интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Работа трехфазного асинхронного двигателя от однофазной сети. Трехфазного асинхронного двигателя схема


Работа трехфазного асинхронного двигателя от однофазной сети

Использование трехфазного асинхронного двигателя для работы от однофазной сети

Трехфазные асинхронные двигатели могут быть использованы для работы от однофазной сети.

На рис. 3.18 и 3.19 представлены наиболее распространенные схемы включения трехфазных двигателей. В схемах, приведенные на рис. 3.18, две фазы обмотки статора соединены последовательно, их используют в качестве главной обмотки А, а третьи фазу — в качестве вспомогательной пусковой обмотки В.

Трехфазный асинхронный двигатель может использоваться как однофазный с пусковым сопротивлением или пусковой емкостью. В этих случаях при частоте вращения ротора, близкой к синхронной, обмотку В отключают от сети.

Схемы, представленные на рис. 3.18, в однофазном режиме дают примерно 50% мощности от мощности в трехфазном режиме. Наибольший пусковой момент обеспечивают схемы с конденсаторами (рис. 3.18, б, в ).

Работа трехфазного асинхронного двигателя от однофазной сети

Рис. 3.18 Схемы включения трехфазных асинхронных двигателей для работы от однофазной сети

Трехфазный асинхронный двигатель может быть использован и в качестве однофазного двигателя с постоянно включенной емкостью Сраб (рис. 3.19). При правильно выбранном значении Сраб асинхронный двигатель, работающий от однофазной сети, по своим рабочим характеристикам лишь незначительно уступает трехфазным асинхронным двигателям. На рис. 3.20 представлены механические характеристики трехфазного асинхронного двигателя при работе от сети трехфазного тока (кривая) и от сети однофазного тока: без фазосмещающих элементов (кривая 2), с пусковой емкостью (кривая 3 при пуске и кривая 2 при работе) и с постоянно включенной рабочей ей костью (кривая 4).

Работа трехфазного асинхронного двигателя от однофазной сети

Рис. 3.19 Схемы включения трехфазных асинхронных двигателей для работы от однофазной сети с постоянно включенной емкостью

Работа трехфазного асинхронного двигателя от однофазной сети

Рис. 3.20 Механические характеристики трехфазного асинхронного двигателя в различных режимах

В автоматических устройствах применяют универсальные асинхронные двигатели, которые могут работать как от трехфазной, так и от однофазной сетей. Эти двигатели обычно выполняют как трехфазные, но рассчитывают их так, чтобы при определенной схеме включения обмоток с использованием конденсатора можно было обеспечить достаточно хорошие характеристики и при работе от однофазной сeти.

Обычно при однофазном питании двигатели имеют несколько худшие рабочие и пусковые характеристики. Конструкция универсального асинхронного двигателя и схемы включения в однофазную сеть показаны на рис. 3.21, а и б .

Работа трехфазного асинхронного двигателя от однофазной сети

Работа трехфазного асинхронного двигателя от однофазной сети

Рис. 3.21. Универсальный асинхронный двигатель серии УАД

§ 16.3. Работа трехфазного асинхронного двигателя от однофазной сети

Трехфазный асинхронный двигатель может быть использован для работы от однофазной сети. В этом случае такой двигатель включают как конденсаторный по одной из схем рис. 16.9.

Значение рабочей емкости Сраб (мкФ) при частоте переменно­го тока 50 Гц можно ориентировочно определить по одной из формул: для схемы, изображенной на рис. 16.9 а,

Здесь I1 — но­минальный (фазный) ток в обмотке стато­ра, А; Uс — напря­жение однофазной сети, В.

При подборе ра­бочей емкости не­обходимо следить за тем, чтобы ток в фазных обмотках статора при устано­вившемся режиме работы не превы­шал номинального значения.

Рис 16.9. Схемы соединения обмотки статора трехфазного асинхронного двигателя при вклю­чении его в однофазную сеть

Если пуск двигателя происходит при значительной нагрузке на валу, то паралелльно рабочей емкости Сраб следует включить пусковую емкость

В этом случае пусковой момент становится равным номиналь­ному. При необходимости дальнейшего увеличения пускового момента следует принять еще большее значение пусковой емкости (Сп ≤ 8Сра6 ).

Большое значение для надежной работы асинхронного двига­теля в качестве конденсаторного имеет правильный выбор кон­денсатора по напряжению. Следует иметь в виду, что габариты и стоимость конденсаторов определяются не только их емкостью, но и рабочим напряжением. Поэтому выбор конденсатора с большим “запасом” по напряжению ведет к неоправданному увеличению габаритов и стоимости установки, а включение конденсаторов на напряжение, превышающее допустимое рабочее напряжение, приводит к преждевременному выходу из строя конденсаторов, а следовательно, и всей установки.

При определении напряжения на конденсаторе при включении двигателя по одной из рассмотренных схем необходимо иметь в виду следующее: при включении двигателя по схеме рис. 16.9, а напряжение на конденсаторе равно UK ≈ 1,3 UС. а при включении двигателя по схемам рис. 16.9, б и в это напряжение равно Uк ≈ 1,15 Uc .

В схемах конденсаторных двигателей обычно применяют бумажные конденсаторы в металлическом герметичном корпусе прямоугольной формы типов КБГ — МН или БГТ (термостойкие). На корпусе конденсатора указаны емкость и рабочее напряжение постоянного тока. При включении такого конденсатора в сеть пе­ременного тока следует уменьшить примерно в два раза допусти­мое рабочее напряжение. Например, если на конденсаторе указано напряжение 600 В, то рабочее напряжение переменного тока сле­дует считать 300 В.

Пример 16.1. Определить значение рабочей емкости Сраб. необходимой для работы трехфазного асинхронного двигателя типа АВ052-4 от однофазной сети напряжением Uc= 220 В. Номинальные данные двигателя: Рном= 80 Вт, напряже­ние 220/380 В, ток сети I1ном = 0,56/0,32 А.

Решение. Напряжение сети 220 В соответствует соединению обмотки статора в треугольник, поэтому принимаем схему включения двигателя в одно­фазную сеть по рис. 16.9, в. Номинальный (фазный) ток статора I1= 0,32 А.

Рабочая емкость по (16.8) Срa6 = 4800 • 0,32/220 = 6,98 мкФ. При этом рабо­чее напряжение конденсатора Uк ≈ 1,15•220 = 250 В. Принимаем в качестве Сраб батарею из двух параллельно соединенных конденсаторов типа КБГ—МН емко­стью по 4 мкФ каждый (емкость батареи 8 мкФ) на рабочее напряжение 600 В.

