Содержание: С помощью высоковольтных выключателей выполняется оперативное включение и отключение оборудования энергетической системы, а также ее отдельные цепи в случае ручного или автоматического управления в аварийном или нормальном режиме. В конструкцию стандартного выключателя входит корпус, контактная система, токоведущие части, устройство для гашения дуги, приводной механизм. Все высоковольтные выключатели классифицируются по различным параметрам. В зависимости от способа гашения дуги, они могут быть автогазовыми и автопневматическими, вакуумными, воздушными, а также масляными и электромагнитными. По своему назначению эти устройства классифицируются следующим образом: Высоковольтный выключатель может устанавливаться разными способами. С соответствии с этим они бывают опорными, подвесными, настенными, выкатными. Кроме того, эти приборы могут встраиваться в КРУ – комплектные распределительные устройства. Все коммутирующие устройства, работающие с высокими токами, должны обладать следующими качествами: Наиболее распространенные конструкции высоковольтных выключателей следует рассмотреть более подробно. Оба устройства представляют собой масляные типы высоковольтных выключателей. Деионизация дуговых промежутков в каждом из них осуществляется одними и теми же методами. Они отличаются друг от друга лишь количеством используемого масла, а также способами, с помощью которых контактная система изолируется от заземленного основания. Баковые устройства в настоящее время сняты с производства, поскольку у них имелись серьезные недостатки. Уровень масла в баке требовалось постоянно контролировать. Оно использовалось в большом объеме, из-за чего замена масла отнимала много времени. Эти приборы относились к категории взрыво- и пожароопасных и не могли устанавливаться внутри помещений. На смену им пришли маломасляные или горшковые выключатели, рассчитанные на все виды напряжений. Они могут устанавливаться в любые распределительные устройства, как закрытого, так и открытого типа. Масло в данном случае выступает прежде всего в качестве дугогасящей среды и лишь частично выполняет функции изоляции между разомкнутыми контактами. Токоведущие части изолируются между собой с помощью фарфора и других твердых изолирующих материалов. Выключатели для внутренней установки оборудованы контактами, помещенными в стальной бачок или горшок. Эта конструктивная особенность дала название всему устройству. В зависимости от модели, приводы высоковольтных выключателей могут различаться между собой. Приборы, рассчитанные на работу при напряжении 35 кВ, помещаются в фарфоровом корпусе. Наибольшее распространение получили подвесные устройства ВМГ-10 и ВМП-10 на 6-10 кВ. У них крепление корпуса осуществляется с помощью фарфоровых изоляторов к основанию, общему для всех полюсов. В свою очередь, каждый полюс оборудуется одним разрывом контактов и камерой для гашения дуги. При работе с большими номинальными токами недостаточно одной пары контактов, которые одновременно являются рабочими и дугогасительными. Поэтому снаружи выключателя отдельно устанавливаются рабочие контакты, а внутри металлического бачка – дугогасительные. Маломасляные выключатели используются в закрытых распределительных устройствах на подстанциях и электростанциях напряжением 6, 10, 20, 35 и 110 кВ. Кроме того, они устанавливаются в комплектных и открытых распределительных устройствах. Для гашения дуги в выключателях воздушного типа используется сжатый воздух под давлением 2-4 Мпа. Дугогасительное устройство и токоведущие части изолируются с помощью фарфора и других аналогичных материалов. Воздушные выключатели конструктивно различаются между собой в зависимости от таких факторов, как номинальное напряжение, способ подачи сжатого воздуха и других. Устройства высокого номинального тока, аналогично маломасляным выключателям, оборудованы главным и дугогасительным контурами. При включении основной ток попадает на главные контакты, расположенные открыто. После отключения они размыкаются первыми и далее ток попадает уже на дугогасительные контакты, расположенные в другой камере. Непосредственно перед их размыканием из резервуара в камеру осуществляется подача сжатого воздуха, гасящего дугу, в продольном или поперечном направлении. В отключенном положении между контактами создается изоляционный зазор необходимых размеров. С этой целью контакты разводятся на достаточное расстояние. Выключатели для внутренней установки рассчитаны на ток до 20 тыс. ампер и напряжение 10-15 кВ. Они имеют отделитель открытого типа, после отключения которого сжатый воздух перестает поступать в камеры и происходит замыкание дугогасительных контактов. Типовая конструктивная схема воздушного выключателя состоит из дугогасительной камеры, резервуара со сжатым воздухом, главных контактов, шунтирующего резистора, отделителя и емкостного делителя напряжения на 110 кВ, обеспечивающего два разрыва на фазу. В выключателях открытой установки, рассчитанных на напряжение 35 кВ, вполне достаточно одного разрыва на фазу. Элегазом называется смесь серы и фтора в определенной пропорции. В результате образуется инертный газ с плотностью выше чем у воздуха примерно в 5 раз и электрической прочностью в 2-3 раза больше воздушной. Данный вид выключателей, используя элегаз, способен погасить дугу, ток которой примерно в 100 раз выше тока, отключаемого в обычном воздухе, в тех же самых условиях. Такая способность объясняется возможностями молекул улавливать электроны, находящиеся в дуговом столбе, с одновременным созданием относительно неподвижных отрицательных ионов. При потере электронов дуга становится неустойчивой и очень легко гаснет. Если элегаз подается под давлением, то электроны из дуги поглощаются еще быстрее. Конструкция элегазового выключателя включает в себя корпус с тремя полюсами, наполненный элегазом. Внутри создается низкое избыточное давление в пределах 1,5 атмосфер. Сюда же входит механический привод и передняя панель привода, где находится рукоятка ручного взвода пружин. Устройство дополнено высоковольтными силовыми контактными площадками и разъемом для подключения вторичных коммутационных цепей. Вакуум обладает электрической прочностью, многократно превышающей этот показатель у масла, элегаза и других сред, используемых в высоковольтных выключателях. Здесь увеличивается средний свободный пробег электронов, молекул, атомов и ионов при снижении давления. Вакуумная камера включает в себя подвижный и неподвижный контакты, помещенные в плотную оболочку из керамического или стеклянного изоляционного материала. Сверху и снизу установлены металлические крышки и общий металлический экран. Подвижный контакт перемещается относительно неподвижного контакта с помощью специального сильфона. К выводам камеры подключается главная токоведущая цепь выключателя. Вакуумный выключатель работает в следующем порядке. Высокая скорость движения якоря исключает появление пробоев и шума работы контактов. Когда контакты замыкаются, якорь резко замедляет движение, поскольку на него начинает действовать пружина дополнительного поджатия контактов. Однако, по инерции он все равно двигается вверх, сжимая пружины отключения и дополнительного поджатия контактов. Чтобы отключить устройство к выводам катушки прикладывается напряжение с отрицательной полярностью. electric-220.ru Высоковольтный выключатель представляет собой специальный коммутационный аппарат, с помощью которого производится оперативное включение и отключение как отдельных электрических цепей, так и различного оборудования. При этом возможны как нормальные, так и аварийные режимы функционирования трехфазных (со стандартной частотой 50 Гц) энергосистем, предусматривающие ручное, дистанционное или автоматическое управление. Главная проблема коммутации высоковольтных цепей – образование в момент размыкания контактов электрической дуги, которая приводит к разрушению последних. Поэтому в конструкции высоковольтного выключателя изначально заложены определенные конструктивные решения, позволяющие решить эту проблему. В частности, на контактах применяется керамическое покрытие, используются различные дугогасительные устройства и различные приводы (электромагнитные, пружинные, гидравлические и пневматические). Решение проблемы с гашением дуги решается несколькими способами: -в воздушных выключателях это происходит за счет сжатого воздуха; — в масляных выключателях для этих целей используются пары масла; — в элегазовых выключателях применяется специальный «электропрочный» газ SF6; — и наконец, в вакуумных установках используется специальная дугогасильная камера (ВДК). Такие выключатели, способные работать при номинальных напряжениях от 6-ти до 1150 кВ, и возникающих при этом токах отключения до 50 кА, нашли широкое применение на различных электрических станциях. Также эффективно их используют и на подстанциях, которые позволяют донести до потребителя электроэнергию в наиболее оптимальной форме. По значению можно выделить следующие типы: — сетевые выключатели, выполняющие свои функции при напряжениях