощности и создаваемый ими световой поток.

  • 450 люменов:
    • Лампа накаливания: 40 ватт
    • Компактная люминесцентная лампа: 9–13 ватт
    • Светодиодная лампа: 4–9 ватт
  • 800 люменов:
  • Люминесцентные лампы мощностью 12 и 7 Вт

    Люминесцентные лампы мощностью 12 и 7 Вт

    • Лампа накаливания: 60 ватт
    • Компактная люминесцентная лампа: 13–15 ватт
    • Светодиодная лампа: 10–15 ватт
  • 1600 люменов:
    • Лампа накаливания: 100 ватт
    • Компактная люминесцентная лампа: 23–30 ватт
    • Светодиодная лампа: 16–20 ватт

    Из этих примеров очевидно, что при одном и том же создаваемом световом потоке светодиодные лампы потребляют меньше всего электроэнергии и более экономны, по сравнению с лампами накаливания. На момент написания этой статьи (2013 год) цена светодиодных ламп во много раз превышает цену ламп накаливания. Несмотря на это, в некоторых странах запретили или собираются запретить продажу ламп накаливания из-за их высокой мощности.

    Мощность бытовых электроприборов может отличаться в зависимости от производителя, и не всегда одинакова во время работы прибора. Внизу приведены примерные мощности некоторых бытовых приборов.

    Матрица светодиодов 5050. Мощность одного такого светодиода примерно равна 200 миливаттам

    Матрица светодиодов 5050. Мощность одного такого светодиода примерно равна 200 миливаттам

    • Бытовые кондиционеры для охлаждения жилого дома, сплит-система: 20–40 киловатт
    • Моноблочные оконные кондиционеры: 1–2 киловатта
    • Духовые шкафы: 2.1–3.6 киловатта
    • Стиральные машины и сушки: 2–3.5 киловатта
    • Посудомоечные машины:1.8–2.3 киловатта
    • Электрические чайники: 1–2 киловатта
    • Микроволновые печи:0.65–1.2 киловатта
    • Холодильники: 0.25–1 киловатт
    • Тостеры: 0.7–0.9 киловатта

    Мощность в спорте

    Оценивать работу с помощью мощности можно не только для машин, но и для людей и животных. Например, мощность, с которой баскетболистка бросает мяч, вычисляется с помощью измерения силы, которую она прикладывает к мячу, расстояния которое пролетел мяч, и времени, в течение которого эта сила была применена. Существуют сайты, позволяющие вычислить работу и мощность во время физических упражнений. Пользователь выбирает вид упражнений, вводит рост, вес, длительность упражнений, после чего программа рассчитывает мощность. Например, согласно одному из таких калькуляторов, мощность человека ростом 170 сантиметров и весом в 70 килограмм, который сделал 50 отжиманий за 10 минут, равна 39.5 ватта. Спортсмены иногда используют устройства для определения мощности, с которой работают мышцы во время физической нагрузки. Такая информация помогает определить, насколько эффективна выбранная ими программа упражнений.

    Динамометры

    Для измерения мощности используют специальные устройства — динамометры. Ими также можно измерять вращающий момент и силу. Динамометры используют в разных отраслях промышленности, от техники до медицины. К примеру, с их помощью можно определить мощность автомобильного двигателя. Для измерения мощности автомобилей используется несколько основных видов динамометров. Для того, чтобы определить мощность двигателя с помощью одних динамометров, необходимо извлечь двигатель из машины и присоединить его к динамометру. В других динамометрах усилие для измерения передается непосредственно с колеса автомобиля. В этом случае двигатель автомобиля через трансмиссию приводит в движение колеса, которые, в свою очередь, вращают валики динамометра, измеряющего мощность двигателя при различных дорожных условиях.