При использовании трехфазного двигателя в однофазном кон­денсаторном режиме его полезная мощность обычно не превыша­ет 70—80 % номинальной мощности, а при однофазном режиме без рабочей емкости полезная мощность двигателя не превышает 60 % его номинальной мощности.

Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).

Работа трехфазного асинхронного двигателя от однофазной сетиПодключение трехфазного двигателя по схеме треугольник

Работа трехфазного асинхронного двигателя от однофазной сетиРаспределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме треугольник

В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.

Работа трехфазного асинхронного двигателя от однофазной сетиПоложение контактов в распределительной коробке трехфазного двигателя

Работа трехфазного асинхронного двигателя от однофазной сетиПодключение трехфазного двигателя по схеме звезда

Работа трехфазного асинхронного двигателя от однофазной сетиРаспределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме звезда

При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.

Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой — подключение третьего контакта через фазосдвигающий конденсатор.

Работа трехфазного асинхронного двигателя от однофазной сетиПодключение трехфазного двигателя к однофазной сети

Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.

Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети — 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника). Большее напряжение для «звезды», меньшее — для «треугольника». В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.

Работа трехфазного асинхронного двигателя от однофазной сетиТаблички трехфазных электродвигателей

Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».

Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».

Если рабочее напряжение двигателя составляет 220/127В, то к однофазной сети на 220В двигатель можно подключить только по схеме «звезда». При подключении 220В по схеме «треугольник», двигатель сгорит.

Начала и концы обмоток (различные варианты)

Пожалуй, основная сложность подключения трехфазного двигателя в однофазную сеть заключается в том, чтобы разобраться в проводах, выходящих в распределительную коробку или, при отсутствии последней, просто выведенных наружу двигателя.

Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.

Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):

  • определению пар проводов, относящихся к одной обмотке;
  • нахождению начала и конца обмоток.

Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.

Работа трехфазного асинхронного двигателя от однофазной сетиОпределение пар проводов относящихся к одной обмотке

Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.

Работа трехфазного асинхронного двигателя от однофазной сетиНахождение начала и конца обмоток

К концам одной обмотки (например, A ) подключается батарейка, к концам другой (например, B ) — стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В. Таким же образом проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C или B .

В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по необходимой схеме — «треугольник» или «звезда» (если напряжение двигателя 220/127В).

Извлечение недостающих концов. Пожалуй, самый сложный случай — когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода — начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.

Работа трехфазного асинхронного двигателя от однофазной сетиТабличка разбираемого электродвигателя

Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.

Работа трехфазного асинхронного двигателя от однофазной сетиВывод проводов в клеммную коробку

Работа трехфазного асинхронного двигателя от однофазной сетиПодключение проводов к клеммной колодке

Схемы подключения трехфазного двигателя в однофазную сеть

Подключение по схеме «треугольник». В случае бытовой сети, с точки зрения получения большей выходной мощности наиболее целесообразным является однофазное подключение трехфазных двигателей по схеме «треугольник». При этом их мощность может достигать 70% от номинальной. Два контакта в распределительной коробке подсоединяются непосредственно к проводам однофазной сети (220В), а третий — через рабочий конденсатор Ср к любому из двух первых контактов или проводам сети.

Работа трехфазного асинхронного двигателя от однофазной сетиПодключение трехфазного двигателя к однофазной сети по схеме треугольник

Работа трехфазного асинхронного двигателя от однофазной сетиПодключение трехфазного двигателя к однофазной сети по схеме треугольник

Обеспечение пуска. Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.

Работа трехфазного асинхронного двигателя от однофазной сетиПодключение трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором Сп

Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока не будет нажата кнопка «стоп».

Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.

Работа трехфазного асинхронного двигателя от однофазной сетиРеверс трехфазного двигателя

Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.

Работа трехфазного асинхронного двигателя от однофазной сетиСхема подключения трехфазного двигателя к однофазной сети, с реверсом и кнопкой для подключения пускового конденсатора

Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.

Работа трехфазного асинхронного двигателя от однофазной сетиПодключение трехфазного двигателя к однофазной сети по схеме звезда

Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:

Для соединения «треугольником»:

Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:

Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.

На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70•Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.

Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.

При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.

Работа трехфазного асинхронного двигателя от однофазной сетиКлиноременная передача мотоблока Салют 5

Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.

Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.

Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).

Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.

Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 +. + Сn .

Работа трехфазного асинхронного двигателя от однофазной сетиПараллельное соединение конденсаторов

В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.

При использовании содержания данного сайта, нужно ставить активные ссылки на этот сайт, видимые пользователями и поисковыми роботами.

Источники: http://studopedia.ru/8_129890_ispolzovanie-trehfaznogo-asinhronnogo-dvigatelya-dlya-raboti-ot-odnofaznoy-seti.html, http://www.studfiles.ru/preview/2609554/page:3/, http://tool-land.ru/podklyuchenie-trekhfaznogo-dvigatelya.php

electricremont.ru

Принцип действия, подключение и работа в разных режимах трехфазного электродвигателя | ProElectrika.com

Электродвигателем называется устройство, преобразующее электрическую энергию, получаемую из сети распределения, в механическую энергию вращения. Любой электродвигатель состоит из корпуса, защищающего устройство от пыли и влаги, неподвижной части (статора), жёстко скреплённой с корпусом, имеющей неподвижные обмотки и магнитопроводы, и вращающейся части, называемой ротором. Ротор жёстко насажен на вал, который вращается в двух подшипниковых узлах (переднем и заднем), конец вала выведен наружу и имеет шпоночную канавку для закрепления шкивов или шестерён привода.

Подшипниковые узлы находятся в двух съёмных крышках, которые закрывают корпус с торцов и стягиваются между собой длинными шпильками (как правило, тремя-четырьмя). На заднем конце вала закрепляется крыльчатка вентилятора, который служит для обдува и охлаждения обмоток. Вентилятор прикрывается крышкой с отверстиями для выхода воздуха. Снаружи на корпусе закрепляется коммутационная коробка, внутри которой находятся клеммы подключения. Коробка герметично (через резиновую прокладку) закрывается крышкой для защиты клемм подключения от влаги и пыли.

устройство

Конструкция электродвигателя весьма удобна для обслуживания и ремонта – двигатель легко разбирается, обеспечивая доступ к любой части, и собирается.

Принцип работы трёхфазного двигателя

Одним из главных преимуществ трёхфазной системы электроснабжения является то, что из-за сдвига фаз синусоид тока и напряжения сети на 120 градусов, такая система способна создавать «вращающееся» электромагнитное поле. Если мы на неподвижном статоре расположим три обмотки с магнитомягким (это материал, который легко, то есть с минимальными потерями, перемагничивается) сердечником и подадим напряжение на обмотки последовательно от трёх фаз, то ток обмоток начнёт намагничивать сердечники, создавая как бы бегущее по окружности магнитное поле. Это поле в каждом сердечнике синусоидально пульсирует, а во всех трёх создаёт эффект вращения.