в сети более 6 кВ; — генераторные выключатели (работают в диапазоне 6… 20 кВ), главное отличие которых от стандартной конструкции – это способность выдерживать очень большие (до 10000 А) значения тока; — высоковольтные выключатели (в диапазоне от 6-ти до 220 кВ), используемые в электрических цепях обеспечения таких энергоемких производств, как стале- и рудоплавильные печи; — номинальные выключатели, характеристики которых предназначены для коммутации цепей со стандартными параметрами, без возможности реагирования на кратковременные сверхтоки. Так как отказ выключателя в случае аварийной ситуации в электрической сети может привести к весьма серьезным последствиям, к его надежности предъявляются повышенные требования. В первую очередь это касается такой характеристики, как минимальное время срабатывания, которое должно быть по возможности минимальным. Немаловажное значение имеет и такой параметр, как ремонтопригодность, который выражается, прежде всего, в возможности быстрого и своевременного доступа к поврежденному блоку, позволяющая максимально быстро устранить возникшие неисправности. pue8.ru 1-1. ОБЩИЕ СВЕДЕНИЯ Аппараты высокого напряжения, являясь в основном аппаратами распределительных устройств, служат для распределения мощных потоков электроэнергии и управления ими, обеспечения надежной работы энергоустановок и систем при аварийных режимах. ГОСТ 687—78 регламентирует для них напряжения от 3 кВ и выше. В настоящее время широко используется напряжение до 750 кВ. В СССР разработаны и внедряются аппараты для систем напряжением 1150 кВ. В современных мощных энергосистемах [36] номинальные токи на шинах (Uном> 110 кВ) достигают 8-12 кА, а на ответвлениях-до 4-5 кА. На шинах генераторного напряжения (Uном = 16...27 кВ) номинальные токи достигают 7-50 кА в зависимости от мощности генератора. Для обеспечения наиболее ответственного режима работы — режима короткого замыкания (КЗ) наибольший ток КЗ, на который создавались аппараты высокого напряжения, достиг 63 кА. В системах напряжением до 420 кВ ожидается возрастание токов КЗ до 80 кА, а при генераторных напряжениях токи КЗ достигают 180 кА. Быстрый рост номинальных напряжений энергосистем, возрастание токов короткого замыкания и номинальных токов ставят задачи по созданию аппаратов высокого напряжения, удовлетворяющих повышенным требованиям. К основным аппаратам распределительных устройств (не только высокого напряжения) относятся выключатели, разъединители и построенные на их базе реакторы и разрядники, а также измерительные трансформаторы тока и напряжения, предохранители. Главными являются выключатели, определяющие развитие всей этой области аппаратов. Они рассматриваются в настоящей главе. Сведения о других аппаратах приведены соответственно в последующих главах. Предохранители рассматриваются совместно с низковольтными предохранителями. Выключатели осуществляют оперативные включения и отключения, а главное, защиту от токов КЗ. Кроме номинальных значений тока и напряжения основными показателями для них являются номинальные токи отключения, включения и электродинамической стойкости, т. е. наибольшие токи КЗ, которые выключатель способен отключить, включить и пропустить через себя не разрушаясь. Отключение больших токов короткого замыкания — сложнейшая задача. По способу гашения дуги высоковольтные выключатели могут быть масляные, воздушные, элегазовые, вакуумные, электромагнитные и др. Отдельные типы выключателей с ограниченной отключающей способностью называют выключателями нагрузки. Они рассматриваются в следующей главе. По конструкции выключатели каждого типа в зависимости, от выполняемых функций (назначения) в схемах распределительных устройств подразделяются на генераторные, сетевые или подстанционные. Генераторные выключатели характеризуются большими значениями номинальных токов и большими токами отключения при меньших напряжениях, сетевые — меньшими номинальными токами и более высокими напряжениями, подстанционные — наивысшими номинальными напряжениями, наиболее высокой отключающей способностью, быстродействием и наличием автоматического повторного включения (АПВ). Аппараты различаются еще по другим характеристикам — быстродействию, наличию АПВ, исполнению — для наружной или внутренней установки, по числу фаз, по роду привода и т. д. 1-2: ВЫКЛЮЧАТЕЛИ МАСЛЯНЫЕ Масляные выключатели - одни из первых коммутационных аппаратов в электроустановках высокого напряжения, применяются с конца прошлого столетия, не потеряли своего значения и широко используются в настоящее время. В СССР это основной вид выключателей на 6—220 кВ. Различают выключатели масляные баковые — с большим объемом масла, масло служит и как дугогасящая среда, и как изоляция, и выключатели маломасляные — с малым объемом масла, масло служит только дугогасящей средой. На напряжения 35-220 кВ применяются в основном баковые выключатели. Маломасляные выключатели являются основными на напряжение до 10 кВ. И это положение сохранится надолго, особенно если будут повышены их номинальные токи до 4 кА, а отключаемый ток - до 40— 50 кА. Начинают все более широко применяться маломасляные выключатели в наружных установках на 110 и 220 кВ при условии их достаточной отключающей способности (серия ВМТ). Достоинства масляных выключателей — относительная простота конструкции, большая отключающая способность и независимость от атмосферных явлений. Недостатком, особенно баковых выключателей, является наличие большого количества масла, что приводит к большим габаритам и массам как самих выключателей, так и распределительных устройств, повышенной пожаро- и взрывоопасности, необходимости специального масляного хозяйства. Рис. 1-1. Полюс масляного бакового выключателя на 220 кВ 1 — бак; 2 — дугогасительная камера' с неподвижными контактами и шунтирующим резистором; 3 — изоляция бака; 4 — ввод; 5 — приводной механизм;6 — трансформатор тока; 7 — направляющее устройство; 8 — шунтирующий резистор; 9 - изоляционная тяга; 10 -траверса с подвижными контактами;II — положение траверсы после отключения Выключатели масляные баковые. Эти выключатели на напряжение до 20 кВ и относительно малые токи отключения выполняются большей частью однобаковыми (три полюса в одном баке), на напряжение 35 кВ и выше - трехбаковыми (каждая фаза в отдельном баке) с общим или индивидуальными приводами. Выключатели могут снабжаться электромагнитными или пневматическими приводами и работают с автоматическим повторным включением (АПВ). Основой конструкции выключателя (рис. 1-1) является бак цилиндрической или эллипсоидальной формы, внутри которого и на нем монтируются контактная и дугогасительные системы, вводы и привод. Бак заливается до определенного уровня трансформаторным маслом. Между поверхностью масла и крышкой бака должен остаться некоторый свободный объем (обычно 20 — 30 % объема бака) — воздушная буферная подушка, сообщающаяся с окружающим пространством через газоотводную трубку. Воздушная подушка снижает давление, передаваемое на стенки бака при отключении, исключает выброс масла из бака и предохраняет выключатель от взрыва при чрезмерном давлении. Высота уровня масла над местом разрыва контактов должна быть такой, чтобы исключить выброс в воздушную подушку горячих газов, выделяющихся при отключении вследствие разложения масла. Прорыв этих газов может при определенных их соотношениях привести к образованию взрывчатой смеси (гремучего газа) и взрыву выключателя. Высота уровня масла над местом разрыва контактов определяется номинальными напряжениями и током отключения и может составлять от 300—600 мм в выключателях на напряжение 6—10 кВ и до 2500 мм в выключателях на напряжение 220 кВ. При напряжениях 3—6 кВ и малых отключаемых токах применяется простой разрыв в масле. При напряжениях 10, 35 кВ и выше в зависимости от значений напряжения и отключаемого тока используются как простые, так и более сложные дугогасительные устройства с продольным, поперечным, продольно-поперечным дутьем, с одно- и многократным разрывом. Пример дугогасительной камеры с промежуточным контактом и продольным дутьем, применяемой в выключателях на 110 и 220 кВ, приведен на рис. 9-2. При отключении сначала размыкаются контакты 2 и 1, а затем контакты 1 и 8. Дуга между контактами 2 и 1 (генерирующая) создает повышенное давление в верхней полукамере. Газопаровая смесь и частички масла устремляются в сообщающийся с объемом бака полый контакт 8, создавая интенсивное продольное дутье и гася дугу. При отключении больших токов давление в камере к моменту расхождения контактов 1 и 8 достигает 4-5 МПа. После отключения камера заполняется свежим маслом через нижнее отверстие полукамеры 7. Масляные баковые выключатели на напряжение 35 кВ и выше имеют встроенные трансформаторы тока. На внутреннюю часть проходного изолятора надеты, и укреплены под крышкой выключателя сердечники со вторичными обмотками (один или два на изолятор). Токоведущий стержень проходного изолятора служит первичной обмоткой. Выключатели на напряжение 110 кВ и выше могут иметь емкостные трансформаторы напряжения, для выполнения которых используются обкладки маслонаполненных вводов конденсаторного типа, и трансформаторы напряжения с индуктивной катушкой. Выключателя маломасляные. В отличие от масляных баковых выключателей масло служит здесь только дугогасящей средой, а изоляция токоведущих частей и дугогасительного устройства относительно земли осуществляется с помощью твердых изоляционных материалов (керамика, текстолит, эпоксидные смолы и т.