    Этот динамометр измеряет крутящий момент, а также мощность силового агрегата автомобиля

    Этот динамометр измеряет крутящий момент, а также мощность силового агрегата автомобиля

    Динамометры также используют в спорте и в медицине. Самый распространенный вид динамометров для этих целей — изокинетический. Обычно это спортивный тренажер с датчиками, подключенный к компьютеру. Эти датчики измеряют силу и мощность всего тела или отдельных групп мышц. Динамометр можно запрограммировать выдавать сигналы и предупреждения если мощность превысила определенное значение. Это особенно важно людям с травмами во время реабилитационного периода, когда необходимо не перегружать организм.

    Согласно некоторым положениям теории спорта, наибольшее спортивное развитие происходит при определенной нагрузке, индивидуальной для каждого спортсмена. Если нагрузка недостаточно тяжелая, спортсмен привыкает к ней и не развивает свои способности. Если, наоборот, она слишком тяжелая, то результаты ухудшаются из-за перегрузки организма. Физическая нагрузка во время некоторых упражнений, таких как велосипедный спорт или плавание, зависит от многих факторов окружающей среды, таких как состояние дороги или ветер. Такую нагрузку трудно измерить, однако можно выяснить с какой мощностью организм противодействует этой нагрузке, после чего изменять схему упражнений, в зависимости от желаемой нагрузки.

    Литература

    Автор статьи: Kateryna Yuri

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

www.translatorscafe.com

киловольт на метр [кВ/м] вольт на метр [В/м] • Электротехника • Конвертер напряжённости электрического поля • Компактный калькулятор

Конвертер длины и расстоянияКонвертер массыКонвертер мер объема сыпучих продуктов и продуктов питанияКонвертер площадиКонвертер объема и единиц измерения в кулинарных рецептахКонвертер температурыКонвертер давления, механического напряжения, модуля ЮнгаКонвертер энергии и работыКонвертер мощностиКонвертер силыКонвертер времениКонвертер линейной скоростиПлоский уголКонвертер тепловой эффективности и топливной экономичностиКонвертер чисел в различных системах счисленияКонвертер единиц измерения количества информацииКурсы валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиКонвертер угловой скорости и частоты вращенияКонвертер ускоренияКонвертер углового ускоренияКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер вращающего моментаКонвертер удельной теплоты сгорания (по массе)Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему)Конвертер разности температурКонвертер коэффициента теплового расширенияКонвертер термического сопротивленияКонвертер удельной теплопроводностиКонвертер удельной теплоёмкостиКонвертер энергетической экспозиции и мощности теплового излученияКонвертер плотности теплового потокаКонвертер коэффициента теплоотдачиКонвертер объёмного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер плотности потока массыКонвертер молярной концентрацииКонвертер массовой концентрации в раствореКонвертер динамической (абсолютной) вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер паропроницаемостиКонвертер паропроницаемости и скорости переноса параКонвертер уровня звукаКонвертер чувствительности микрофоновКонвертер уровня звукового давления (SPL)Конвертер яркостиКонвертер силы светаКонвертер освещённостиКонвертер разрешения в компьютерной графикеКонвертер частоты и длины волныОптическая сила в диоптриях и фокусное расстояниеОптическая сила в диоптриях и увеличение линзы (×)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер поверхностной плотности зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряжённости электрического поляКонвертер электростатического потенциала и напряженияКонвертер электрического сопротивленияКонвертер удельного электрического сопротивленияКонвертер электрической проводимостиКонвертер удельной электрической проводимостиЭлектрическая емкостьКонвертер индуктивностиКонвертер Американского калибра проводовУровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер магнитной индукцииРадиация. Конвертер мощности поглощенной дозы ионизирующего излученияРадиоактивность. Конвертер радиоактивного распадаРадиация. Конвертер экспозиционной дозыРадиация. Конвертер поглощённой дозыКонвертер десятичных приставокПередача данныхКонвертер единиц типографики и обработки изображенийКонвертер единиц измерения объема лесоматериаловВычисление молярной массыПериодическая система химических элементов Д. И. Менделеева

1 киловольт на метр [кВ/м] = 1000 вольт на метр [В/м]