Можно подсчитать и угловую скорость вращения магнитного поля при трёх обмотках, расположенных по окружности через 120 градусов, она равна частоте переменного тока – 50 герц, или 50 оборотов в секунду. Чтобы привести к привычным для нас оборотам в минуту, которыми измеряют скорость вращения вала электродвигателя, нужно 50 оборотов в секунду умножить на 60 (число секунд в минуте), получим 3 000 оборотов в минуту (об/мин).

Отметим, что скорость вращения магнитного поля в статоре можно легко понизить чисто конструктивными методами, например, расположить по окружности не три, а шесть обмоток (сделать шесть магнитных полюсов), расположив их по окружности через 60 градусов, причём 1 и 4 обмотки подключить к одной фазе, 2 и 5 – к другой, а 3-ю и 6-ю – к третьей. Тогда скорость вращения магнитного поля понизится вдвое и составит 1500 об/мин. Аналогично увеличив число магнитных полюсов до 12 и расположив их через 30 градусов по окружности, мы понизим скорость вращения магнитного поля ещё раз вдвое – до 750 об/мин.

Запомним, что электродвигатели переменного тока работают со скоростью, связанной с частотой сети. И для каждой частоты имеется свой ряд скоростей, и величины членов ряда кратны между собой одному числу, например – двойке. (Оговоримся, что могут быть и другие числа кратности, например – 3)

Синхронные электродвигатели

Теперь, если мы в качестве ротора закрепим на валу двигателя постоянный магнит с двумя полюсами, то в бегущем магнитном поле вал начнёт вращаться со скоростью поля. Такие двигатели называют синхронными.

Иногда применяются двигатели с постоянным магнитом в роли ротора, как правило, это маломощные моторчики, к примеру, так выполнен двигатель центробежного насоса слива стиральной машины. Но для мощных моторов трудно изготовить мощный постоянный магнит, гораздо проще применить электромагнит. В этом случае ротор представляет собой, набранный из пластин магнитомягкой стали, сердечник специальной формы, на который намотана обмотка.

Ток на обмотку ротора подаётся из сети через устройство, называемое коллектор. Коллектор – это медные, изолированные друг от друга, два или три (для трёхфазной обмотки) кольца на валу, которых касаются угольные подпружиненные щётки. Кольца соединены с началом и концом обмотки. Напряжение из сети подаётся к щёткам, и через контактные кольца поступает на обмотку ротора. Такой электродвигатель называется синхронный, потому что имеет число оборотов равное числу оборотов вращающегося магнитного поля статора.

(Синхронный электродвигатель переменного тока для двухфазной и многофазной сети был запатентован Н. Тесла – американским учёным, изобретателем.)

Однако коллекторы электродвигателей имеют ряд недостатков, угольные щётки при работе искрят (что особо неприятно во взрывоопасной среде), подгорают, из-за чего пропадает контакт (кольца приходится периодически зачищать от нагара). Щётки истираются и требуют замены. Иногда щётки зависают на пружинах и контакт пропадает.

Асинхронные электродвигатели

Изобретательская мысль продолжала работать, и наш соотечественник М. О. Доливо – Добровольский придумал, как можно избавиться от коллектора, он предложил обмотку ротора выполнить в виде короткозамкнутых витков, ток в которых будет возбуждаться переменным магнитным полем статора. Конструктивно решение обмотки ротора представляло собой два кольца, соединённых между собой поперечными проводниками, наподобие «беличьего колеса» – известная «игрушка» для зверька, в которой белка может бесконечно бегать. Такой двигатель назвали – двигатель с короткозамкнутым ротором.

Работает он так – в момент пуска переменное магнитное поле статора возбуждает в проводниках «беличьего колеса» сильный ток, который намагничивает сердечник ротора и последний притягивается магнитами статора и начинает вращаться. Поскольку для появления тока в замкнутых витках ротора необходимо, чтобы магнитное поле менялось, (при синхронном вращении ротора бегущее магнитное поле статора, воздействующее на ротор, на роторе не меняется), ротор будет вращаться с несколько меньшей скоростью, чем вращается магнитное поле статора. Вследствие этого «запаздывания» такой двигатель назвали асинхронный. А разницу во вращении ротора относительно магнитного поля статора назвали скольжением.

Скольжение асинхронного двигателя – величина переменная, в момент пуска оно максимально, затем начинает уменьшаться и на холостом ходу становится минимальным (около 3%). При наличии нагрузки на валу – скольжение ротора увеличивается и растёт с ростом нагрузки (максимум 7%). Если мы посмотрим на паспортные данные асинхронных двигателей – то увидим, что номинальное число оборотов двигателя указанное в паспорте и на табличке двигателя всегда будет меньше определённых нами ранее величин – вместо 3 000 об/мин будет около 2850, вместо 1500 будет 1470, вместо 750 – 725. Эта разница как раз и определяет скольжение.

  Трёхфазный асинхронный двигатель с короткозамкнутым ротором

Конструкция данного двигателя оказалась настолько удачной, что сегодня подавляющее большинство электроприводов в мире сделаны на основе асинхронных трёхфазных двигателей с короткозамкнутым ротором. Именно поэтому владельцы усадьб, в которых имеется техника с электроприводами – насосы, электропилы, различные станки и т. д., стремятся провести себе «три фазы».

электродвигатель
Достоинства этих двигателей:
  1. Исключительная простота, надёжность и долговечность.
  2. Удобство обслуживания и ремонта двигателей.
  3. Возможность менять направление вращения ротора простым переключением любых двух фазных проводов.
  4. Возможность работы в режиме генератора, что позволяет применять электромагнитное торможение, при котором мотор начнёт отдавать энергию в сеть.

Однако это достоинство может быть и недостатком. При замене силовых кабелей и розеток нужно особое внимание уделять оборудованию, как оно было подключено. Нередки такие случаи, какой произошёл в детском саду, когда там понадобилось заменить силовой кабель на более мощный. После окончания работ, на кухне мясорубки и овощерезки перестали работать, так как их рабочие валы стали вращаться в обратном направлении. А в прачечной механику гладильного барабана вообще заклинило. А всё оттого, что при монтаже кабеля были перепутаны какие-то два фазных провода.

При проведении монтажных работ это нужно учитывать и всегда проверять на каком-либо некритичном двигателе правильность фазировки проводов. Потому что есть такое оборудование, которое может выйти из строя при неверной фазировке.