п.). Диаметры цилиндров у этих выключателей значительно меньше по сравнению с диаметрами баков масляных баковых выключателей, соответственно намного меньше объем и масса заливаемого в цилиндры масла. Меньшая, чем у бакового выключателя, прочность корпуса по отношению к давлениям, создаваемым при отключении предельных токов короткого замыкания, ограничивает отключающую способность маломасляного выключателя. Рис. 1-2. Дугогасительная камера с промежуточным контактом и продольным дутьем. 1—промежуточный контакт с пружиной; 2— неподвижный контакт с пружиной; 3 — верхняя полукамера, металлическая; 4 — детали соединения с токоподводящим стержнем; 5 — гибкая связь; б — перегородка; 7 — нижняя полукамера, изоляционная; 8 — подвижный контакт. Маломасляные выключатели имеют существенно меньшие габариты и массу, меньшую взрыво- и пожароопасность и требуют меньших и более дешевых распределительных устройств по сравнению с масляными баковыми выключателями. Наличие в маломасляных выключателях встроенных трансформаторов тока и емкостных трансформаторов напряжения значительно усложняет конструкцию выключателей и увеличивает их габариты, поэтому маломасляные выключатели выполняются без органической связи с такими трансформаторами. Выключатели по компоновке выполняются с дугогасительными камерами внизу (ход подвижного контакта сверху вниз) и с камерами, расположенными сверху (ход подвижного контакта снизу вверх). Последние более перспективны в отношении повышения отключающей способности. Применяются выключатели для внутренней установки как распределительные и генераторные и для внешней установки как распределительные и подстанционные. На рис. 1-3 приведен общий вид выключателя типа ВМПЭ-10 на 10 кВ и токи 630, 1000, 1600 А (в зависимости от сечения токопровода и контактов), номинальный ток отключения 20 и 31,5 кА, время отключения выключателя с приводом 0,12 с, время горения дуги при номинальных токах отключения не более, 0,02 с. Выключатель смонтирован на сварной раме 3. Внутри рамы расположен приводной механизм, который передает движение от привода к подвижным контактам и состоит из приводного вала 5 с рычагами, изоляционной тяги 4, отключающих пружин, масляного б и пружинного демпферов. К раме с помощью изоляторов 2 подвешены три полюса 1 выключателя. Каждый полюс (рис. 1-4) состоит из прочного влагостойкого изоляционного цилиндра 5, армированного на концах металлическими фланцами 3 и 6. На верхнем фланце укреплен корпус 9 из алюминиевого сплава. Внутри корпуса расположены приводной механизм 13 и подвижная контакт-деталь 14 с роликовым токосъемным устройством с роликовым токосъемным устройством 8 и маслоуловителем 12. Корпус закрывается крышкой 10, имеющей отверстие для выхода газов и пробку 11 маслоналивного отверстия. Рис. 1-3. Выключатель маломасленый на 10 кВ для внутренней установки (тип ВМПЭ-10) – общий вид. Рис. 1-4. Полюс выключателя, изображенного на рисунке 1-3. Нижний фланец закрывается крышкой 1, внутри которой расположена неподвижная розеточная контакт-деталь 2, над которой установлена дугогасительная камера 4 поперечного масляного дутья. Снизу крышки помещена маслоспусковая пробка 16, на фланце установлен маслоуказатель 15. Для повышения стойкости контактов к действию электрической дуги и увеличения срока их службы съемный наконечник подвижной контакт-детали и верхние торцы ламелей розеточного контакта облицованы дугостойкой металлокерамикой. Токоподвод осуществляется к нижней крышке и к верхней крышке или среднему выводу 7. Выключатель может иметь встроенные элементы защиты и управления, такие, как реле максимального тока мгновенного действия и с выдержкой времени, реле минимального напряжения, отключающие электромагниты, вспомогательные контакты и т. п. Общий вид маломасляного генераторного выключателя приведен на рис. 1-5. Особенностью конструкций этих выключателей является токопровод, имеющий два параллельных контура: основной, контакты которого расположены открыто, и дугогасительный, контакты которого находятся в дугогасительных камерах внутри бака. На рис. 1-6 представлена функциональная электри ческая схема выключателя, изображенного на рис. 1-5. Основной контур образуют токоподвод 11, токоведущая шина 70, основные контакты 9, основная шина траверсы 8 и соответствующие позиции 9, 10 я 11 второго бака. Дугогасительный контур — основная шина 10, медные скобы 12, соединяющие основную шину с баком, стенки бака 3, неподвижный дугогасительный контакт 13, дуга (в момент отключения) 14, подвижный дугогасительный контакт 15 и соответствующие позиции 15, 14, 13, 3. 12, 10 второго бака. При включенном положении выключателя оба контура работают параллельно. Преобладающая часть тока проходит через основной контур, имеющий по сравнению с дугогасительным значительно меньшее сопротивление. При отключении сначала размыкаются основные контакты, дуга на них не возникает, весь ток переходит в дугогасительный контур. Затем размыкаются дугогасительные контакты, отключая цепь. Выключатели выполняются с двукратным разрывом на фазу, с камерами различной конструкции. Рис. 1-5. Выключатель маломасляный генераторный (тип МГУ-20) 1—основание; 2 — опорный изолятор; 3, 5—бак; 4 — внутриполюсная перегородка; б — междуполюсная перегородка; 7 — газоотвод; 8 - траверса с шинами основного и дугогасительного контуров; 9-основные контакты; 10 — токоведущая шина; 11 — токоподвод Рис. 1-6. Функциональная электрическая схема выключателя, изображенного на рис. 1-5: а—включенное положение; б—момент отключения Рис. 1-7. Выключатель маломасляный колонковый для внешней установки 1 - основание; 2 и 9 - неподвижные контакты; 3 — опорная изоляционная колодка; 4 - роликовый токоподвод; 5 — фарфоровая рубашка; 6 — подвижный контакт; 7 — дугогасительное устройство; 8 — промежуточный контакт; 10 — изоляционный цилиндр Для увеличения номинального тока применяется искусственный обдув контактной системы и подводящих шин. В последние годы находит применение жидкостное (водяное) охлаждение контактов и шин. Выключатель маломасляный для внешней установки (распределительный, подстанционный) показан на рис. 1-7. Выключатель состоит из трех основных частей: гасительных устройств, помещенных в фарфоровые рубашки; фарфоровых опорных колонок и основания (рамы). Изоляционный цилиндр, охватывающий дугогасительное устройство, защищает фарфоровую рубашку от больших давлений, возникающих при отключении. Число разрывов на фазу может быть один, два и больше. Расположение камеры сверху более перспективно для повышения отключающей способности. 1-3. ВЫКЛЮЧАТЕЛИ ВОЗДУШНЫЕ Воздушные выключатели [2], в которых гашение дуги осуществляется потоком сжатого воздуха, получили весьма широкое распространение и во многих случаях вытеснили масляные. Они позволили перейти к классам напряжения 750 и 1150 кВ и в основном применяются: как сетевые на напряжение 6—1150 кВ с номинальными токами до 4000 А и токами отключения до 63 кА; как генераторные на напряжение 6-20 кВ с номинальными токами до 20 кА и токами отключения до 160 кА; как выключатели нагрузки на 6—220 кВ и 110—500 кВ и выключатели комплектных распределительных устройств на напряжение до 35 кВ. Ожидается, что в ближайшее время появятся сетевые выключатели на напряжение 1500—2000 кВ с номинальными токами 10—15кА и токами отключения 100—120 кА и генераторные выключатели на номинальные токи до 50 кА с токами отключения до 300 кА. Выключатели выпускаются различного климатического исполнения, для различных категорий размещения и различного вида установки (опорные, подвесные, настенные, выкатные и др.). Независимо от типа и конструкции воздушный выключатель состоит из трех основных частей: дугогасительного устройства с отделителем или без него, системы снабжения сжатым воздухом и системы управления. Система управления выполняется с одним пневматическим приводом с механической передачей, с индивидуальной пневматической передачей, с пневмомеханической передачей, с пневмогидравлической передачей и пневмосветовой передачей. Гашение дуги в выключателях осуществляется сжатым воздухом номинальным давлением 0,6—5 МПа в различных камерах продольного и поперечного, одностороннего и двустороннего дутья, с соответствующим напряжению числом последовательно включенных разрывов. В выключателях с отделителем размыкание дугогасительных контактов и гашение дуги осуществляются одним и тем же потоком сжатого воздуха, поступающего из отдельного резервуара. Контакты (один или оба) выполнены в виде контактно-поршневых механизмов. Во включенном положении выключателя в дугогасительном устройстве и в отделителе все контакты замкнуты. При