Избранная статья

Picture

Общие сведения

Историческая справка

Напряжённость электрического поля. Определение

Напряжённость электрического поля. Физика явлений

Особенности проявления электрического поля в диэлектриках

Особенности проявления электрического поля на поверхности металлов

Практические примеры приборов и установок, использующих электрическое поле

Сканирующий туннельный микроскоп

Измерительные приборы и приборы оповещения

Электростатическая и электромагнитная защита

Опыты по воздействию электрического поля на металлы и газы

Плазменная лампа

Оценка напряжённости электрического поля с помощью осциллографа

Экранировка электромагнитного поля

Общие сведения

Picture

Мы живём в океане магнитных и электрических полей. Подобно поведению океана в штиль эти поля могут быть более и менее стабильными, превращаясь в шторм в настоящие бури.

Нам с детства известно свойство магнитной стрелки компаса указывать на север под действием постоянного геомагнитного поля Земли. В своё время изобретение компаса сыграло огромную роль в истории человечества, особенно с развитием мореплавания.

В отличие от магнитного поля, электрическое поле Земли почти ничем не проявляет себя в обыденной жизни, и без специальных приборов мы выявить его, как правило, не можем. Хотя иногда мы наблюдаем проявление электрического поля, расчёсывая вымытые и высушенные волосы пластмассовой расчёской или проводя той же расчёской над кусочками целлофана или бумаги, которые, преодолевая земное притяжение, подпрыгивают со стола, прилипая к расчёске.

Но стоит прийти электрической буре, как мы чувствуем её приближение без всяких приборов. Мы видим сполохи далёких зарниц приближающейся грозы, и слышим далекие раскаты грома. Появляются помехи при приёме радио и телевизионных сигналов; разряды молний могут вывести из строя радио- и электронную аппаратуру, линии связи и электропередач.

Нью-Йорк

Нью-Йорк

Примером может служить авария электроснабжения в Нью-Йорке в 1977 году, когда, после серии попаданий молний в различные ЛЭП, без электроснабжения остался почти весь восьмимиллионный город. Геомагнитные бури космических масштабов также могут привести к авариям электроснабжения городов и стран (Квебекская авария в 1989 году), или вызвать перебои в телеграфной связи на целых континентах (Событие Каррингтона в 1859 году). В то же время, возмущения магнитного поля на поверхности Земли во время геомагнитной бури составляют в среднем менее 1% от величины стационарного значения.

По современным представлениям, отдельные изменяющиеся во времени электрические и магнитные поля образуют единые электромагнитные поля, изменяющиеся с меньшей или большей частотой. Их спектр чрезвычайно широк — от инфранизких частот в доли герца до квантов гамма-излучения с частотой в эксагерцы.

Любопытный, но малоизвестный факт: в узком радиодиапазоне спектра, на котором ведётся телевизионное вещание и работают спутники связи, мощность излучаемого Землёй сигнала превосходит мощность излучения Солнца! Некоторые радиоастрономы предлагают вести поиск внеземных цивилизаций, сравнимых с нашей цивилизацией, по этому признаку. Правда, другие учёные считают его просто признаком нашей технологической отсталости и неумением разумно распорядиться энергетическими ресурсами.

Важнейшей характеристикой электрического (равно как и магнитного) поля является его напряжённость. Превышение этого параметра выше определённого значения для данной среды (для воздуха это 30 кВ/см) приводит к электрическому пробою — искровому разряду. В наших зажигалках мощность разряда настолько мала, что его энергии хватает только на нагрев газа до температуры возгорания.

Ионосфера и разряды молний

Ионосфера и разряды молний

Мощность отдельной молнии при средних значениях напряжения в 20 млн. вольт и тока в 20 тысяч ампер может составлять 200 млн киловатт (учитывая, что при разряде молнии напряжение падает с максимального значения до нуля). А за одну мощную грозу выделяется столько же энергии, сколько потребляет всё население США за 20 минут.

Учитывая то обстоятельство, что на Земле ежесекундно гремят более 2000 гроз одновременно, освоение энергии атмосферного электричества представляется чрезвычайно заманчивым. Существуют множество проектов по перехвату молний специальными громоотводами или инициализации разряда молнии; в этом плане мы уже имеем технологии, позволяющие вызвать разряд запуском малых ракет или воздушных змеев, связанных проводниками с поверхностью Земли. Более перспективными представляются разработки на основе ионизации атмосферы лучами мощных лазеров или микроволнового излучения и создании таким образом проводящих каналов для разряда молний, что позволяет устранить необходимость материальных затрат, связанных с испарением проводников после удара молнии.

По сути дела нам не требуется генерации собственно электричества — остаётся только организовать его приём, хранение и преобразование в более удобную для практических целей форму — но пока эта задача возлагается на будущие технологии и устройства. Возможным решением проблем могут стать новые материалы вроде графена, и супермагниты на сверхпроводниках, либо создание ионисторов с невероятно высокой плотностью запасаемой энергии.

Физика полярного сияния та же, что свечение газоразрядных ламп в электромагнитном поле (см. иллюстрации ниже) — возбуждение атомов газов с последующим переходом в обычное состояние, при котором и происходит выделение энергии в форме свечения.

Физика полярного сияния та же, что свечение газоразрядных ламп в электромагнитном поле (см. иллюстрации ниже) — возбуждение атомов газов с последующим переходом в обычное состояние, при котором и происходит выделение энергии в форме свечения.

А может быть осуществится мечта гения от электричества — американца сербского происхождения Николы Теслы; и мы сумеем преобразовать энергию гроз в единое энергетическое поле, которое позволит получать электроэнергию в требуемом количестве в любом месте Земли и даже в её атмосфере. Ведь удалось же Тесле во время проведения экспериментов по получению искусственных молний в июне 1889 года в своей лаборатории, расположенной в Колорадо-Спрингс, добиться такой передачи электрической мощности без проводов, что лошади в округе валились с ног, получив электрический удар через металлические подковы! Бабочки летали в ореоле огоньков святого Эльма, меж ног пешеходов проскакивали искры, такие же искры сыпались из водопроводных кранов. Может быть, из-за таких вот опытов многие современники считали Теслу просто опасным безумцем.

Но, говорят же, что если опережаете человечество на один шаг — вы точно гений! Но если на два шага — вы безумец!

Историческая справка

PictureСлева направо: Джеймс Клерк Максвелл, Шарль Кулон, Майкл Фарадей; источник: commons.wikimedia.org

Понятие напряжённости электрического поля непосредственно связано с понятием электрических зарядов и создаваемых этими зарядами электрических полей.

Визуализация силовых линий электрического поля с помощью перманганата калия; на фильтровальную бумагу, пропитанную слабым раствором хлористого натрия, поставлены два электрода, на которые подано постоянное напряжение 30 В

Визуализация силовых линий электрического поля с помощью перманганата калия; на фильтровальную бумагу, пропитанную слабым раствором хлористого натрия, поставлены два электрода, на которые подано постоянное напряжение 30 В

Открытый французским учёным Шарлем Кулоном в 1785 году закон взаимодействия электрических зарядов только дал в руки физиков инструмент для расчёта взаимодействия как такового. Этот закон был поразительно похож на закон всемирного тяготения Ньютона, открытый ранее, хотя и имел существенное отличие: он допускал наличие зарядов разных знаков, а масса в законе всемирного тяготения имеет только один знак, т.е. материальные тела могли только притягиваться.

Подобно Ньютону, который не раскрыл причин гравитационного взаимодействия, Кулон также не смог пояснить причин взаимодействия электрических зарядов.

Лучшие умы того времени предлагали различные теории происхождение этих сил, в их число входили теории близкодействия и дальнодействия. Первая предполагала наличие некоторого промежуточного агента — мирового эфира с совершенно экзотическими свойствами. Например, ему приписывалась огромная упругость с ничтожной плотностью и вязкостью. Это было связано с преобладающими на тот момент развития науки механистическими представлениями о среде передачи сил как о некоторой жидкости. Противоречивые результаты опытов по изучения свойств эфира окончательно были похоронены уже в 20-ом веке в результате экспериментов американского физика Альберта Майкельсона и специальной теорией относительности Альберта Эйнштейна.

Визуализация силовых линий электрического поля с помощью моторного масла и манной крупы; манная крупа и масло являются диэлектриками; под действием напряжения 30 кВ крупинки постепенно выстраиваются вдоль силовых линий, направленных от центра к кольцевому электроду

Визуализация силовых линий электрического поля с помощью моторного масла и манной крупы; манная крупа и масло являются диэлектриками; под действием напряжения 30 кВ крупинки постепенно выстраиваются вдоль силовых линий, направленных от центра к кольцевому электроду

Прорыв в этом направлении совершили выдающиеся английские физики Майкл Фарадей и Джеймс Клерк Максвелл в конце 19-го века. М. Фарадею удалось воедино связать магнитные и электрические поля посредством введения концепции физического поля и даже визуализировать его с помощью «электрических силовых линий». В современной физике для изображения векторных полей используют силовые линии векторного поля.

Подобно тому, как мы можем визуализировать силовые линии магнитного поля, размещая в поле магнита мелкие железные опилки, Фарадей визуализировал распространение электрического поля, размещая кристаллики диэлектрика хинина в вязкой жидкости — касторовом масле. При этом вблизи заряженных тел кристаллики выстраивались в цепочки причудливой формы в зависимости от распределения зарядов.

Но главная заслуга Фарадея состоит в том, что он ввёл в научный обиход понятие, что электрические заряды не действуют друг на друга непосредственно. Каждый из них создаёт в окружающем пространстве электрическое и магнитное (если он движется) поле, а проявление эффектов электромагнетизма суть простое изменение количества силовых линий, охватываемых каким-то контуром.

Визуализация силовых линий электрического поля с помощью моторного масла и манной крупы для двух линейных электродов при напряжении 30 кВ

Визуализация силовых линий электрического поля с помощью моторного масла и манной крупы для двух линейных электродов при напряжении 30 кВ

Под количеством силовых линий он подразумевал напряжённость электрического или магнитного поля.

Великий соотечественник Фарадея Дж. К. Максвелл сумел придать его идеям количественную математическую форму, столь необходимую в физике. Его система уравнений стала основой для изучения как теоретической, так и практической сторон электродинамики. Работа Максвелла поставила крест на концепции дальнодействия: полученный им фундаментальный результат предсказывал конечную скорость распространения электромагнитных взаимодействий в вакууме.

Позднее этот постулат о конечности скорости распространения света, как электромагнитного взаимодействия, был положен гениальным физиком 20-го века Альбертом Эйнштейном в качестве основополагающего постулата его специальной (СТО) и общей (ОТО) теориях относительности.

В современной физике в понятия дальнодействия и близкодействия вкладывается несколько иной смысл: силы, убывающие с расстоянием по законам обратной степени (r-n), считаются дальнодействующими; к ним относятся гравитационное и кулоновское взаимодействия, убывающие пропорционально обратному квадрату расстояния и действующие между объектами в обычном мире.

В атомном мире действуют иные силы, быстро убывающие с расстоянием: к ним относят сильное и слабое взаимодействия. Эти силы действуют между объектами микромира.

Напряжённость электрического поля. Определение

Напряжённость электрического поля — это векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению величины силы, действующей на неподвижный точечный электрический заряд, помещённый в эту точку, к величине заряда. Она обозначается латинской буквой E (произносится как вектор Е) и рассчитывается исходя из формулы:

E = F/q

где E — вектор напряженности электрического поля, F — вектор силы, действующий на точечный заряд, q — заряд объекта.

В каждой точке пространства существует своё значение вектора напряженности, поскольку поле может изменяться с течением времени, поэтому в качестве аргументов функции, описывающей данное векторное поле напряжённости, входят не только пространственные координаты, но и время.

E = f (x, y, z, t)

Напряжённость электрического поля в Международной системе единиц СИ измеряется в вольтах на метр (В/м) или ньютонах на кулон (Н/Кл).

Помимо основной единицы напряжённости электрического поля используется дольная единица (В/см), в электротехнике применяются кратные единицы (кВ/м или кВ/см).

В странах, где не используются метрические единицы длин, напряжённость электрического поля измеряется в вольтах на дюйм (В/дюйм).

Напряжённость электрического поля. Физика явлений

Как уже было показано выше, расчёты векторных электрических полей (напряжённости поля) физических объектов ведутся с использованием уравнений электростатики Максвелла и теоремы Гаусса-Остроградского, как составной части общих уравнений Максвелла.

При этом необходимо учитывать особенности поведения электрических полей в различных средах, поскольку их проявления резко отличаются в зависимости от конкретного состояния вещества по отношению к электрической проводимости.

Особенности проявления электрического поля в диэлектриках

Конденсаторный электретный микрофон для iPhone

Конденсаторный электретный микрофон для iPhone

При подаче электрического поля высокой напряжённости на образец из твёрдого диэлектрика, в последнем, как правило, происходит переориентация хаотически расположенных полярных молекул в направлении электрического поля. Это явление называется поляризацией. Даже при снятии электрического поля, эта ориентация сохраняется. Для её устранения требуется приложить поле обратной направленности.

Это явление носит название диэлектрического гистерезиса. Возвращению в исходное состояние диэлектрика могут способствовать и иные методы физического воздействия на образец, чаще всего применяют простой нагрев, при этом тоже происходит фазовый переход диэлектрика в исходное состояние.

Такие материалы получили название сегнетоэлектриков или ферроэлектриков. Среди них особым классом можно выделить вещества, которые имеют очень широкую петлю диэлектрического гистерезиса и способные долгое время находиться в поляризованном состоянии — они называются электретами, по сути дела, играют роль постоянных магнитов в электрическом исполнении, создавая постоянное электрическое поле.

Явление гистерезиса в сегнетоэлектриках

Явление гистерезиса в сегнетоэлектриках

Следует отметить, что название «ферроэлектрики» никак не связано с железом; оно появилось в связи с тем, что явление сегнетоэлектричества аналогично явлению ферромагнетизма. В английском языке явление сегнетоэлектричества так и называется: ferroelectricity.

Под действием переменного электрического поля молекулы диэлектрика ведут себя несколько по-иному, постоянно меняя пространственную ориентацию присущих им зарядов каждый полупериод приложенного поля. Понимание этих процессов заложил британский учёный Дж. К. Максвелл, который ввёл в обиход науки об электричестве понятие токов смещения.

Суть явления состоит в том, что под действием переменного тока связанные заряды — электроны и ядра — в молекулах диэлектрика колеблются относительно центра молекулы, реагируя на приложенное переменное электрическое поле.

Особенности проявления электрического поля на поверхности металлов

Совершенно иным является взаимодействие электрического поля с металлами. Из-за наличия в них свободных зарядов (электронов) по отношению к любому электрическому или электромагнитному полю, они ведут себя подобно оптическому зеркалу в отношении света.

Направленные параболические антенны спутниковой связи

Направленные параболические антенны спутниковой связи

На этом принципе построены многие направленные антенны для приёма радиосигналов — вне зависимости от конкретной конструкции антенны, в них обязательно присутствует один элемент — отражатель (или дефлектор), который позволяет значительно увеличить принимаемый радиосигнал и тем самым улучшить качество приёма. Он может выглядеть совершенно по-разному, вплоть до полного аналога обычному зеркалу в виде параболических отражателей антенн для приёма спутниковых сигналов. По сути дела дефлектор является просто концентратором напряжённости электромагнитного поля.

Поскольку металлы отражают электрические и электромагнитные поля, на этом же принципе построена клетка электростатической защиты — так называемая клетка или щит Фарадея — металлы полностью изолируют пространство в них от действия электрического, да и электромагнитного поля. Об этом прекрасно знал гений электричества Никола Тесла, и поражал непросвещённую публику появлением в такой клетке в ореоле электрических разрядов, создаваемых его резонансным трансформатором. Теперь мы называем его трансформатором (или катушкой) Тесла.

Катушка Тесла и беличье колесо для человека в Канадском музее науки и техники. Чтобы возникла искра, посетитель музея должен выработать примерно 100 Вт энергии.

Катушка Тесла и беличье колесо для человека в Канадском музее науки и техники. Чтобы возникла искра, посетитель музея должен выработать примерно 100 Вт энергии.

В 1997 году физик из Калифорнии Остин Ричардс создал гибкий костюм электростатической защиты, который защищал его от разрядов катушки Тесла, и с 1998 года он выступает по всему миру под псевдонимом Доктор МегаВольт в шоу «Полыхающий человек ».

Между прочим, современные помещения для скрытых переговоров выполнены на том же принципе клетки Фарадея; правда, изобретателям из закрытых научно-исследовательских институтов КГБ СССР удалось при постройке здания посольства США в своё время обойти американских инженеров: подслушивающие устройства встраивались в виде изолированных конструкций в несущие стены здания. Предполагалось, что под действием внешнего облучения они будут генерировать ответный промодулированный сигнал, и выдавать секреты переговоров американских дипломатов.

Практические примеры приборов и установок, использующих электрическое поле

Помещение с электронным микроскопом должно иметь хорошую звукоизоляцию, поэтому оно похоже на студию звукозаписи — только окошка не хватает

Помещение с электронным микроскопом должно иметь хорошую звукоизоляцию, поэтому оно похоже на студию звукозаписи — только окошка не хватает

Существует множество примеров как использования электрического поля, так и борьбы с ним.

Сканирующий туннельный микроскоп

Одним из принципов работы сканирующего туннельного микроскопа (СТМ) является создание такой напряженности электрического поля между исследуемым образцом и острой иглой-зондом, чтобы она превышала работу выхода электронов из образца. Это достигается приложением небольшой разности потенциала между образцом и зондом, и их сближением на расстояние менее одного нанометра. Затем, перемещая зонд над поверхностью, за счёт измерения протекающего туннельного тока можно получить профили образца и построить изображение его поверхности.

Сотни высотных зондов ежедневно запускаются с помощью наполненных водородом шаров метеостанциями по всему миру; такие зонды, как этот, находящийся в Канадском музее науки и техники, запускались в середине прошлого века

Сотни высотных зондов ежедневно запускаются с помощью наполненных водородом шаров метеостанциями по всему миру; такие зонды, как этот, находящийся в Канадском музее науки и техники, запускались в середине прошлого века

Учитывая чувствительность прибора к механическим вибрациям, к помещениям, в которых размещаются СТМ, предъявляются особые требования: в частности, поверхности стен, потолки и полы помещений оснащаются акустической защитой, поглощающей звуковые колебания.

Измерительные приборы и приборы оповещения

Согласно требованиям охраны труда, помещения классифицируются по уровню напряжённости электрического поля. В зависимости от этого уровня время пребывания технического персонала в таких помещениях строго регламентируется. Замеры напряжённости производится специальными приборами.

Метеоцентры разных стран контролируют электрическое поле Земли, измеряя его напряжённость как на поверхности, так и в различных слоях атмосферы с помощью высотных зондов.

Электромонтёры установок и линий высокого напряжения для сигнализации об опасном сближении с токоведущими частями, находящимися под напряжением, используют приборы оповещения, измеряющие напряжённость электрического поля.

Электростатическая и электромагнитная защита

Ёще сам Фарадей, при проведении химических опытов, для исключения влияния сторонних электрических полей на результаты экспериментов, применял изобретённое им в 1836 году устройство электростатической защиты, известное ныне как клетка Фарадея. Оно может быть выполнено в виде сплошной проводящей оболочки с отверстиями или в виде сетки из проводящих материалов.

Микроволновая печь, по сути, представляет собой клетку Фарадея, только в ней экранируется внутреннее излучение, а не внешнее; на нижнем снимке видно, что размер ячейки сетки примерно 3 мм, что значительно меньше длины волны электромагнитного излучения в печи, равной 12 см

Микроволновая печь, по сути, представляет собой клетку Фарадея, только в ней экранируется внутреннее излучение, а не внешнее; на нижнем снимке видно, что размер ячейки сетки примерно 3 мм, что значительно меньше длины волны электромагнитного излучения в печи, равной 12 см

Это же устройство может с успехом применяться для экранировки электромагнитных излучений с длиной волны, существенно превышающей размеры ячеек сетки или отверстий.

В современной технике клетками Фарадея оснащаются физические лаборатории и установки, лаборатории аналитической химии и измерительной техники, помещения для ведения секретных переговоров и даже помещения для заседания конклава кардиналов, на котором проводились последние выборы Папы римского.

Поскольку физические методы исследований широко применяются в современной медицине, помещения диагностических центров также оснащаются клетками Фарадея — примером могут служить кабинеты, в которых проводится магниторезонансная томография.

Даже в привычной всем бытовой микроволновой печи камера разогрева конструктивно выполнена в виде клетки Фарадея, а оптически прозрачное окошко в ней, сделанное по специальной технологии, не прозрачно для микроволнового излучения.

Экраны соединительных проводов и коаксиальных кабелей, широко применяющиеся в радиотехнике, компьютерной технике и технике связи для защиты от внешнего электромагнитного излучения и излучения внутреннего сигнала во внешнюю среду, тоже являются своеобразными клетками Фарадея.

Опыты по воздействию электрического поля на металлы и газы

Никуда не подключенные тонкие люминесцентные лампы от плоского дисплея можно зажечь с помощью плазменной лампы

Никуда не подключенные тонкие люминесцентные лампы от плоского дисплея можно зажечь с помощью плазменной лампы

Зажигание неоновой лампы с помощью плазменной лампы

Зажигание неоновой лампы с помощью плазменной лампы

Учитывая, что непосредственное точное измерение напряжённости электрического поля требует специальных приборов, ограничимся иллюстрацией его свойств.

Плазменная лампа

В качестве индикатора напряжённости электрического поля будем использовать неоновую, люминесцентную или любую другую газоразрядную лампу, заполненную каким-либо инертным газом при низком давлении. Генератором поля будет служить плазменная лампа Тесла, создающая переменное электрическое поле значительной напряжённости с частотой около 25 кГц.

Если коснуться поверхности плазменной лампы пальцами, происходит концентрация плазменных шнуров

Если коснуться поверхности плазменной лампы пальцами, происходит концентрация плазменных шнуров

Если поднести индикаторную лампу (даже неисправную, но с целым баллоном) к изолирующей сфере плазменной лампы, она начнёт светиться, регистрируя наличие поля.

Очевидно, что электромагнитное поле проникает сквозь стеклянные оболочки обеих ламп, поле возбуждает электроны верхних оболочек атомов газа, последние при возврате в исходное состояние генерируют свет.

Если поднести к поверхности лампы руку, то можно наблюдать утолщение плазменного шнура, поскольку мы создаём в точке соприкосновения повышенную напряжённость электрического поля.

Оценка напряжённости электрического поля с помощью осциллографа

Подключим к входу осциллографа зонд, изготовленный из куска проволоки длиной около 15 см, и поднесём его к лампе Тесла. На экране осциллографа наблюдаем индуцированные колебания с той же частотой 25 кГц и размахом 25 вольт. На электрод лампы подается переменное высокое напряжение, генерирующее в пространстве переменное электрическое поле. Увеличивая расстояние между лампой и проводом, будем наблюдать уменьшение размаха сигнала (рис. 1–3). По уменьшению амплитуды сигнала на осциллографе можно сделать вывод, что напряжённость поля убывает с расстоянием.

Picture

Экранировка электромагнитного поля

Подключим к входу осциллографа экранированный измерительный кабель (рис. 4). При этом размах сигнала, регистрируемый осциллографом, упадёт почти до нуля. Экран кабеля выполняет роль клетки Фарадея, защищая сигнальный провод от электромагнитных наводок, создаваемых плазменной лампой.

Автор статьи: Сергей Акишкин

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

www.translatorscafe.com


Каталог товаров
    .