Недостатки асинхронных электродвигателей

Но наряду с достоинствами эти двигатели, разумеется, имеют и недостатки. Это, во-первых, большой пусковой ток, который превышает номинальный в 4-5 раз. Последнее обязательно необходимо учитывать при установке автоматов защиты для двигателя – ставить автоматы класса «D». И, во-вторых, малый момент на валу при пуске. Для некоторых механизмов с большой инерцией приходится ставить более мощный, чем это требуется двигатель.

Подключение и работа трехфазного электродвигателя

Теперь о подключении трёхфазных двигателей к сети. В коммутационной коробке на двигателе концы трёх обмоток выведены на шесть клемм. Там же имеется дополнительная клемма для нулевого провода. Клемма заземления может находиться на корпусе двигателя рядом с лапками или фланцем крепления.

Соединение обмоток может быть произведено двумя способами, так называемыми «звездой» или «треугольником».Начала обмоток в двигателе в клеммной коробке обычно маркируются как С1,С2 и С3. Концы обмоток соответственно С4, С5 и С6. Соответственно соединение звездой производится так, концы обмоток соединяются между собой перемычкой, на клеммы С1, С2 и С3 соответственно соединяются с фазными проводами L1,L2 и L3.

Иногда концы обмоток присоединяют к нулевому проводу, но это не обязательно, так как нагрузка по фазам в двигателе равномерная и по нулевому проводу никакого тока не будет.

Соединение треугольником – это когда соединяются концы и начала обмоток последовательно и к точкам соединения подаются фазы. То есть соединяются С1, С5 и L1; С2, С6 и L2; С3, С4 и L3. Нулевой провод не задействуется.

При этом нужно учитывать, что при соединении звездой на обмотки статора будет подано фазной напряжение, а при соединении треугольником – линейное, которое в 1,7 раза выше фазного. Это нужно учитывать, сверяясь с маркировкой на двигателе, где так и указывается – двигатель 220/380 или 127/220. Последний двигатель в трёхфазной сети 220/380 с высокой вероятностью сгорит.

Особых преимуществ у тех или иных схем включения нет, за исключением повышения мощности при включении треугольником, за счёт работы при более высоком линейном напряжении. Однако как следствие этого, при соединении треугольником пусковой ток значительно выше, чем при соединении звездой. Для его понижения иногда применяют релейный автомат, который в момент пуска соединяет обмотки звездой, а в дальнейшем переключает соединение на треугольник.

Работа трёхфазного асинхронного двигателя с КЗ-ротором при обрыве одной фазы

Вопрос, имеющий сугубо практический интерес, – что произойдёт с трёхфазным асинхронным двигателем при обрыве одной из фаз?Если такое произойдёт в момент работы двигателя, то он продолжит работу при любом типе соединения обмоток. Однако мощность его снизится примерно наполовину. И если нагрузка останется максимальной, – неизбежен перегрев работающих обмоток.

Нужно твёрдо усвоить всем людям, имеющим дело с электродвигателями, что любая механическая перегрузка любого электродвигателя вызывает перегрев и сгорание обмоток. А если жёстко застопорить ротор, что бывает при поломках механизмов, которые приводит в движение двигатель, то попытка включить такой электродвигатель вызовет короткое замыкание в сети со всеми вытекающими последствиями.

А вот запустить двигатель при обрыве одной из фаз можно только при включении обмоток звездой и при подключенном нулевом проводе. Опять-таки мощность двигателя при этом уменьшается наполовину со всеми вытекающими последствиями.

Возможность работы трёхфазного асинхронного двигателя в однофазной сети

Этот вопрос довольно часто встречается на практике, например, у вас есть насос с трёхфазным асинхронным двигателем, и вам надо его временно включить, вы согласны даже на то, что мощность насоса понизится, а электросеть у вас в хозяйстве однофазная.Данный вопрос сводится к другому – можно ли при однофазной сети получить вращающееся магнитное поле?Ответ – и да, и нет, одновременно.Да, потому что вращающийся ротор двигателя (если его раскрутить рукой) продолжит вращение и работу.Нет, потому что запустить двигатель сам по себе – не удастся.

Прибегая к аналогии, можно представить кривошипно-шатунный механизм двигателя внутреннего сгорания с одним цилиндром. Поршень механизма находится в верхней мёртвой точке. Можно ли заставить механизм начать работу, нажимая сверху на поршень? Нет! Нужно сначала вывести механизм из мёртвой точки, слегка провернув вал. Причём, в какую сторону вал вы провернёте, в ту сторону и начнётся вращение.

Точно так же в однофазном электродвигателе переменного тока – изначально не определено направление вращения – в какую сторону ему начать крутиться? Следовательно, нужно поместить ещё одну пусковую обмотку с какой либо стороны двигателя. И в этой пусковой обмотке сдвинуть ток по фазе на столько градусов, в какой мере эта обмотка сдвинута в двигателе относительно основной. Так и устроены однофазные двигатели переменного тока, для запуска у них служит пусковая обмотка, которая впоследствии может отключаться. Иногда такие двигатели называют двухфазными.

В трёхфазном асинхронном двигателе такой пусковой обмоткой может служить одна из трёх обмоток. Только включить её нужно через фазосдвигающее устройство, которым может быть или индуктивное сопротивление (катушка на сердечнике) либо ёмкостное – конденсатор. Наиболее распространено применение конденсаторного сдвига.

Для начала нужно посмотреть, на какое напряжение рассчитан трёхфазный двигатель. Если у вас напряжение сети 220 вольт, а двигатель рассчитан на 127/220 вольт, – то вам нужно соединить обмотки двигателя треугольником. А если у вас двигатель 220/380 вольт, – то нужно соединить обмотки звездой.Далее нулевой провод однофазной сети подключаем к одному (из трёх) выводу обмоток, ко второму выводу подключим фазный провод, а к третьему выводу ответвление от фазного провода через конденсатор.После этого запускаем двигатель. Работать он будет с потерей мощности наполовину, примерно так же, как и при обрыве одной из фаз.

конденсатор
Как определить необходимую емкость конденсатора?

Если у вас обмотки соединены звездой, то формула для расчёта ёмкости конденсатора выглядит так:

С = 2800 I/U

При соединении обмоток двигателя треугольником формула выглядит так:

С = 4800 I/U

где С – ёмкость конденсатора в микрофарадах, I – рабочий ток двигателя в амперах, U – напряжение сети в вольтах.

Добавим, что при выборе конденсатора нужно не забыть проверить напряжение, на которое он рассчитан. Оно должно быть не менее 400 вольт.Конденсаторный сдвиг фазы – наиболее распространён из-за доступности и дешевизны. Но имеются и другие способы запуска трёхфазных двигателей в однофазной сети, вплоть до применения электронных преобразователей.  Подробнее о подключении трехфазного двигателя 380 в сеть 220 В

proelectrika.com

Достоинства электродвигателей асинхронных трехфазных, технические характеристики, виды, особенности

Асинхронные электродвигатели и их виды

Электродвигатель, работающий на переменном токе, использующий вращающееся магнитное поле, которое создается статором, называют асинхронным, если частота поля отличается от той, с которой вращается ротор. Широко распространены электродвигатели асинхронные трехфазные. Технические характеристики их важны для правильной эксплуатации. К ним относятся механические характеристики и рабочие. К первым относят зависимость частоты, с которой вращается ротор, от нагрузки. Зависимость между этими величинами обратно пропорциональная, т.е. чем нагрузка больше, тем частота меньше.

Асинхронные электродвигатели и их виды

При этом, как видно из графика, на промежутке от нуля до максимального значения, с увеличением нагрузки снижение частоты незначительно. О таком электродвигателе асинхронном говорят, что его механическая характеристика жесткая.

Асинхронные электродвигатели и их виды

Электродвигатели асинхронные в изготовлении несложные и надежные, поэтому применяется широко.

Выделяют 3 вида асинхронных электродвигателей с короткозамкнутым ротором:

одно-, двух и трехфазные, а кроме них – асинхронные с фазным ротором.

Однофазные электродвигатели

Однофазные

У первого типа на статоре есть единственная обмотка, на которую поступает переменный ток. Для запуска двигателя асинхронного пользуются обмоткой статора дополнительной, подключаемой на короткое время к сети через емкость или индуктивность, или же замыкаемой накоротко, чтобы добиться начального сдвига фаз, нужного для того, чтобы привести ротор во вращение.

Без этого его не могло бы сдвинуть магнитное поле статора. У такого мотора, как у каждого асинхронного, ротор делают в виде цилиндрического сердечника с алюминиевыми залитыми пазами и лопастями для вентиляции. Подобный ротор, называемый «беличьей клеткой», называется короткозамкнутым.

Электродвигатели асинхронные устанавливают в приборах не требующих большой мощности, типа небольших насосов и вентиляторов.

Двухфазные электродвигатели

Двухфазные

Второй тип, т.е. двухфазные – намного эффективнее. На статоре у них две обмотки, которые находятся перпендикулярно друг к другу. При этом на одну из них подают переменный ток, другую соединяют с фазосдвигающим конденсатором, благодаря которому создается магнитное вращающееся поле.

У них также есть короткозамкнутый ротор. Их область использования намного шире, в сравнении с первыми. Двухфазные машины, питающиеся от однофазной сети, называются конденсаторными, поскольку в них обязательно должен стоять фазосдвигающий конденсатор.

Трехфазные электродвигатели

Трехфазные

У трехфазный имеется три обмотки на статоре, сдвиг между которыми составляет 120 градусов, поэтому и поля их смещаются на такую же величину при включении. Включив в переменную трехфазную сеть такой электродвигатель, замкнутый накоротко, вращение ротора происходит благодаря появляющемуся магнитному полю.

Трехфазные электродвигатели

Обмотки соединяют по одной из схем - «треугольник» или «звезда». Но, у второго соединения напряжение выше, а указано оно на корпусе двумя величинами – 127/220 или же 220/380. Эти моторы незаменимы для работы лебедок, разнообразных станков, кранов подъемных, циркулярок.

Трехфазные электродвигатели

Идентичный статор имеется у моторов с фазным ротором. Магнитный провод (шихтовый) уложен у них в пазы вместе с тремя обмотками. Но отсутствуют залитые стержни алюминиевые, но имеется полноценная обмотка, соединена которая «звездой». Три ее конца выводятся на контактные кольца, которые насаживают на роторный вал и изолируют от него.

Трехфазные электродвигатели

1 - кожух и жалюзи;

2 – щетки;

3 – держатели щеток со щеточной траверсой;

4 - крепящий траверсу палец;

5 - выводы со щеток;

6 – колодка;

7 – изолирующая втулка;

8 и 26 – контактные кольца;

9 и 23- крышки наружная подшипника и внутренняя;

10 – шпилька, крепящая крышку подшипника к коробке;

11 – щит задний подшипника;

12 и 15- обмотки ротора;

13 – держатель обмотки;

14 - роторный сердечник;

16 и 17 - щит передний подшипника и его наружная крышка;

18 – отверстия для вентиляции;

19 – станина;

20 - статорный сердечник;

21 - шпильки наружной крышки подшипника;

22 – бандаж;

21 – подшипник;

25 – вал;

27 - выводы роторной обмотки

Подключить мотор можно напрямую или через реостат, подав посредством щеток переменное напряжение (трехфазное) на кольца. Последний относится к самому дорогому электродвигателю асинхронному трехфазному. Характеристики его, в частности пусковой момент, под нагрузкой намного большие, благодаря чему их ставят в устройствах, которые запускаются под нагрузкой: в лифтах, подъемных кранах и пр.

Как работает электродвигатель?

Распространены эти электродвигатели достаточно широко на производстве и в быту, поскольку по эффективности они превосходят моторы, работающие от двухфазной сети.

Если у электродвигателя присутствует статор – неподвижный узел, и подвижный ротор, разделенные прослойкой воздуха, т.е. механически не взаимодействующие, а частоты вращения ротора и магнитного поля не одинаковы, его называют асинхронным электродвигателем. Устройство и принцип работы описан ниже.

На статоре находятся три обмотки с магнитопроводом внутри. Сам статор набирается из пластин, изготовленных из электротехнической стали. Расположены они под углом 120 градусов по отношению друг к другу и закреплены в пазах неподвижного статора. Конструкция ротора опирается на подшипники. Для вентиляции предусмотрена крыльчатка.

Видео: Электродвигатель

Из-за того, что между частотой, с которой вращается ротор и магнитное поле, существует задержка, т.е. первый как бы догоняет поле, но сделать этого не может из-за меньшей частоты вращения, его называют асинхронным электродвигателем. Принцип работы заключается в индуцировании токов ротором, создающим свое поле, которое, в свою очередь, взаимодействует со статорным магнитным полем, заставляя двигаться ротор.

Скорость вращения вала можно изменять, используя регулятор скорости вращения асинхронного электродвигателя, т.е. метод изменения ее регулирования с помощью изменения фазного напряжения или с использованием широтно-импульсной модуляции.

В качестве регулятора скорости вращения электродвигателя использовать можно инвертор (регулятор-стабилизатор напряжения), который играть будет роль источника питания. Напряжение питания после регулятора изменяться будет в соответствие с частотой вращения.

Как работает электродвигатель?

Могут электродвигатели быть многоскоростными, т.е. предназначенные для механизмов, которым необходимо ступенчатое регулирование частоты вращения. В их маркировке присутствуют символы: АОЛ, АО2, 4А и др. Схема подключения есть в паспорте или приведена на клеммной коробке.

Важной особенностью двухскоростных является возможность функционирования в двух режимах. Они маркируются (отечественные): АМХ, АД, АИР, 5АМ, АИРХМ. Чтобы подобрать импортный двигатель двухскоростной, нужно точно указать данные таблицы, имеющейся на корпусе.

Преимущества

Главным достоинством является:

  • Простая конструкция электродвигателя, отсутствие изнашиваемых быстро деталей (нет коллекторной группы) и дополнительного трения (та же причина).
  • Не нужны дополнительные преобразования для питания, поскольку оно осуществляется напрямую от сети трехфазной промышленной.
  • Малое число деталей делает мотор весьма надежным.
  • Срок службы у него внушительный.
  • Он прост для обслуживания и ремонта.

Недостатки, конечно, тоже имеются.

К ним относятся:

  • небольшой пусковой момент, из-за которого ограничена область его применения;
  • значительные потребляемые токи запуска, порой превышающие в системе электроснабжения допустимые значения;
  • большая потребляемая мощность реактивная, снижающая механическую мощность.

Схемы подключения

Есть два варианта подключения, обеспечивающие работу асинхронного электродвигателя - схема подключения «звезда» и «треугольник».

Звезда

Ее применяют для трехфазной цепи, у которой величина линейного напряжения составляет 380 вольт. Особенностью соединения звездой является то, что концы обмоток должны соединяться в одной точке: С4, С5 и С6 (U2, V2 и W2). Начала же обмоток: С1, С2 и С3 (U1, V1 и W1), подключаются к проводникам A, B и C (L1, L2 и L3) через коммутационную аппаратуру.

Напряжение между началами соответствует 380 вольтам, а в местах, где соединяются с обмотками фазные проводники – 220в.

Подключение асинхронного электродвигателя на 220 обозначается Y. Для защиты от перегрузок электродвигателя в точке соединения обмоток подключают нейтраль.

Подобное соединение, двигателю электрическому, который приспособлен к работе от 380 вольт, не позволяет достигать полной мощности, поскольку напряжение обмоток всего 220в. Но зато оно защищает от перегрузок по току, благодаря чему старт является плавным.

Взглянув в коробку с клеммами легко понять, по какой схеме выполнено подключение. Если присутствует перемычка, соединяющая 3 вывода, то используется «звезда».

Треугольник

Если концы обмоток соединены с началом предыдущих, значит это «треугольник».

По старой маркировке С4 соединяют с выводом С2, далее - С5 с С3, а С6 с С1. В новом варианте маркировки это выглядит так: соединяют U2 и V1, V2 и W1, W2 и U1. Величина напряжения между обмотками равно 380 в. Но, не требуется при этом соединение с нейтралью, или «рабочим нулем». Особенностью этого подключения являются большие значения пусковых токов, опасных для проводки.

Схемы подключения

В практике порой используют подключение комбинированное, т.е. во время запуска и разгона применяют «звезду», а «треугольник» используют в дальнейшем, т.е. рабочем режиме.

Определить, что для подключения применили схему «треугольник» поможет клеммная коробка, точнее три перемычки между клеммами.

Схемы подключения

О преобразовании энергии

Энергия, которую подают на статорные обмотки преобразуется асинхронным электродвигателем в энергию вращения ротора, т.е. механическую. Но величина мощности на выходе и входе – разные, поскольку часть ее теряется на вихревые токи и гистерезис, на трение и нагрев.

Она рассеивается в виде выделяемого тепла, поэтому и для охлаждения и нужен вентилятор. Тем не менее, кпд асинхронных электродвигателей в широком диапазоне нагрузок высок и достигает 90% и 96% для очень мощных.

Достоинства трехфазной системы

Основным достоинством трехфазных, если сравнивать с одно- и двухфазными моторами, считается экономичность. В этом случае, для передачи энергии имеется три провода, а относительный сдвиг токов в них равен 120 градусов. Значение амплитуд и частот с синусоидальным ЭДС одинаково на разных фазах.

Значение амплитуд и частот с синусоидальным ЭДС

Важно: при любом соединении, зависящем от напряжения, соединяться концы обмоток могут внутри мотора (три выходящих из него провода) или выводиться наружу (6 проводов).

Какие есть варианты исполнения электродвигателей?

Присутствие в маркировке буквы «У» говорит о том, что назначение электродвигателя – работа в умеренном климате, где годичные температуры находятся в диапазоне + 40 градусов – 40 градусов. Для тропического климата должна присутствовать в маркировке «Т».

Значит, работает мотор нормально в интервале температур от +50 до -10. Для морского климата в обозначении есть «ОМ», для всех районов, кроме очень холодных – «О» (+35 – 10 градусов). Наконец, для районов с очень холодным климатом – «УХЛ», что означает нормальное функционирование при температуре от плюс 40 до минус шестидесяти градусов.

Делятся электродвигатели и по вариантам специального исполнения. Если вы видите букву «С», означает это, что двигатель с повышенным скольжением. Если «Р» - с высоким пусковым моментом, «К» - с фазным ротором, с «Е» - электромагнитным встроенным тормозом.

Помимо этого, они бывают:

  • на крепежных лапах, находящихся на основании кожуха и отверстиями, предназначенными для крепления. Подобные двигатели стоят в станках деревообрабатывающих и компрессорах, в электромашинах с ременной передачей и пр.;
  • во фланцевом исполнении, т.е. на корпусе фланцы имеют отверстия для крепежа к редуктору. Используются часто в электронасосах, бетономешалках и прочих устройствах;
  • комбинированными, т.е. имеющими фланцы и лапы. Их называют универсальными, поскольку крепиться они могут к любому оборудованию.

Синхронные и асинхронные электродвигатели, или о различиях между ними

Помимо моторов асинхронных, существуют синхронные, отличающиеся от первых тем, что частота вращающегося ротора, соответствует той, которую имеет магнитное поле. Его главными элементами являются индуктор, находящийся на роторе, и якорь, располагающийся на статоре. Их разделяет, как и у асинхронных, воздушная прослойка. Функционируют они как электродвигатель или генератор.

В первом варианте устройство функционирует благодаря взаимодействию магнитного поля, создаваемого на якоре, с полем на полюсах индуктора. Функционирование в режиме генератора обеспечивает электромагнитная индукция, вызванная вращающимся якорем в магнитном поле, сформированном в обмотке.

Поле, взаимодействует с фазами обмотки статора по очереди, образуя электродвижущую силу. По конструкции синхронные моторы более сложные, чем асинхронные.