подаче команды на отключение сжатый воздух из резервуара подается в дугогасительную камеру, размыкает контакты и гасит дугу. Обычно параллельно контактам включается шунтирующий резистор, облегчающий гашение дуги. После погасания дуги на основных дугогасительных контактах размыкается отделитель, который отключает оставшийся ток. Отделитель может выполняться открытым (до 35 кВ) или в виде воздухонаполняемых камер. После погасания дуги на отделителе подача воздуха в дугогасительные камеры прекращается и контакты под действием пружин замыкаются. Контакты же отделителя остаются разомкнутыми, обеспечивая необходимое изоляционное расстояние для разомкнутой цепи. Рис. 1-8. Коструктивная схема воздушного выключателя ВВП-35. В выключателях без отделителя широко применяются воздухонаполненные металлические камеры (резервуары), в которых размещены дугогасительные устройства. Привод контактов отделен от гасящей среды. При размыкании контактов открываются выхлопные клапаны камер и сжатый воздух, вытекая из камер через соответствующие сопла контактов, гасит дугу. Контакты могут выполняться одно- и двухступенчатыми. Число последовательно включенных дугогасительных устройств определяется номинальным напряжением выключателя. Изоляционный промежуток в отключенном положении обеспечивается расхождением этих же контактов на соответствующее расстояние. Ниже приведены примеры исполнения выключателей. Конструктивная схема воздушного выключателя (ВВП-35) с контактно-поршневым механизмом и открытым отделителем приведена на рис. 1-8. Выключатель состоит из трех механически связанных полюсов (на рисунке приведен разрез одного полюса), смонтированных на общем основании (резервуаре 1), и распределительного шкафа (на рисунке не показан). На резервуаре установлены: дугогасительные устройства 5 на опорных изоляторах 2, неподвижные контакты 12 отделителя 10 на изоляторах 16, электропневматическое устройство 17 (одно на три полюса) для управления встроенным в резервуар дифференциальным клапаном 18 и привод (на рисунке не показан), управляющий отделителем через вал 15 и изоляционные штанги 14. Полюсы выключателя (отделителя) разделены между собой изоляционными перегородками 11 и имеют выводы 7 и 13. При открытии дифференциального клапана сжатый воздух из резервуара через полость опорного изолятора поступает в дугогасительную камеру, давит на контактно-поршневой механизм 8, размыкает контакты (неподвижный 3, подвижный 6) и через сопло подвижного контакта выдувает и гасит дугу. Пламя дуги охлаждается в пламегасительной решетке 9. Для облегчения гашения дуги контакты шунтированы резистором 4. После погасания дуги отделитель 10 размыкается и отключает оставшийся ток. Длительность времени подачи дутья в дугогасительную камеру регулируется механизмом пневматической отсечки электропневматического устройства. После того как дифференциальный клапан закроется, подача воздуха в камеру прекратится, давление в ней упадет и подвижный контакт под действием пружины контактно-поршневого механизма возвратится на место, контакты замкнутся. Однако цепь останется разомкнутой отделителем. Генераторные выключатели. Функциональная электрическая схема полюса и общий вид выключателя ВВГ-20 (Uном = 20 кВ, Iном = 20 кА, Iоном = 160 кА, сквозной ток 410 кА) с воздухонаполненным отделителем приведены на рис. 9-9. Полюс выключателя состоит из основного токоведущего контура — выводов 1 и 4 и разъединителя (основного контакта) 2, основных дугогасительных контактов 7 а 10, которые шунтированы резисторами 8 и 11 соответственно, вспомогательных дуго гасительных контактов б, отделителя 9 и разрядника 3 с нелинейным резистором 5. Рис. 1-9. Функциональная электрическая схема полюса (а) и общий вид (б) генераторного воздушного выключателя ВВГ с воздухонаполненным отделителем. Все устройства монтируются на баке и снабжаются соответствующими электропневматическими приводами. Выключатель состоит из трех одинаковых полюсов, связанных между собой воздуховодами, и распределительного шкафа. Во включенном положении большая часть тока протекает через основной токоведущий контур. При отключении сначала размыкается основной контакт 2 и весь ток переходит в дугогасительный контур. Затем размыкаются основные дугогасительные контакты 7 и 10; ограниченный резисторами 8 и 11 ток протекает через вспомогательные дугогасительные контакты 6. После их размыкания и погасания дуги ток в цепи прекращается и размыкается отделитель 9, обеспечивая необходимый изоляционный промежуток. Разрядник служит для ограничения перенапряжений при отключении (в случае их возникновения). После прекращения подачи сжатого воздуха контакты б, 7 и 10 под действием пружин возвращаются во включенное положение. Выключатели серии ВВБ. Общий вид и функциональная схема дугогасительного устройства без отделителя приведены на рис. 1-10. В металлическом резервуаре (камере) б, заполненном воздухом под высоким давлением (1,6—2,4 МПа), размещается дугогасительное устройство с двумя разрывами (контакты — подвижные 8, неподвижные 9) одностороннего дутья (сопло 4). Резервуар находится под высоким потенциалом. Напряжение подводится через выводы 13 с эпоксидной изоляцией 14, защищенные снаружи фарфоровыми рубашками 12. Основные разрывы (контакты 8 и 9) шунтированы линейными резисторами 10, что облегчает гашение дуги на них. Оставшийся ток отключается вспомогательными дугогасительными разрывами (контакты—неподвижный 15, подвижный, полый, он же сопло 17— закрыты кожухом 1). Камеры могут выполняться и без вспомогательных контактов, а следовательно, и без шунтирующих резисторов. Полное гашение осуществляется на основных разрывах. Конденсаторы (делительные) 11 служат для выравнивания напряжения по разрывам в отключенном положении выключателя. Рис. 1-10. Общий вид (а) и функциональная схема (б) дугогасительного устройства без отделения выключателей серии ВВБ. Рис. 1-11. Полюс выключателя серии ВВБ на 220 кВ. Контакты камеры управляются пневмоэлектрическими механизмами 18. При подаче воздуха в цилиндр 2 поршень 3, связанный с траверсой 7, размыкает основные контакты. Одновременно открываются клапаны 19 выхлопных каналов сопел. Сжатый воздух устремляется наружу (показано стрелками), гасит дугу в соплах. Аналогично гасится дуга на вспомогательном разрыве. После погасания дуги выхлопные клапаны сопел закрываются. Давление внутри резервуара несколько снижается. Объем резервуара и давление в нем рассчитаны так, что камера способна выполнить несколько отключений. При этом давление в резервуаре не упадет ниже допустимого для надежного гашения дуги. В отключенном положении контакты удерживаются давлением в цилиндре 2. Для включения выключателя воздух из цилиндра выпускается через клапан 16. Возвратный механизм 5 замыкает контакты. Соответственно управляются и вспомогательные разрывы. Камера устанавливается на изоляционную опору 20, через которую проходят воздуховоды — основной 22 (высокого давления) и управления 21. Приведенное дугогасительное устройство принято как модуль на 110—150 кВ для выключателей до 750кВ без отделителей. Каждый выключатель состоит из трех полюсов, не имеющих между собой механической связи, и одного (35, 110, 220 кВ) или четырех (330, 500 и 750 кВ) распределительных шкафов. Отсутствие механической связи между полюсами позволяет выполнять трехфазное или пополюсное отключение. Полюсы выключателей на 35, 110 кВ состоят из одной дугогасительной камеры-модуля (одного резервуара б - рис. 1-10), расположенной на изоляционной опоре. Полюс выключателей на 220 кВ (рис. 1-11) состоит из двух металлических дугогасительных камер 1, разделенных промежуточным изолятором 2 и расположенных на соответствующей изоляционной опоре 3. Полюсы выключателей на 330, 500 и 750 кВ состоят соответственно из двух, трех и четырех однотипных элементов (четырех, шести и восьми модулей), каждый из которых представляет собой полюс выключателя на 220 кВ на соответствующей изоляционной опоре, (показано штрихпунктирными линиями). Выключатели воздушные серии ВВБК выпускаются на напряжение 110-1150 кВ, номинальный ток 3200 и 4000 А, номинальный ток отключения 50-40 кА, номинальное давление сжатого воздуха 4 МПа, время отключения 0,04 с. Эти выключатели являются дальнейшим шагом в развитии конструктивных принципов, заложенных в серии ВВБ. Отличительными их особенностями являются повышенное рабочее давление воздуха и усовершенствованное дугогасительное устройство с несимметричным дутьем, что позволило повысить напряжение модуля (220 и 330 кВ — два модуля, 500 и 750 кВ — четыре модуля, 1150 кВ — шесть модулей). Выключатели снабжены новой быстродействующей системой управления. Назначение и устройство привода высоковольтного выключателя. Выключатели высоковольтные
Высоковольтные выключатели: виды и применение
Классификация высоковольтных выключателей
Основные требования к высоковольтным выключателям
Баковые и маломасляные выключатели
Выключатели воздушные
Элегазовые высоковольтные выключатели
Выключатели вакуумного типа
Назначение высоковольтных выключателей
Выключатели высоковольтные.
Похожие статьи:
poznayka.org
типы высоковольтных выключателей | electric-zone.ru
Высоковольтные выключатели – это электрические аппараты служащие для изменения состояния высоковольтного элемента сети (это может быть линия, секция шин и т. д.) «включено-выключено» с целью оперативного управления системой энергоснабжения, а так же для защиты и отключения высоковольтного оборудования или участка сети в аварийных ситуациях.
Высоковольтный выключатель состоит из: системы контактов, дугогасительного устройства, токоведущих частей, изоляции, приводного механизма и корпуса.
Конструкция выключателя позволяет отключать токи КЗ в несколько десятков тысяч ампер, токи нагрузки, а также сравнительно небольшие индуктивные и емкостные токи.
Основная проблема возникающая при коммутации больших токов – это возникновение электрической дуги. Эта проблема решается применение различных диэлектрических сред между контактами выключателя.
По этому признаку различают основные типы высоковольтных выключателей делятся на:
- масляные;
- воздушные;
- вакуумные;
- элегазовые.
Названия выключателей отражают состав сред гашения дуги.
Масляные выключатели довольно дешевы и просты в эксплуатации, но основной их недостаток — они пожаро- и взрывоопасны, к тому же довольно габаритные.
Рис. 1. Масляные выключатели.
В воздушном выключателе гашение дуги происходит посредством мощного потока воздуха из резервуара высокого давления. Воздушные выключатели сложнее и дороже, чем масляные, для их работы требуется наличие компрессорной станции для получения чистого сухого воздуха под высоким давление.
Рис. 2. Воздушные выключатели.
В вакуумном выключателе дуга гаснет в разреженном пространстве дугогасительной камеры. Вакуум характеризуется чрезвычайно высокой электрической прочностью и быстро восстанавливается после электрического пробоя. Такие выключатели отличается высокой надежностью, простотой конструкции и уменьшенными затратами на обслуживание.
Рис. 3. Вакуумный выключатель.
Гасящей средой в элегазовом выключателе является гексофторид серы SF6 (элегаз). Эти выключатели отличаются повышенной коммутационной способностью и небольшими габаритами, основной недостаток – высокая стоимость.
Рис. 4. Элегазовый выключатель.
Свяжитесь со мной:Related posts:
- Автоматические выключатели
на Ваш сайт.
electric-zone.ru
Воздушные выключатели. Высоковольтные выключатели переменного тока
В выключателях рассматриваемого вида гашение дуги происходит в продольном потоке воздуха при давлении 2-4 МПа и выше. Опыт показывает, что для гасительного устройства с одним разрывом при заданном давлении воздуха произведение напряжения и наибольшего отключаемого тока остается постоянным при изменении тока в широких пределах. Поэтому гасительное устройство с одним разрывом может быть использовано для отключения значительного тока только при относительно небольшом напряжении. Выключатели напряжением 220 кВ и выше должны иметь несколько разрывов, включенных последовательно. Так, например, при давлении воздуха 4 МПа и напряжении 110 кВ выключатель с одним разрывом способен отключить ток около 40кА. Выключатель 220 кВ должен иметь два разрыва, а выключатель 500 кВ - четыре разрыва.
Воздушные выключатели с номинальным напряжением от 110 до 1150 кВ проектируют сериями и собирают из унифицированных частей, из которых важнейшим является дугогасительный модуль с двумя разрывами, рассчитанный на некоторое условное напряжение порядка 110-250 кВ в зависимости от давления воздуха. Число модулей, включенных последовательно, выбирают в соответствии с номинальным напряжением.
Рис.1. Схема, поясняющая влияние емкостей на распределение напряжениямежду разрывами воздушного выключателя
Необходимым условием удовлетворительной работы выключателей с многократным разрывом является равномерное распределение восстанавливающего напряжения между разрывами. Опыт показывает, что это напряжение распределяется далеко неравномерно, если для этого не приняты особые меры. Объясняется это наличием емкостей фарфоровых колонн относительно земли, обозначенных на рис.1 через С1. Чтобы обеспечить равномерное распределение напряжения между разрывами при любой частоте восстанавливающегося напряжения, целесообразно применение емкостных делителей напряжения (рис.2,а).
Рис.2. Схема включения конденсаторов и шунтирующихрезисторов у воздушного выключателя
Воздушные выключатели, чувствительные к скорости восстанавливающегося напряжения, обычно снабжают также шунтирующими резисторами, включенными параллельно каждому разрыву (рис.2,б). При этом в каждом разрыве необходимы небольшие гасительные устройства (обозначены 1', 2', 3', 4') для отключения сопровождающего тока.
Выключатели серии ВВБ
Выключатели этой серии изготовляет ПО «Электроаппарат» для номинальных напряжений от 110 до 750 кВ. Дугогасительные модули с двумя разрывами и односторонним дутьем имеют условное напряжение 110 кВ. Число модулей у выключателей с номинальным напряжением 110, 220, 330, 500 и 750 кВ равно соответственно 1,2,4,6 и 8. Модули устанавливают на колоннах из фарфоровых изоляторов. Выключатели 110 кВ имеют один модуль и одну опорную колонну. Выключатели 220-750 кВ имеют по два модуля на каждой колонне, расположенных один над другим и соединенных последовательно перемычкой (рис.3).
Рис.3. Выключатель серии ВВБ-220 с двумя модулями на одной колонне: 1 - шкаф управления; 2 - опорный изолятор; 3 - дугогасительное устройство; 4 - делитель напряжения; 5 - соединительный проводник; 6 - шунтирующий резистор
Давление воздуха для выключателей 110, 220 и 500 кВ равно 2 МПа; для выключателей 750 кВ - 2,6 МПа; для выключателей 330 кВ - 2 и 2,6 МПа. Выключатели 110 и 220 кВ имеют шунтирующие резисторы с сопротивлением 50-100 Ом; выключатели 330, 500 и 750 кВ шунтирующих резисторов не имеют. Номинальные токи отключения выключателей серии ВВБ равны 31,5 и 40 кА в зависимости от исполнения.
Выключатели серии ВВБ имеют пневматическую систему управления. Пусковые клапаны для включения и отключения с соответствующими электромагнитами расположены у основания выключателя, около ресивера с запасом сжатого воздуха, и находятся под потенциалом земли. В полых опорных колоннах проложены воздуховоды из изоляционного материала, из которых один служит для пополнения бачков сжатым воздухом, а второй для управления контактами и дутьевыми клапанами модулей, находящихся под напряжением.
Рис.4. Дугогасительное устройство выключателя серии ВВБ
Дугогасительное устройство выключателя серии ВВБ показано на рис.4. Здесь 1 - стальной бачок с литыми вводами (на рисунке не показаны), заполненный воздухом под давлением; 2 - неподвижные контакты, укрепленные на вводах; 3 - подвижная траверса с пальцевыми контактами 4; 5 - металлические сопла; 6 - механизм, фиксирующий положение траверсы; 7 - тарелка дутьевого клапана; 8 - поршень; 9 - шток.
Снизу к бачку прикреплен дутьевой клапан прямого действия, который состоит из следующих частей: корпуса 10, цилиндра 11 с поршнем 12, кольцом 13 и пружиной 14. Поршень 12 соединен полым штоком 15 с тарелкой 7 дутьевого клапана.
На рис.4 дугогасительное устройство показано в положении «включено». При этом контактная траверса находится в нижнем положении, контакты замкнуты, а тарелка дутьевого клапана 7 прижата к седлу давлением воздуха в бачке.