Асинхронные двигатели

Вывод: у синхронных электродвигателей частота вращения ротора одинакова с частотой магнитного поля, а у асинхронного они разные.

Эти особенности определяют использование первых там, где нужна мощность 100 кВт и больше, вторых – в случаях до 100 кВт.

Видео: Асинхронный двигатель.Модель и принцип работы.

Интересные материалы:

Что важно знать о схемах подключения трехфазного электродвигателя на 220 вольт Что нужно для сборки квадрокоптера своими руками, пошаговая сборка

motocarrello.ru

Трехфазный асинхронный двигатель

Простота производства, дешевизна, надежность в работе привели к тому, что асинхронный двигатель (АД) стал самым распространенным электродвигателем. Они могут работать как от трехфазной электрической сети, так и от однофазной.

Трехфазные асинхронные двигатели применяются:

-в нерегулируемых электроприводах насосов, вентиляторов, компрессоров, нагнетателей, дымососов, транспортеров, автоматических линий, кузнечно-штамповочных машин и др.:

-в регулируемых электроприводах металлорежущих станков, манипуляторов, роботов, грузоподъемных механизмов, общепромышленных механизмов с изменяющейся производительностью и др.

Конструкция трехфазного асинхронного двигателя

В зависимости от способа выполнения обмотки ротора асинхронного двигателя последние разделяются на две группы: двигатели с короткозамкнутой обмоткой на роторе и двигатели с фазной обмоткой на роторе.

Двигатели с короткозамкнутой обмоткой на роторе более дешевы в производстве, надежны в эксплуатации, имеют жесткую механическую характеристику, т. е. при изменении нагрузки от нуля до номинальной частота вращения машины уменьшается всего на 2-5%. К недостаткам таких двигателей относятся трудность осуществления плавного регулирования частоты вращения в широких пределах, сравнительно небольшой пусковой момент, а также большие пусковые токи, в 5-7 раз превышающие номинальный.

Указанными недостатками не обладают двигатели с фазным ротором, но конструкция ротора у них существенно сложнее, что ведет к удорожанию двигателя в целом. Поэтому их применяют в случае тяжелых условий пуска и при необходимости плавного регулирования частоты вращения в широком диапазоне. В лабораторной работе рассматривается двигатель с короткозамкнутым ротором.

Трёхфазный асинхронный двигатель имеет неподвижную часть – статор 6 (рис. 6.1), на котором расположена обмотка, создающая вращающееся магнитное поле, и подвижную часть – ротор 5 (рис. 6.1), в котором создается электромагнитный момент, приводящий во вращение сам ротор и исполнительный механизм.

Сердечник статора имеет форму полого цилиндра (рис. 6.2). Для уменьшения потерь энергии от вихревых токов он набирается из отдельных, изолированных друг от друга лаковой пленкой листов электротехнической стали.

На внутренней поверхности сердечника расположены пазы, в которые укладывается обмотка статора. Сердечник запрессован в корпус (станину) 7 (рис. 6.1), изготовляемый из чугуна или сплава алюминия.

У двигателя с одной парой полюсов обмотка статора выполняется из трех одинаковых катушек, называемых фазами. Каждая фаза обмотки укладывается в противоположные пазы сердечника статора, фазы обмотки сдвинуты в пространстве друг относительно друга на угол и соединены между собой по особым правилам. Начала и концы фаз обмотки статора присоединяются к выводным зажимам клемной коробки 4 (рис. 6.1), что позволяет соединить фазы обмотки статора звездой или треугольником. В связи с этим асинхронный двигатель можно включить в сеть с линейным напряжением, равным Uф обмотки (обмотка статора соединяется треугольником) илиUф (обмотка соединяется звездой).

Рис. 6.1. - Общий вид асинхронного двигателя:

подшипники - 1 и 11, вал - 2, подшипниковые щиты - 3 и 9, клёммная коробка – 4, ротор - 5, статор - 6, станина - 7,

лобовые части фазной обмотки статора - 8, вентилятор - 10, колпак - 12, ребра - 13, лапы – 14, болт заземление - 15

Рис. 6.2.

Рис. 6.3.

Ротор 5 (рис. 6.1) состоит из сердечника и короткозамкнутой обмотки. Сердечник ротора 1 (рис. 6.3) набирается из листов электротехнической стали и крепится на валу 2 (рис. 6.3) двигателя, листы изолируются друг от друга окалиной, образующийся в процессе прокатки. Листы ротора имеют пазы, в которых размещаются обмотка.

Двигатели с короткозамкнутой обмоткой на роторе имеют ряд конструктивных исполнений по форме пазов на роторе. Форма пазов ротора выбирается в зависимости от требований к пусковым характеристикам двигателя. Наиболее рациональными для пазов ротора с короткозамкнутой клеткой являются трапецеидальные овальные пазы. Существуют и другие модификации пазов ротора (бутылочного и трапецеидального профиля).

Короткозамкнутая обмотка ротора 3 (рис. 6.3) обычно выполняется литой из алюминиевого сплава. В процессе заливки образуются как стержни (проводники) обмотки, расположенные в пазах, так и замыкающие их накоротко кольца, расположенные вне сердечника ротора. Кольца могут быть снабжены вентиляционными лопатками для улучшения вентиляции двигателя и теплоотвода от обмотки ротора. Отсутствие изоляции обмотки ротора обеспечивает хороший отвод тепла от обмотки к сердечнику. Такую короткозамкнутую обмотку ротора, называемую «беличьей клеткой».

Вал вращается в подшипниках, укрепленных в боковых щитах 3 и 9 (рис. 6.1), называемых подшипниковыми. Подшипниковые щиты крепятся к станине 7 (рис. 6.1) при помощи болтов.

Между ротором и статором асинхронного двигателя имеется воздушный зазор. При выборе воздушного зазора сталкиваются противоречивые тенденции. Минимальный (выбранный по механическим соображениям) воздушный зазор приводит к уменьшению тока холостого хода двигателя и увеличению коэффициента мощности. Однако при малом воздушном зазоре увеличиваются добавочные потери в поверхностном слое статора и ротора, добавочные моменты и шум двигателя. Вследствие роста потерь уменьшается КПД. Поэтому в современных сериях асинхронных двигателей воздушный зазор выбирается несколько большим, чем требуется по механическим соображениям (чтобы ротор при работе не задевал о статор).

Принцип действия асинхронного двигателя основан на двух явлениях: образовании вращающегося магнитного поля токами обмотки статора и воздействии этого поля на токи, индуцированные в короткозамкнутых витках обмотки ротора.

studfiles.net

Принцип работы трёхфазного двигателя

Электротехника: Электрические машины

Принцип работы трёхфазного двигателя

Электродвигателем называется такое электромеханическое устройство, которое преобразует электрическую энергию в механическую энергию. При использовании трёхфазной системы переменного тока, наиболее широко используется трёхфазный асинхронный двигатель, так как этот тип двигателя не требует в большинстве случаев пускового устройства. Большинство трёхфазных асинхронных двигателей запускается в работу с помощью прямого пуска с использованием коммутационных аппаратов.

Для лучшего понимания принципа работы трёхфазного асинхронного двигателя, необходимо знать его основные конструкционные особенности.

Этот двигатель состоит из двух основных частей, неподвижной части – статора, и вращающейся части – ротора.

Трёхфазный асинхронный двигатель с короткозамкнутым ротором

Статор трёхфазного асинхронного двигателя имеет слоты (пазы), в которых размещаются обмотки на каждую фазу. Трёхфазная обмотка расположена таким образом, чтобы быть способной создать вращающееся магнитное поле при протекании по обмоткам переменного тока (AC) от трёх источников питания.

Ротор трёхфазного асинхронного двигателя состоит из цилиндрического ламинированного сердечника имеющего параллельные пазы на периферии. В этих пазах расположены проводники, которые замкнуты на конечных кольцах с торцов ротора. Эти проводники в виде стержней образуют короткозамкнутую обмотку ротора типа «беличья клетка».

Проводники на роторе выполнены обычно из алюминия, а также могут быть сделаны из меди или латуни. Пазы для проводников немного повёрнуты на поверхности ротора, поэтому они расположены под некоторым углом к валу ротора. Такое расположение позволяет уменьшить магнитное сцепление в момент пуска двигателя, а также сделать работу двигателя плавной, без рывков и пробуксовки.

Как работает трёхфазный асинхронный двигатель?

Прежде всего, для работы трёхфазного асинхронного двигателя, необходимо создать вращающееся магнитное поле.

Создание вращающегося магнитного поля

Обмотки, которые расположены на статоре, равномерно смещены на 120 градусов относительно друг друга. Обмотка каждой фазы смещена относительно двух других на угол 120 градусов, то есть по обе стороны через 120 градусов расположены соседние фазы. Статор представляет собой полый цилиндр, который в сечении представляет собой кольцо. Внутри такого цилиндра расположен ротор. Три источника тока, отличатся друг от друга фазовым сдвигом. Этот сдвиг также составляет 120 градусов. В итоге, при прохождении трёхфазного переменного тока в обмотках статора, внутри статора образуется вращающееся магнитное поле.

В чем секрет создания вращения магнитного поля? Так как ток переменный, то создаваемое каждой фазой магнитное поле будет также переменным. Магнитный поток, который порождается прохождением тока в каждой обмотке, будет изменяться во времени точно также как породивший его ток. В то время когда один магнитный поток от первой фазы будет возрастать по величине, магнитный поток от второй фазы достигнет своего максимального значения и начнёт убывать по величине, магнитный поток от третьей фазы будет всё более уменьшаться, пока не достигнет своего минимального значения.

Генерация вращающегося магнитного поля

Магнитный поток переменного синусоидального тока любой из фаз изменяется по величине и направлению, тем самым чередуясь и пульсируя. Там где ранее был северный магнитный полюс, становится южный, а там где был южный полюс, там на его месте образуется северный полюс. Магнитное поле как бы пульсирует, но не вращается. Если пространственно равномерно по окружности расположить три катушки (соленоиды) так, чтобы их сердечники были направлены к центру окружности, а затем соединить в один общий магнитопровод наружные концы соленоидов (катушек), то мы получим прототип статора трёхфазного асинхронного двигателя. Подключив каждую катушку к источнику переменного тока, а именно к трём разным фазам, которые сдвинуты относительно друг друга на 120 градусов, мы получим не пульсирующее, а вращающееся магнитное поле.

По той причине, что магнитопровод будет общим, пульсирующие магнитные потоки от каждой катушки будут складываться с учётом направления и величины, тем самым образуя вращающийся вектор магнитного потока. Это удивительно, потому как статор неподвижен, но представляет собой магнит, поле такого магнита вращается, но статор остаётся неподвижен!!!

Как же преобразуется в дальнейшем электрическая энергия в механическую энергию? Если в статор, по обмоткам которого протекает трёхфазный ток и, соответственно, внутри него сосредоточено вращающееся магнитное поле, внести металлический предмет, то на него будет действовать механическая сила, которая будет пытаться этот предмет выкинуть из поля статора.

Как такое происходит? Магнитный поток статора индуцирует в короткозамкнутом роторе асинхронного двигателя ЭДС, так как цепь ротора замкнута, то по ней будет протекать электрический ток, который создаст второй магнитный поток – поток ротора. Взаимодействие двух встречных потоков ротора и статора создаст крутящий момент на роторе, и он начнёт вращаться. В соответствии с законом Ленца, ротор будет вращаться в том направлении, которое позволяет уменьшить магнитный поток статора.

Следует заметить, что принцип работы асинхронного двигателя не допускает синхронной скорости ротора с магнитным полем статора. В этом случае исчезнет ЭДС индукции в роторе, и ротор начнёт останавливаться. Синхронизация не достижима для асинхронного электродвигателя, скорость ротора в двигательном режиме может быть меньше скорости вращения магнитного поля.

Если ротору придать дополнительный крутящий момент от внешнего механического источника, так, чтобы его скорость стала больше чем скорость вращающегося магнитного поля статора, тогда электрическая машина перейдёт в генераторный режим работы, при котором происходит преобразование механической энергии в электрическую энергию.

Разница скоростей между статором и ротором позволяет говорить о таком явлении как скольжение ротора в магнитном поле статора. Необходимо помнить, что асинхронная электрическая машина переменного тока – это обратимая машина, которая может работать как в генераторном, так и двигательном режимах.

Краткие практические выводы по трёхфазному асинхронному двигателю

  1. Отсутствует необходимость в контактных кольцах на роторе и в щёточном механизме.
  2. Асинхронный трёхфазный двигатель является самозапускающимся, так как создаётся вращающееся магнитное поле, а не пульсирующее.
  3. Отсутствие щёточного механизма и щёток исключает искрение контактов в работе двигателя.
  4. Долговечность конструкции при правильной эксплуатации и обслуживании.
  5. Экономичность, высокая эффективность (КПД).
  6. Простота в обслуживании.

Дата: 26.01.2016

© Valentin Grigoryev (Валентин Григорьев)

Тег статьи: Асинхронные двигатели

Все теги раздела Электротехника:Электричество Закон Ома Электрический ток Электробезопасность Устройства Биоэлектричество Характеристики Физические величины Электролиз Электрические схемы Асинхронные двигатели

www.electricity-automation.com


Каталог товаров