Процесс отключения протекает следующим образом. При КЗ реле защиты замыкает цепь электромагнита отключения; открывается соответствующий пусковой клапан и сжатый воздух из ресивера по воздуховоду 17 поступает под поршень 12 дутьевого клапана. Поршень перемещается вверх вместе с кольцом 13 и тарелкой 7, открывая выход воздуху из бачка наружу через отверстие 16. Одновременно с тарелкой 7 перемещается и поршень 8 со штоком 9 и траверсой 3. Между неподвижными контактами 2 и стенками сопел 5 зажигаются дуги, которые гасятся в потоке воздуха.
Дутьевой клапан открыт до тех пор, пока силы, действующие на поршень 12 снизу, не сравняются. Снизу на поршень действует воздух, подаваемый из ресивера, сверху - сила пружины 14 и сжатый воздух, просачивающийся снизу через дроссель, встроенный в поршень 12 (на рисунке не показан). Когда давление воздуха на поршень сверху и снизу сравняется, он переместится вниз вместе с тарелкой 7; дутьевой клапан закроется.
Продолжительность дутья можно регулировать с помощью дросселя.
Посте закрытия дутьевого клапана поршень 8 удерживается в верхнем положении сначала давлением воздуха снизу, а затем - фиксирующим механизмом 6.
Для включения выключателя необходимо выпустить воздух из-под поршня 12 через воздуховод 17. Тогда давление воздуха под и над поршнем 12, а также под поршнем 8 понизится.
Когда давление под поршнем 8 окажется меньшим, чем над ним, он опустится вместе со штоком 9, преодолев сопротивление фиксирующего механизма. Контакты выключателя замкнутся.
Выключатели серии ВВБК
Выключатели этой серии строят для номинальных напряжений от 110 до 500 кВ. Они отличаются от выключателей серии ВВБ давлением воздуха, которое повышено до 4 МПа. Дугогасительное устройство с односторонним дутьем заменено устройством с двухсторонним дутьем. Это позволило увеличить условное напряжение модуля до 250 кВ и уменьшить их число. Выключатели 110 кВ имеют один модуль, выключатели 220 и 330 кВ - два и выключатели 500 кВ - четыре модуля (рис.5). Увеличены номинальные токи. Пневматическая система управления заменена пневмомеханической, что позволило уменьшить время отключения до двух периодов. Механическая передача размещена в отдельной колонке, расположенной рядом с опорной колонной.
Рис.5. Выключатель серии ВВБК, 500 кВ: 1 - шкаф управления; 2 - опорная колонна; 3 - колонка управления; 4 - модуль; 5 - промежуточные изоляторы; 6 - делитель напряжения; 7 - токоведущая перемычка
Рис.6. Дугогасительное устройство выключателя серии ВВБК
На рис.6 приведен разрез дугогасительного устройства выключателя серии ВВБК. Как видно из рисунка, в неподвижные контакты 1 введены каналы дополнительного дутья 2, управляемые клапанами 3 и 4. Вынос продуктов горения из каналов дополнительного дутья происходит через внутренние полости токоведущих стержней вводов. Эффективность дутья резко повышена при незначительно увеличенном расходе воздуха. Дугогасительные контакты выполнены в виде пальцев.
Выключатели серии ВНВ
Выключатели этой серии изготовляет ПО «Уралэлектротяжмаш» для номинальных напряжений от 110 до 1150 кВ. Дугогасительный модуль с двумя разрывами рассчитан на условное напряжение 250 кВ при давлении воздуха 4 МПа. Такой укрупненный по напряжению модуль позволяет уменьшить их число сравнительно с выключателями серий ВВБ и ВВБК. Так, например, выключатели 220 кВ имеют один модуль, выключатели 500 кВ - два и выключатели 750 кВ - три модуля. Каждому модулю соответствует опорная колонна, высота которой определяется номинальным напряжением выключателя. Колонны каждого полюса установлены на общем горизонтальном ресивере с запасом сжатого воздуха, сообщающимся с внутренними полостями колонн и через них - с дугогасительными модулями (рис.7).
Рис.7. Выключатель серии ВНВ, 750 кВ: 1 - ресивер сжатого воздуха; 2 - опорная колонна; 3 - экран; 4 - модуль; 5 - делитель напряжения
Таким образом, фарфоровые колонны должны выдерживать внутреннее давление 4 МПа. С учетом этого требования они усилены встроенными стеклоэпоксидными цилиндрами, стягивающими изоляторы и тем самым увеличивающими их механическую прочность.
В выключателях серии ВНВ применена система управления с механической передачей движения от привода, расположенного у основания выключателя, к подвижным контактам дугогасительного устройства с помощью системы рычагов и тяг, расположенных в ресивере и опорных колоннах.
Рис.8. Схема управления выключателем серии ВНВ
На рис.8 приведена схема управления полюса выключателя 500 кВ с двумя модулями и двумя колоннами. Поскольку модули одинаковы и разрывы симметричны относительно вертикальной оси модуля, на рисунке показан разрез половины модуля.
Модуль состоит из следующих частей: стального корпуса, стеклоэпоксидных вводов с фарфоровым покрытием; контактной системы; сопел; выхлопных клапанов; привода выхлопных клапанов; системы рычагов и тяг.
Привод состоит из поршневого устройства; пусковых клапанов отключения и включения с соответствующими электромагнитами: вспомогательных клапанов.
При подаче команды на отключение срабатывает электромагнит 1 и открывает пусковой клапан отключения 2. Сжатый воздух из ресивера поступает в полость А над поршнем 3 привода полюса. Поршень перемещается вниз и своим штоком 4 воздействует на угловые рычаги 5, связанные металлическими тягами 6 с угловыми рычагами 7 и изоляционными тягами 8. Тяга 8 в каждой колонне соединена со штоком 9, на котором имеется планка (коромысло) 10, соединенная с угловыми рычагами 11. При движении тяги вниз угловые рычаги поворачиваются: левый по часовой стрелке, правый - против часовой стрелки; при этом вертикальные плечи этих же рычагов, соединенные серьгами 12 с подвижными контактами 13, перемещают их вдоль горизонтальной оси модуля навстречу друг другу.
В процессе перемещения подвижного контакта 13 сначала размыкаются главные рабочие контакты 14, а затем дугогасительные 15. Пластины дугогасительных контактов образуют неподвижное сопло, связанное с выхлопной полостью, находящейся при включенном положении выключателя под атмосферным давлением. В самом начале движения контакта 13 (еще до размыкания главных рабочих контактов 14) торец этого контакта отрывается от седла клапана 16, в которое он упирается во включенном положении, и тем самым отделяет заполненную сжатым воздухом полость дугогасительной камеры от внутренней полости контактов, соединенной с атмосферой.
Несколько позднее при размыкании дугогасительных контактов возникает дуга с основаниями на дугогасящей пластине и на внутренней поверхности подвижного контакта 13. Потоком сжатого воздуха она сдувается в сопло неподвижного контакта и в расположенное на оптимальном расстоянии от него подвижное сопло 17. В дальнейшем контакт 13 отходит на полное изоляционное расстояние и прячется за электростатический экран 18.
Одновременно при движении тяги 8 вниз шток 19, являющийся продолжением штока 9, выступом 20 воздействует на рычаг 21, который, поворачиваясь, открывает оперативный клапан 22. При этом сжатый воздух из полости над поршнем 23 привода выхлопных клапанов через змеевик 24 выходит в атмосферу. Поршень 23 освобождает рычаги 25 и 26. Под действием разности давлений в камере и выхлопной полости подвижное сопло 17 движется вправо и своим торцом садится на седло клапана 27, прекращая выхлоп воздуха в атмосферу. Одновременно под действием пружины закрывается выхлопной клапан 28, соединенный металлической тягой 29 и изоляционной тягой 30 с рычагом 26. Истечение воздуха через сопло неподвижного контакта прекращается. На этом процесс отключения заканчивается.
При подаче команды на включение срабатывает электромагнит 31 и открывает пусковой клапан 32, который подает сжатый воздух на поршень клапана 33 и по трубке 34 на поршень 35, закрывающий клапан отключения 2. Клапан отключения закрывается и прекращает подачу воздуха из ресивера в полость А. Одновременно с этим открывается клапан 33 и воздух из полости А вытекает в атмосферу. Под действием включающей пружины 36 шток 19 перемещается вверх, возвращает поршень 3 привода выключателя в исходное положение и смыкает подвижные контакты с неподвижными.
В конце хода подвижный контакт упирается своим торцом в седло клапана 16 и отсекает полость гасительной камеры от атмосферы: одновременно при своем движении шток 19 выступом 20 воздействует на рычаг 21, который, поворачиваясь, закрывает оперативный клапан 22 и подает сжатый воздух на поршень 23 привода выхлопных клапанов. Поршень опускается и своим штоком воздействует на рычаги 25 и 26, которые в свою очередь открывают выхлопные клапаны (клапан 28 и подвижное сопло), соединяя внутренние полости контактов с атмосферой. После снятия командного импульса контактно-сигнальным блоком (на рисунке не показан) и выхода воздуха из полости А в атмосфер) клапаны 32, 33 и поршень 35 возвращаются в исходное положение возвратными пружинами.
Воздухонаполненные вводы прикреплены к металлическому корпусу модуля на петлях и могут поворачиваться в горизонтальной плоскости вместе с токоведущими стержнями и неподвижными контактами, что упрощает ремонт, поскольку отпадает необходимость в дополнительных подъемных устройствах.
Выключатели серии ВВГ-20
Выключатели серии ВВГ предназначены для генераторов; они рассчитаны на номинальное напряжение 20 кВ, номинальный ток 20 кА и номинальный ток отключения 160 кА. Давление воздуха 2 МПа.
Рис.9. Выключатель типа ВВГ-20
Полюс выключателя показан на рис.9,а. Он имеет две главные дугогасительные камеры с разрывами 2 и 3 (рис.9,б), шунтированные резисторами 4 и 5 (по 0,8 Ом каждый), и вспомогательную камеру с разрывом 6, шунтированную резистором 8 (14 Ом), подключенным через искровой промежуток 7.
При отключении выключателя сначала размыкается разъединитель 1. Сжатый воздух поступает из ресивера в главные дугогасительные камеры, а также во вспомогательную камеру. Размыкаются контакты 2 и 3 и гасятся дуги, возникшие в этих разрывах. Размыкается вспомогательный контакт 6; возникшая дуга в зависимости от восстанавливающегося напряжения может погаснуть или без переброса на искровой промежуток 7, или с перебросом, что вызывает подключение резистора 8. После прекращения дутья главные и вспомогательный контакт 6 замыкаются. Размыкается отделитель 9.
При включении выключателя сначала включается отделитель, а затем разъединитель.
Выключатели серии ВВГ-20 предназначены для внутренней установки и требуют усиленной вентиляции помещения.
Подготовка воздуха
Распределительное устройство, оборудованное воздушными выключателями, нуждается в установке для подготовки воздуха высокого давления, его очистки и осушки. Пыль, содержащаяся в воздухе, засоряет клапаны, создает неплотности, снижает разрядное напряжение изоляции. Особенно опасна влага, которая при понижении температуры может конденсироваться в воздуховодах. Зимой в трубах и клапанах возможно образование льда и нарушение проходимости. Стальные части при наличии влаги подвержены коррозии. Конденсация влаги на внутренних поверхностях изоляции снижает ее электрическую прочность и может привести к перекрытию.
Очистка воздуха от пыли производится с помощью фильтров, устанавливаемых на всасывающих патрубках компрессоров. Применение получили масляные (висциновые) фильтры, которые имеют ряды металлической сетки, смоченной маслом с низкой температурой замерзания. При прохождении воздуха через фильтр пыль оседает па поверхности масла.
Осушка воздуха производится термодинамическим способом: воздух подвергают сжатию до давления, превышающего номинальное давление сети не менее чем в 2 раза. С этой целью применяют компрессоры, обеспечивающие соответствующее давление. При сжатии воздуха температура его повышается. При последующем охлаждении до начальной температуры большая часть пара конденсируется. Образовавшуюся в охлаждающем змеевике воду спускают. После этого воздух подвергают расширению через редукционный клапан, чтобы снизить давление до рабочего. Вследствие увеличения объема воздуха его относительная влажность, представляющая собой отношение массы водяного пара, содержащегося в воздухе, к максимально возможному содержанию его, т.е. массе насыщенного пара в том же объеме при заданной температуре, уменьшается пропорционально уменьшению давления. Следовательно, относительная влажность воздуха после его расширения получается равной 0,5 и опасность конденсации водяного пара значительно снижается.
Для надежной работы выключателей осушка воздуха описанным способом недостаточна, поскольку колебания температуры при наружной установке значительны. Приходится принимать меры к дальнейшему уменьшению содержания влаги с помощью адсорбентов, т.е. веществ, обладающих способностью поглощать влагу. К ним относятся силикагель (SiO•Н20), алюмогель (Аl203хН20) и др. Адсорбенты удерживают влагу в порах, не вступая в химическое соединение. Регенерацию использованного адсорбента осуществляют периодически путем нагревания его в течение нескольких часов.
Осушка воздуха термодинамическим способом с последующей обработкой его адсорбентами позволяет получить воздух с ничтожным содержанием водяного пара, при котором точка росы лежит значительно ниже минимальной температуры воздуха летом и зимой.
В качестве компрессоров используют многоступенчатые компрессоры двойного действия с воздушным охлаждением и приводом от асинхронных электродвигателей.
Воздуховоды изготовляют из стальных труб с антикоррозийным покрытием во избежание образования ржавчины, которая может быть занесена в выключатели.
Воздухоприготовительная установка электростанции обычно состоит из трех блоков, каждый из которых может работать самостоятельно. Между блоками предусматривают перемычки с соответствующими запорными вентилями, позволяющими в случае необходимости подавать воздух в ресивер одного блока от компрессора другого блока. Установка полностью автоматизирована. Компрессоры работают периодически. Пуск осуществляется от контактных манометров при понижении давления в ресиверах высокого давления. Подача воздуха через редукционные клапаны в ресиверы рабочего давления производится также автоматически при понижении давления в последних.
Достоинство воздушных выключателей по сравнению с масляными заключается в их быстродействии. Однако воздушные выключатели значительно сложнее масляных и имеют большую стоимость.
В последнее время заметна тенденция к замене части воздушных выключателей элегазовыми. Так, например, воздушные выключатели 110 и 220 кВ нормального климатического исполнения сняты с производства и заменены элегазовыми.
www.gigavat.com
Высоковольтные выключатели. Маслянные, элегазовые, воздушные, вакуумные выключатели и их технические характеристики. Типы выключателей.
Коммутационные аппараты предназначены для присоединения отдельных элементов электрической частями электростанций и подстанций, а также для присоединения к ним линий электропередачи.В электрических сетях 10 кВ и выше основным коммутационным аппаратом является выключатель.
Выключатели служат для включения и отключения токов, протекающих в нормальных и аварийных режимах работы электрической сети. Наиболее тяжелые условия работы выключателей возникают при отключении токов КЗ.
Основные типы выключателей, используемые для коммутации электрических цепей, описаны ниже. Классификация выключателей.
Масляные выключатели
В этих аппаратах дугогасительное устройство заполнено трансформаторным маслом. Гашение электрической дуги осуществляется путем эффективного ее охлаждения потоками газа, возникающего при разложении масла дугой. Наиболее широкое распространение получили маломасляные выключатели на напряжения 10-20 кВ и 110-220 кВ.
Рис. 1. Масляный выключатель
Технические характеристики масляных выключателей
Тип | Uном,кВ | Iном,А | Sном,МВА | Iоткл,кА | iуд,кА | tоткл,с | tвкл,с |
ВММ-10 | 10 | 400 | 170 | 10 | 25 | 0,1 | 0,2 |
ВПМ-10 | 10 | 1000;630 | 350 | 20 | 52 | 0,1 | 0,3 |
630;400 | 280 | 16 | 40 | 0,1 | 0,3 | ||
ВПМП-10 | 10 | 1000;630 | 350 | 20 | 52 | 0,12 | 0,3 |
630;400 | 280 | 16 | 40 | 0,12 | 0,3 | ||
ВКЭ-10 | 10 | 1600;1000;630 | 550 | 31,5 | 80 | 0,07 | 0,3 |
1600;1000;630 | 350 | 20 | 52 | 0,07 | 0,3 | ||
ВК-10 | 10 | 1600;1000;630 | 550 | 31,5 | 80 | 0,05 | 0,075 |
1600;1000;630 | 350 | 20 | 52 | 0,05 | 0,075 | ||
ВМПЭ-10 | 10 | 630;1000;1600;3200 | 550 | 31,5 | 80 | 0.12 | 0,3 |
МГГ-10 | 10 | 5000 | 1000 | 63 | 170 | 0,12 | 0,4 |
5000;4000;3200 | 750 | 45 | 120 | 0,12 | 0,4 | ||
ВТ-35 | 35 | 630 | 750 | 12,5 | 32 | 0,15 | 0,34 |
ВТД-35 | 35 | 630 | 750 | 12,5 | 32 | 0,09 | 0,34 |
С-35-М | 35 | 630 | 600 | 10 | 26 | 0,04 | 0,3 |
МКП-35 | 35 | 1000 | 1200 | 20 | 52 | 0,05 | 0,4 |
1500 | 25 | 63 | |||||
ВМКЭ-35 | 35 | 1000 | 1000 | 16 | 40 | 0,11 | 0,35 |
С-35 | 35 | 3200;2000 | 3000 | 50 | 125 | 0,08 | 0,7 |
Воздушные выключатели
В воздушных выключателях гашение дуги осуществляется потоком сжатого воздуха. Номинальное напряжение до 1150 кВ.
Рис. 2. Воздушный выключатель
Технические характеристики воздушных выключателей
Тип | Uном,кВ | Iном,А | Sном,МВА | Iоткл,кА | iуд,кА | tоткл,с | tвкл,с |
ВВЭ-35 | 35 | 1600 | 1200 | 20 | 52 | 0,05 | |
ВВУ-35А | 35 | 2000;3150 | 2400 | 40 | 100 | 0,07 | 0,28 |
ВЭ-10 | 10 | 2500;3600 | 550 | 31,5 | 80 | 0,075 | 0,15 |
1250;1600 | 0,075 | ||||||
2500;3600 | 350 | 20 | 52 | 0,075 | |||
1250;1600 | 0,075 |
Элегазовые выключатели
В элегазовых выключателях гашение дуги производится потоком элегаза, либо путем подъема давления элегаза в камере за счет дуги, горящей в замкнутом объеме газа. Применяется на все классы напряжения.
Рис. 3. Элегазовый выключатель
Технические характеристики элегазовых выключателей
Тип | Uном,кВ | Iном,А | Sном,МВА | Iоткл,кА | iуд,кА | tоткл,с | tвкл,с |
LF1 | 6,3 | 630;1250 | 270 | 25; | 36; | ||
10 | 340 | 31,5 | 80 | 0,7 | |||
LF2 | 6,3 | 630;1250;2000 | 440 | 40 | 100 | ||
10 | 550 | 31,5 | 80 | ||||
ВГБЭ-35 | 35 | 630 | 750 | 12,5 | 32 | 0,04 | 0,1 |
ВГБЭП-35 | 35 | 630 | 750 | 12,5 | 32 | 0,04 | 0,1 |
Вакуумные выключатели
В вакуумных выключателях. Контакты расходятся в вакууме. Вакуумные выключатели применяются при напряжении до 110 кВ.
Рис. 4. Вакуумный выключатель
Технические характеристики вакуумных выключателей
Тип | Uном,кВ | Iном,А | Sном,МВА | Iоткл,кА | iуд,кА | tоткл,с | tвкл,с |
ВВТЭ-М-10 | 10 | 630-1600 | 220; | 12,5; | 32; | 0,04 | |
ВБПС-10 | 350; | 20; | 52; | 0,055 | |||
550 | 31,5 | 80 | |||||
ВВЭ-М-10 | 0,04 | ||||||
ВБПВ-10 | 0,035 | ||||||
ВБЧ-СП-10 | 350; | 20; | 52; | 0,04 | |||
ВБЧ-СЭ-10 | 550 | 31,5 | 80 | 0,04 | |||
ВБСК-10 | 0,05 | ||||||
ВВЭ-М-10 | 2000-3150 | 550;700 | 31,5;40 | 80;100 | 0,05 | ||
VD4 с залитыми полюсами (АББ) | 10 | 630-1250 | 280 | 16 | 40 | 0,06 | 0,06 |
VD4 со сборными полюсами (АББ) | 630-1250 | 350 | 20 | 52 | 0,06 | 0,06 | |
630-2500 | 430 | 25 | 63 | 0,06 | 0,06 | ||
630-2500 | 550 | 31,5 | 80 | 0,06 | 0,06 | ||
630-2500 | 700 | 40 | 100 | 0,06 | 0,06 | ||
10 | 3150-4000 | 430 | 25 | 63 | 0,06 | 0,06 | |
3150-4000 | 550 | 31,5 | 80 | 0,06 | 0,06 | ||
3150-4000 | 700 | 40 | 100 | 0,06 | 0,06 | ||
1250-4000 | 860 | 50 | 125 | 0,06 | 0,06 | ||
1250-2000 | 1090 | 63 | 158 | 0,06 | 0,06 | ||
35 | 1250-3150 | 1500 | 25 | 63 | 0,06 | 0,06 | |
1250-3150 | 1900 | 31,5 | 80 | 0,06 | 0,06 | ||
www.eti.su
Приводы высоковольтных выключателей. Их устройство и назначение
Для управления высоковольтными выключателями служат приводы, которые осуществляют ручное, дистанционное или автоматическое включение и отключение.
Приводы высоковольтных выключателей разделяют на пневматические, грузовые и пружинные, ручные, электродвигательные и электромагнитные. По роду действия приводы бывают косвенного и прямого действия.
В приводах прямого действия движение включающего устройства передается непосредственно на приводной механизм в момент подачи импульса от источника энергии. Такие устройства потребляют много энергии.
В приводах косвенного действия энергия, необходимая для включения, предварительно запасается в специальных устройствах: грузах, маховиках, пружинах и прочих устройствах.
В ручных же приводах применяют мускульную силу человека. Это самые дешевые и простые приводы прямого действия. Они применимы к небольшим масляным выключателям с усилиями для включения не более 25 кг и токами ударного короткого замыкания не более 30 кА.
Ниже показан общий вид ручного автоматизированного привода типа ПРБА:
Привод состоит из корпуса и встроенного в него механизма, который управляется с помощью внешнего рычага управления. В релейную коробку встраивается реле максимального тока и реле минимального напряжения, которые отслеживают аварийные режимы в сети и производят отключения высоковольтного выключателя. Таким образом, выключение высоковольтного выключателя может производиться либо автоматически, под действием аппаратов защиты, либо вручную, с помощью ручки управления. Включения производится только вручную.
ПРБА снабжается указателем для сигнализации включения/отключения высоковольтного выключателя (блинкером).
Повышение надежности электроснабжения и повсеместная автоматизация потребовали создания специальных схем автоматического ввода резерва (АВР), автоматического повторного включения (АПВ) и других схем. Выполняют эту задачу пружинные и грузовые приводы косвенного действия. Достоинство их состоит в том, что они просты, удобны в обслуживании, имеют довольно малую потребляемую мощность и надежно работают как на оперативном постоянном, так и на переменном токе. С их помощью можно производить дистанционное и ручное управление, а также автоматическое подключение резервных линий и трансформаторов и их повторное включение. Возможность приводов работать на переменном токе исключает необходимость установки на подстанциях аккумуляторных батарей или других источников постоянного тока.
На рисунке ниже показан общий вид универсального пружинно-грузового привода типа УПГП:
Привод состоит из следующих элементов:
- Механизма свободного расцепления и отключения;
- Механизм отключения под воздействием реле и электромагнитов отключения;
- Механизм включения;
- Механизм запуска устройства повторного включения;
- Кнопки для ручного управления;
- Счетчик количества отключений;
- Механизм блок контактов для сигнализации положения масляного выключателя и аварийного отключения;
Для взвода пружины привод снабжается небольшим электродвигателем на 220 В или 110 В постоянного или переменного тока.
Пружинные приводы (ПП и ППМ) по принципу действия отличаются от грузовых приводов тем, что вместо груза в них используется стальная мощная спиральная заводная пружина, монтируемая внутри обвода штурвала выключателя. Для включения выключателя пружина в устройстве типа ПП предварительно заводится поворотом штурвала. В устройствах типа ППМ завод пружины может осуществляться дистанционно при помощи небольшого электродвигателя или вручную. Пружинные приводы выполняют те же операции, что и грузовые или пружинно-грузовые.
Ручные, грузовые и пружинные механизмы получили широкое применение на городских распределительных пунктах и подстанциях промышленных предприятий, имеющих высоковольтные выключатели. На городских питающих центрах и электрических станциях высоковольтные выключатели снабжаются обычно электромагнитными (соленоидными) устройствами типа ПС. Как и для всех устройств прямого действия, им нужен значительный ток (для некоторых типов 100 А и больше), особенно в момент включения. Их достоинство в простоте конструкции и надежности работы, также они могут обеспечить любые схемы защиты. Однако их изготавливают для работы на постоянном токе. Это связано с тем, что аналогичные механизмы переменного тока имеют большие габариты, токи включения, а также имеют сложную и дорогую конструкцию.
elenergi.ru
Поделиться с друзьями: