интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Акустический выключатель освещения. Выключатель акустический схема


Акустический выключатель освещения - RadioRadar

Светотехника

Главная  Радиолюбителю  Светотехника

Логика работы акустического включателя подобна счетному триггеру. Звуковой сигнал включает лампы, если они выключены, или выключает, если они включены. В паузах между сигналами состояние ламп остается неизменным.

Рис. 1

Схема выключателя изображена на рис. 1. EL1 - одна или несколько соединенных параллельно ламп (накаливания или "энергосберегающих") суммарной мощностью до 1000 Вт, которыми управляет выключатель. Благодаря применению экономичных микросхем К154УД1А [1] и HEF4013BP [2] активная составляющая тока, потребляемого от сети при выключенной лампе, - всего 0,88 мА. Как показала практика, включение лампы в цепь постоянного, выпрямленного диодным мостом VD1, а не переменного тока, обеспечивает лучшую помехоустойчивость устройства.

Выпрямленное этим мостом напряжение после гашения его избытка резистором R7, ограничения стабилитроном VD4 на уровне 10 В и сглаживания конденсатором С1 использовано и для питания микросхем. Конденсатор С6 в цепи их питания подавляет высокочастотные помехи. Благодаря малому потребляемому току мощность, рассеиваемая на резисторе R7, не превышает 0,25 Вт. Конденсатор СЗ заметно снижает вероятность ложных срабатываний выключателя устройства от помех, проникающих из электросети. Это подтверждено экспериментально.

ОУ DA1 усиливает поступающие с микрофона ВМ1 сигналы. Коэффициент усиления, от которого зависит порог срабатывания, регулируют под-строечным резистором R4. Поскольку соединение инвертирующего входа ОУ с общим проводом по постоянному току разорвано конденсатором С4, постоянная составляющая напряжения на этом входе и на выходе ОУ всегда равна такой же составляющей напряжения на неинвертирующем входе ОУ. Подборкой резистора R1 в цепи питания микрофона ВМ1 ее устанавливают приблизительно равной половине напряжения питания ОУ. Это дает возможность получить максимальный размах переменного напряжения на его выходе. Конденсаторы С2 и С5 формируют АЧХ усилителя, подавляя высокочастотные составляющие сигнала.

На диодах VD2 и VD3 собран амплитудный детектор переменной составляющей сигнала. Резистор R5 замедляет нарастание напряжения на конденсаторе С8, предотвращая срабатывание выключателя от слишком коротких акустических сигналов. Через резистор R6 конденсатор С8 разряжается по окончании сигнала.

Как только напряжение на конденсаторе С8 превысит пороговое для входа С триггера DD1.1 значение (около 5 В), триггер приводит свои выходы в состояние, соответствующее логическому уровню на входе D. Цепь R11С9 создает задержку приблизительно в 1 с между изменением логического уровня напряжения на инверсном выходе триггера и на его входе D. Поэтому состояние триггера изменяет только первый из серии импульсов, поступивших на вход С за время задержки. Этим устраняется непредсказуемость состояния выключателя после приема неизвестного заранее числа следующих один за другим звуковых импульсов, возникающих, например, в результате многократного отражения звука от стен помещения и находящихся в нем предметов.

Следует отметить, что тактовые входы триггеров микросхемы HEF4013BP, в отличие от аналогов (КР1561ТМ2, CD4013BCN), имеют характеристики переключения с гистерезисом, как у триггера Шмитта По этой причине заменять указанную микросхему аналогами нежелательно.

При включении питания цепь R8C10 формирует импульс, устанавливающий триггер DD1.1 в состояние с низким уровнем на выходе 1. Это необходимо, чтобы после включения устройства в сеть лампа EL1 оставалась выключенной до получения включающего ее сигнала. Не включится она самостоятельно и при восстановлении напряжения в сети после перебоя в электроснабжении.

Когда на выходе триггера DD1.1 установлен низкий уровень, такой же он и на входе S триггера DD1.2, так как диод VD5 открыт. В этой ситуации уровень на выходе 13 триггера DD1.2 остается низким независимо от уровня на входах С и D, поскольку на вход R подано напряжение высокого уровня.

При высоком уровне на выходе 1 триггера DD1.1 диод VD5 закрыт. Поступающее через резистор R10 на вход S триггера DD1.2 пульсирующее напряжение (сетевое, выпрямленное мостом VD1) в начале каждого полупериода переводит триггер в состояние с высоким уровнем на выходе 13. Сигнал с этого выхода служит для тринистора VS1 открывающим. Обратите внимание, что между управляющим электродом и катодом тринистора отсутствует резистор, рекомендуемый руководствами по применению тринисторов серий КУ201 и КУ202. В нем нет необходимости, поскольку выходное сопротивление триггера DD1.2 достаточно мало в обоих его состояниях.

Как только тринистор открывается, напряжение между его анодом и катодом резко уменьшается, уровень напряжения на входе S и выходе 13 триггера DD1.2 становится низким и открывший тринистор импульс прекращается. Таким образом, его длительность всегда остается минимально достаточной для открывания тринистора. В следующем полупериоде процесс повторяется.

Необходимо отметить, что прл слишком быстром после отключения повторном включении прибора в сеть описанное устройство может "зависнуть". В этом случае следует отключить его от сети и вновь включить, выждав неменее 10 с, необходимых для разрядки конденсаторов.

Если в качестве EL1 используются одна или несколько "энергосберегающих" ламп без корректоров коэффициента мощности, работа выключателя происходит несколько иначе, чем с лампами накаливания. В электронном пускорегулирующем аппарате "энергосберегающих" ламп имеется диодный выпрямитель сетевого напряжения со сглаживающим конденсатором. Поэтому ток через лампу не протекает, пока мгновенное значение напряжения в сети не превысит напряжения, до которого заряжен конденсатор, а оно лишь немного меньше амплитуды сетевого До этого момента сопротивление лампы очень велико, поэтому уровни на входе S и выходе триггера DD1.2 остаются низкими и открывающее напряжение на управляющий электрод трини-стора не поступает Тринистор откроется после того, как напряжение в сети примерно на 15 В превысит напряжение на конденсаторе лампы.

Основная проблема, которая возникает при управлении "энергосберегающими" лампами с помощью тринисто-ра, связана с тем, что ток утечки этого прибора (в закрытом состоянии) может достигать нескольких миллиампер. Хотя этого недостаточно для непрерывного горения лампы, иногда она периодически вспыхивает, так как сглаживающий конденсатор постепенно заряжается током утечки, а затем разряжается током вспыхнувшей лампы. Это не только неприятно визуально, но и сокращает срок службы лампы.

Чтобы избавиться от вспышек, можно либо подобрать другой экземпляр тринистора, либо подключить параллельно "энергосберегающей" обычную лампу накаливания. Второй вариант предпочтительнее. Шунтировать, как иногда рекомендуют, "энергосберегающую" лампу резистором в данном случае неприемлемо.

Другая проблема связана со значительным импульсным током, протекающим через лампу (особенно "энергосберегающую") в момент ее включения. Этот импульс способен повредить тринистор или диоды выпрямителя. Хотя многие "энергосберегающие" лампы оснащены токоограничительными элементами, но если несколько таких ламп соединены параллельно, последовательно с ними желательно включить резистор сопротивлением около 10 Ом. Мощность этого резистора должна быть не менее вычисленной по формуле

где Р - мощность резистора, Вт; R - его сопротивление, Ом; Рсум - суммарная мощность ламп, Вт; U - напряжение в сети, В; лямбда - коэффициент мощности (обычно 0,3...0,5).

Рис. 2

Схема другого варианта узла коммутации лампы EL1 изображена на рис. 2. Нумерация элементов здесь продолжает начатую на рис. 1. Этот узел не подвержен "зависанию", менее критичен к току открывания тринистора, а главное - включает лампу при меньшем мгновенном значении сетевого напряжения. На триггере DD1.2 собран одно-вибратор. Запускает его при наличии разрешающего высокого уровня на входе D-триггера сигнал, поступающий на вход С через делитель напряжения R9R10. Это происходит в моменты времени, когда напряжение на аноде тринистора растет и достигает примерно 15 В

Пока на входе D напряжение низкого логического уровня, триггер сохраняет состояние с низким уровнем на выходе 13, транзистор VT1 и тринистор VS1 закрыты, а лампа обесточена. При высоком уровне на входе D поступающие на вход С импульсы в начале каждого полупериода сетевого напряжения переводят триггер в состояние с высоким уровнем на выходе. Транзистор VT1 и тринистор VS1 открываются, на лампу подается напряжение. Конденсатор С11 заряжается через резистор R13. Приблизительно через 10 мкс напряжение на входе R триггера достигает порогового значения и триггер возвращается в исходное состояние. Тринистор остается открытым до конца полупериода, а в следующем процесс повторяется.

С особенностями узлов управления тринисторами и их применения можно ознокомиться в [3, 4].

В выключателе могут быть установлены тринисторы КУ202К - КУ202Р, КУ202К1-КУ202Р1. Если мощность ламп не превышает 400 Вт, подойдут и тринисторы КУ201К-КУ201Н. При коммутируемой мощности более 200 Вт тринистор следует установить на теплоотвод. Для тринисторов серии КУ202 гарантирован открывающий ток управляющего электрода не более 100 мА, хотя фактически у большинства из них он в несколько раз меньше. У всех испытанных автором экземпляров (около десятка) этот ток не превышал 10 мА. Если микросхема DD1 в устройстве, собранном по схеме, изображенной на рис. 1, все-таки не сможет отдать нужный ток, может потребоваться подборка тринистора. Для узла, собранного по схеме, показанной на рис. 2, подбирать тринистор не требуется.

Транзистор КТ940А можно заменить на КТ940Б, а также на КТ604 и КТ605 с любыми буквенными индексами. Все эти транзисторы работают достаточно надежно, хотя приложенное к ним напряжение формально превышает максимально допустимое значение.

Аналог диодного моста KBU6G - RS604. Подойдут и другие диодные мосты или отдельные диоды, рассчитанные на обратное напряжение не менее 400 В и на ток, потребляемый управляемыми выключателем лампами. Диоды КД521А заменят любые маломощные кремниевые диоды.

В качестве ОУ DA1 подойдет не только К154УД1А, но и К154УД1Б, а также 174УД1А, 174УД1Б, КР154УД1А, КР154УД1Б. У микросхем серий 174 и К174 с выводом 5 соединен металлический корпус. Поскольку микросхемы серии КР174 выполнены в пластмассовом корпусе, этот вывод у них оставлен свободным и присоединять его никуда не требуется.

Микрофон CZN-15Е заменяется любым другим малогабаритным элект-ретным со встроенным усилителем на полевом транзисторе. Подойдет, например, отечественный микрофон МКЭ-332. При его подключении необходимо соблюдать полярность. Резистор R1 подбирают таким, чтобы напряжение между выводами микрофона было около 5 В.

Литература:

1. Микромощный операционный усилитель 154УД1. - http://www.rdalfa.lv/data/oper_usil/1541 .pdf.

2. HEF4013B Dual D-type flip-flop. -http://www.nxp.com/acrobat_download/datasheets/HEF4013B_5.pdf.

3. Кублановский Я. Тиристорные устройства. - М.: Радио и связь, 1987 (Массовая радиобиблиотека, вып. 1104).

4. Управление тринисторами и симисторами. - http://www.platan.ru/shem/pdf/ 12_р21 -25.pdf.

Автор: К. Гаврилов, г. Новосибирск

Дата публикации: 12.10.2010

Мнения читателей
  • Иван / 30.05.2012 - 17:23Алексей, даешь разводку пп, позарез нужно ....
  • Алексей / 13.05.2012 - 08:14Сам разведи ПП, я тоже на диплом взял ее. Плату развел. Вот только будет ли работать??))
  • Форест / 24.04.2012 - 19:59здраствуйте,народ,у меня эта тема язвляется дипломным проектом) помогите пожалуйста с ПП (печатной платой)
  • tika / 12.10.2011 - 10:40Да кто собирал сей дивайс , хотелось-бы п/п .
  • Саня / 13.06.2011 - 18:01схема гуд вот только проблема, игде не могу найти 154уд1а
  • Дмитрий / 28.03.2011 - 19:33Схемка хороша)нашел ее еще в журнале прикладной электроники)тоже хотел спросить на счет п/п)очень бы пригодилась!)
  • Владимир / 22.02.2011 - 20:32Очень схема понравилась. Вопрос: а печатной платы рисуночка не найдется? С удовольствием попробовал бы повторить. Самому разводить - много времени займет. Заранее благодарен. Владимир.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:

www.radioradar.net

Акустический выключатель света хлопком | Сабвуфер своими руками

В радиолюбительской литературе последних лет редко встречаются описания акустических выключателей. Однако интерес к подобным конструкциям существует. Предлагаемая конструкция не претендует на новизну схемных решений, но, несмотря на простоту и доступность элементной базы, показала хорошие практические результаты.

акустический выключатель своими рукамиВ радиолюбительской литературе последних лет редко встречаются описания акустических выключателей. Однако интерес к подобным конструкциям существует. Предлагаемая конструкция не претендует на новизну схемных решений, но, несмотря на простоту и доступность элементной базы, показала хорошие практические результаты.

Акустический выключатель может использоваться в качестве выключателя освещения либо для коммутации других электрических цепей. Реагируя на громкий звук, например хлопок в ладоши, акустический выключатель переходит из одного состояния в другое, включая или выключая нагрузку.

Схема акустический выключатель

Акустический выключатель состоит из:

  • микрофонного усилителя на транзисторах VT1 и VT2;
  • одновибратора на триггере DD1.1;
  • триггера DD1.2;
  • схемы коммутации, состоящей из транзистора VT3 и симистора VS1.

Выключатель звуковой на хлопокВ качестве датчика звука используется малогабаритный громкоговоритель 0,25ГДШ-2 с сопротивлением звуковой катушки 50 Ом. Вместо него можно использовать капсюль ДЭМ-4М либо телефонный капсюль. Конденсатор С2 ограничивает высокочастотную составляющую сигнала, улучшая помехоустойчивость акустического выключателя. Усиленный сигнал с микрофонного усилителя поступает на вход триггера DD1.1, работающего в режиме одновибратора, который вырабатывает одиночный импульс длительностью около 0,5 с.

Этот импульс поступает на вход триггера DD1.2, который имеет два устойчивых состояния. После каждого входного импульса триггер изменяет состояние на противоположное. Сигнал с выхода триггера управляет транзистором VT3, который, в свою очередь, отпирает симистор VS1, в цепи которого включена нагрузка.

Конструкция и детали

Вместо транзисторов VT1-VT3 можно использовать любые п-р-п транзисторы (от коэффициента усиления h3l3 VT1-VT2, если он менее 40, будет зависеть чувствительность акустического выключателя). Стабилитрон VD2 — любой из серии Д814А- Д814Д, либо других серий, с напряжением стабилизации от 8 до 12 В. Конденсатор С7 должен быть с рабочим напряжением не менее 400 В.

Мощность резистора R10 не более 0,25 Вт, он выполняет защитную функцию, в случае пробоя С7 резистор перегорает, защищая схему от повреждения. Вместо конденсатора С7 можно установить резистор 7,5 кОм 7,5 Вт, как показано на рисунок.2, при этом диод VD4 необходимо исключить. При отсутствии такого мощного резистора его можно собрать из четырех последовательно соединенных резисторов ОМЛТ-2 1,8 кОм.

выключатель света своими рукамиВместо симистора можно использовать тиристор, в этом случае схема коммутации будет иметь другой вид (изображение 2). В этой схеме использовать гасящий конденсатор вместо резистора не получится из-за наличия диодного моста в цепи питания. Диоды моста выбирают в зависимости от тока нагрузки. Для диодов КД105 нагрузка не должна превышать 60 Вт. Ввиду большого разброса параметров используемых в схеме приборов КУ208 и КУ201 симистор или тиристор необходимо подобрать по минимальному управляющему току включения (максимальной чувствительности).

Определить чувствительность можно, измеряя сопротивление управляющего перехода омметром, чем больше сопротивление, тем чувствительнее прибор. При малой чувствительности силового прибора вырабатываемого схемой тока управления будет недостаточно для отпирания прибора. Чтобы увеличить ток управления, пришлось бы в схеме изображение 1 уменьшить резистор R8 и увеличить емкость С7 (уменьшить R9 в схеме рисунок 2), что привело бы к увеличению потребляемой мощности.

Акустический выключатель собирают на печатной плате размерами 100×40 мм (изображение З). Печатная плата рассчитана на установку симистора КУ208. При работе с акустическим выключателем не забывайте, что схема находится под напряжением сети 220 В / 50 Гц, поэтому необходимо соблюдать меры безопасности, любые действия необходимо выполнять только при отключенном от сети устройстве!

www.radiochipi.ru

Акустический выключатель и звуковой выключатель света

Акустический выключатель света

Продолжим рассматривать датчики, которые могут добавить комфорта, и сегодня на очереди акустический выключатель света. Строго говоря, в квартирах они находят применение в ситуациях, когда проживает человек, который нуждается в свете, но при этом ограничен в возможностях (например, дойти до выключателя). Как раз звуковой выключатель света и позволит включить освещение. Достаточно хлопнуть в ладоши, почему иногда такие датчики называют – хлопковый выключатель. Давайте рассмотрим, что это за датчики такие.

Основные типы акустических датчиков: плюсы и минусы

Фактически все акустические выключатели света – это микрофон с настраиваемой чувствительностью, который при распознавании звука включает (выключает) освещение. Конструктивно это одни из самых маленьких (по физическим габаритам) датчиков. На рынке предлагаются несколько типов звуковых выключателей света:

  • Датчики прямого выключения. Настроенные на определённый звук они по сигналу включают свет, а после следующего звука выключают. Этот тип датчика в подавляющем большинстве случаев монтируется параллельно с выключателем и если свет включить именно выключателем, датчик не задействован;
  • Датчики, совмещенные с таймерами и (или) с датчиками освещённости. В таких конструкциях свет включается на заданный интервал времени, а пока уровень освещённости высок, датчик опять же не задействован. Именно такие типы датчиков (ввиду невысокой стоимости) всё больше становятся распространенными в подъездах многоквартирных домов;
  • Датчики с управляющими интеллектуальными блоками. По сути, это уже мини-компьютер, который настраивается на разные реагирования пользователем. Такие блоки могут управлять сразу несколькими датчиками, в том числе движения и освещения;
  • Выключатели по хлопку для слаботочных систем (сигнализации, видеонаблюдения и пр.). В данном случае свет может и не включаться, просто датчик, настроенный на звуковые события в автоматическом режиме может (как пример) включить запись с камер видеонаблюдения или дать команду на передачу картинки владельцу.

Достоинствами этих датчиков является дополнительное событие, которое помогает в управлении освещением. Это помогает владельцу иметь больше возможностей в управлении светом, а значит, и в экономии электроэнергии. Тем более что своими руками такие датчики поставить намного проще, чем все остальные.

Недостатки этих датчиков прямо вытекают из того, на что они реагируют – звук. Конечно, избирательность микрофона очень высока и развитие акустических выключателей света идёт своим чередом, так что современные датчики очень точно реагируют на заданный звук. Но чтобы этот звук произвести, нужно знать какой именно, и звук этот будет всегда сигналом включения или выключения. Из практики банальный пример, в гостиной комнате выключатель по хлопку, свет включили, и через несколько минут хозяин включил свет выключателем. Гости время от времени хлопали и свет гас. Это было весело, но в данном случае никто и не думал выключать свет.

Вторым основным недостатком является зона чувствительности. Для большой комнаты придётся хлопать слишком громко, или подойти ближе. А если увеличить чувствительность, датчик может реагировать на аналогичные сигналы из соседней комнаты.

У нашего авторского коллектива ни один акустический выключатель света не эксплуатируется, поэтом владелец из примера выше был подвергнут допросу. Его пожилая мама – слабовидящая и очень медленно ходит. Поэтому он в коридоре решил установить датчик движения с максимальной задержкой времени. А в большой комнате была проблема. Две двери, а выключатель только у одной. Для такой планировки идеальное решение проходной выключатель, но при отделке он об этом не подумал. Как раз хлопковый выключатель и пришёл на помощь. В целом, он положительно отозвался о таком решении, хотя и честно признал, что подключить именно звуковой датчик было альтернативным решением. Иначе, как Вы понимаете, пришлось бы вносить значительные доработки в электропроводку. При этом он особо не задумывался как выбрать, поскольку задача датчика была очевидной – реакция на один сигнал. Неожиданным минусом оказалось то, что его мама освоила включение света, но практически никогда его не выключает. В итоге в данном случае экономии энергии никакой нет, с чем он смирился. Конструктивно этот датчик выглядит примерно так же как на картинке, только смонтирован в клавише выключателя, которым можно включить свет:

Акустический выключатель света

Мы так подробно об этом рассказали потому, что именно такой пример ярче всего показывает применимость акустического выключателя света в квартире или частном доме. Выводы делайте сами, пример наглядный, а опыт использования этого датчика уже больше 4-х лет.

Естественные ограничения для звуковых датчиков

Прежде всего, акустический выключатель света – это совершенно внутренняя история. Даже на тихих дачных участках использование для наружного освещения затруднено, да и трудно смоделировать ситуацию, в которой это было бы целесообразно. Для охранных систем дело другое, ложные срабатывания неизбежны, но безопасности много не бывает. Для наружного же освещения датчики движения и освещённости вне конкуренции.

Таким образом, первым естественным ограничением является активная звуковая среда. Чем больше звуков вокруг, тем чаще свет будет включаться тогда, когда не надо.

Учитывая изначальную направленность на использование внутри помещения, звуковой выключатель света в наружном исполнении довольно редкое устройство, нам удалось найти несколько вариантов, но цена их в 2-3 раза выше обычного. В большинстве датчиков, в паспортах честно написано, температурный интервал от +5 до +50 градусов. Стоит на этот параметр обращать особое внимание.

Минимальность размеров создаёт естественное препятствие для использования в освещении даже 220В. При выборе внимательно читайте сферу допустимого использования и допустимое время непрерывной работы.

Мы уже говорили о том, что некоторые лампы не любят частых включений-выключений и требуют паузы между этими циклами. «Ложные» срабатывания акустических выключателей света, например, Вы хлопнули два раза. Свет включится и тут же выключится. Сами понимаете, это сократит срок службы ламп. Поэтому почитайте нашу статью, посвящённую лампам , и, выбирая этот тип датчиков, учитывайте, что освещает Ваше помещение.

Конфигурация помещения также является естественным ограничением для применения. Обратите внимание на чувствительность, она задаст расстояние, на котором датчик Вас «услышит». Для типовых квартир – это редкое ограничение, но владельцам домов стоит этот фактор учитывать.

Эстетика и дизайн тоже накладывают свои ограничения. Не все датчики можно встроить в выключатель, поэтому для монтажа своими руками всё же лучше выбрать хлопковый выключатель со встроенным датчиком, который внешне не отличается от обычного выключателя и ставится точно так же.

Все остальное – это обычные ограничения, которые в равной мере относятся ко всем устройствам, которые Вы внедряете в свою электропроводку.

В качестве заключения немного о перспективах

Если у Вас сложилось ощущение, что мы настроены против акустического выключателя света, то это неправильный вывод. Этот класс устройств тоже непрерывно развивается, и следующим этапом развития становятся устройства, которые воспринимают голосовые команды. Такое решение логически напрашивалось давно, но стоимость была слишком высока. Развитие ПО определения голосовых команд и снижение стоимости и размеров чипа, который на это способен, уже сегодня позволяют производителям предложить такие блоки по вменяемым ценам.

Судя по всему, цена этих девайсов вскоре станет сравнима с другими датчиками, и тогда конкурировать с ними будет непросто. Например, если Вы, входя в комнату, скажете «свет на 10-ть минут». Или «свет», или другую команду, которые запрограммированы в списке. Проверить трудно, нужно такое устройство подержать в руках, но есть данные о программировании до сорока команд.

Ещё одним элементом управления становится интеллектуальный блок с голосовым управлением, который может объединить датчики разных видов, управляя ими в соответствии с отдаваемыми распоряжениями. Очевидно, что сам блок будет напрямую относиться к устройствам с акустическим управлением. Такие устройства с пультами позволяют включить и прибор, а не только свет.

Поэтому читателям рекомендуем следить за развитием технологий в этом направлении, это обещает интересные перспективы в самое ближайшее время.

Схема выключателя света

На заметку: Первые устройства с голосовым управлением - мобильные телефоны стоили дороже собратьев, а вот с голосом справлялись с трудом. Сегодня те же телефоны стоят не дороже собратьев, но позволяют голосом не только включиться, но зайти в интернет, осуществить поиск и сделать много чего ещё.

Впрочем, рекламу, наверное, все видели и многие знают, что это действительно работает. Так что, если Вы задумались на тему акустического управления, в том числе светом, стоит подумать, и принимать решение будет ли полезным такое добавление в Вашем доме. Ну, и конечно, стоит обдумать минусы, о которых мы поговорили выше.

И, уважаемый читатель, если у Вас есть личный опыт использования звуковых выключателей, наш коллектив авторов был бы благодарен за собственную оценку, поскольку, сколько людей, столько и мнений. Возможно, именно Вы сообщите о каких-то достоинствах, которые мы не учли в рамках этой статьи. Мы были бы очень признательны за такую информацию.

obelektrike.ru

Акустический выключатель света - 5 - Конструкции простой сложности - Схемы для начинающих

Устройство реагирует на хлопки в ладоши — хлопнул раз, - светильник включился, хлопнул два, - светильник выключился. Оно может ком­мутировать светильник с лампой мощностью до 150 Вт. Принципиальная схема акустического выключателя показана на рисунке.

Воспринимает звуки электретный микрофон M1. Во время хлопка в ладоши на его выходе будет "всплеск" амплитуды низкочастотного напряжения. Это напряжение поступает на усилитель на ОУ А1. Чувствительность ОУ зависит от цепи ООС R5-R2-C2 и легко регулируется в широких пределах при помощи переменного резистора R5. Чувствительность устанавливается таким образом, чтобы схема реагировала только хлопки, свистки, но не реагировала на спокойную речь, шаги, негромкую работу телевизора. Здесь большое значение имеет и место расположения микрофона (всего устройства), его нужно размещать подальше от динамиков телевизора и поближе к месту, где обычно находится человек (например, к дивану). Следует заметить, что данное устройство наиболее эффективно в спальне. Каждому знакома ситуация, когда приходится лихорадочно искать в темноте выключатель ночника, если, например, зазвонил телефон или нужно выйти "по нужде". А данное устройство включит свет почти автоматически. С выхода операционного усилителя, усиленное напряжение НЧ поступает на детектор на диодах VD1 и VD2. Во время хлопка или другого громкого и резкого звука, как уже отмечалось, возникает всплеск переменного напряжения, это приводит к увеличению постоянного напряжения на С6. И как только это напряжение достигнет величины 1-1,2 В откроется транзистор VT1. Напряжение на его коллекторе упадет до логического нуля и одновибратор на основе RS-триггера на элементах D1.1-D1.2 сформирует положительный импульс длительностью примерно 2-3 секунды. Цепь C10-R10-VD4, по фронту этого импульса, сформирует короткий положительный импульс, который поступит на вход С триггера D2 и изменит его состояние на противоположное исходному. Напряжение с инверсного выхода триггера D2 поступает на ключевое устройство на транзисторе VT2 и тиристоре VS1, которое и управляет лампой освещения. Таким образом, если в исходном состоянии лампа была выключена (на выходе D2 ноль), то от хлопка лампа включится. Затем, через 2-3 секунды, можно повторить хлопок, и лампа выключится. Триггер на D1 необходим для того чтобы создать некоторую задержку времени между соседними хлопками, поскольку, при его отсутствии, схема может воспринимать один хлопок как несколько, как это происходит, например, при дребезге контактов кнопочного выключателя, когда цифровая схема одно нажатие кнопки воспринимает как несколько. Диод VD4 исключает появление отрицательного перепада импульса на входе триггера D2 при разряде конденсатора С10. Для того чтобы после временного отключения электроэнергии светильник автоматически переходил в выключенное состояние служит цель C8R9. Она создает положительный импульс на входе S триггера D2, переводя его в единичное состояние. Длительность этого импульса около 5 секунд, что дает время для завершения всех возможных переходных процессов в схеме, которые могут возникнуть при перебоях в электроснабжении. Лампа питается пульсирующим напряжением, получаемым от выпрямительного моста VD5. Микросхемы питаются напряжением 12 В, получаемым из этого напряжения при помощи параметрического стабилизатора на элементах R11-VD5-C9. В акустическом выключателе можно использовать любые постоянные на указанную мощность. Резистор R11 - ПЭВ-5, его можно заменить двумя резисторами МЛТ-2 по 82 кОм включенными параллельно. Переменный резистор R3 - любой типа СП. Операционный усилитель К553УД2 можно заменить любым другим ОУ широкого применения с соответствующими целями коррекции, например, К140УД6С8, К140УД708, половина К157УД2. Диоды Д9Г можно заменить любыми германиевыми, например Д18, Д20, Д9. В крайнем случае, можно использовать и кремниевые импульсные (КД522, КД521). Выпрямительный мост КЦ402Б можно заменить мостом из четырех диодов КД209. или других. Транзистор KT315 можно заменить любым аналогичным (КТ3102, КТ316, КТ503). Стабилитрон Д814Д можно заменить другим на 8-14 В, например КС212, КС512, Д814В, и другими. Тиристор КУ202Н можно заменить тиристором КУ201 или КУ202 с буквами К, Л, М, Н. Электретный микрофон МКЭ-3 (буквами на схеме обозначены цвета его проводов) можно заменить любым другим электретным микрофоном, например МКЭ-332 или микрофоном от импортного электронного телефонного аппарата, магнитолы. Если микрофон имеет только два вывода, то эти выводы нужно включить между общим минусом и нижним (по схеме) выводом резистора R1. Конденсатор С1 при этом нужно исключить, а левый (по схеме) вывод С3 подпаять к точке соединения этого микрофона и R1. Микросхемы - D1 - К561ЛА7, её можно заменить на К176ЛА7, К1561ЛА7. Микросхема D2 - К561ТМ2, его можно заменить на К176ТМ2 или К1561ТМ2. Нужно иметь в виду, что микросхемы серии К176 можно применять только в том случае, если используется более низковольтный стабилитрон, чем Д814Д, на напряжение не более 11 В, например Д814В. Устройство питается непосредственно от электросети, поэтому при налаживании его и эксплуатации нужно соблюдать правила техники безопасности при работе с электроустановками, работающими от электросети.

Радиоконструктор №3 2002г стр. 25

cxema.my1.ru

Схема простого светоакустического выключателя / Схемы / Коллективный блог

Выключатель предназначен для установки в подъезде многоквартирного дома. Схему можно сделать в двух вариантах, - для подъездов или лестничных клеток с наличием естественного освещения (есть окно) и для подъездов или лестничных клеток без естественного освещения (окна нет). Интересно что в старых домах - «хрущовках», «брежневках» обычно на лестничных клетках и в подъездах всегда имеется окошко, позволяющее днем солнечному свету проникать в подъезд, но вот во многих новых домах подъезды спроектированы так, что находятся в центре здания и поэтому не имеют окон. Поэтому и два варианта выключателя, -первый реагирует не только на звук но и на свет и включает освещение только если в подъезде темно, а второй не имеет свето-датчика, так как в подъезде нет окошка и без электрического освещения там всегда темно.

На рисунке 1 показана схема первого варианта, - реагирующего на свет и звук. Алгоритм работы обычен для аналогичных выключателей, - если темно, то при возникновении звука громче некоторого порога включается свет и горит некоторое время. Время горения света зависит от продолжительности звука, но не менее некоторой заданной величины. Свет горит столько времени, сколько продолжаются звуки, плюс, это заданное время. В данном случае заданное время установлено около 5 минут, но подбором сопротивления резистора (34 его можно изменять в очень и очень широких пределах (от нескольких секунд, до нескольких часов).

За светом наблюдает датчик на основе фототранзистора VТ2. Это фототранзистор от «шариковой» компьютерной мыши. Он внешне похож на транзистор типа КТ315, только черного цвета. Там внутри два фототранзистора, - на средний вывод выведены их соединенные вместе коллекторы, а на крайние - отдельно эмиттеры. В этой схеме можно использовать любой из этой пары, то есть, коллектор - средний вывод, эмиттер -любой крайний вывод. Другой крайний вывод остается свободным. Фототранзистор нужно установить так, чтобы на него не оказывал влияния свет идущий из подъезда при включенном освещении. То есть, фототранзистор нужно либо вынести в виде отдельного блока на улицу, либо закрыть блендой и прижать к оконному стеклу так чтобы он «смотрел» на улицу, и был отвернут от источника искуст-венного света, которым данная схема управляет. Большую роль играет и настройка чувствительности свето-датчика, которую делают с помощью переменного резистора Р6.

Звук «слушает» электретный микрофон М1. А уровень его чувствительности устанавливают переменным резистором Р1, который одновременно является как нагрузкой встроенного усилителя микрофона, так и регулятором уровня сигнала, поступающего на усилитель-формирователь на транзисторе VТ1. Каскад на транзисторе VТ1 весьма интересен. Практически, это обычный усилительный каскад с общим эмиттером, но постоянное напряжение с его коллектора поступает на обнуляющий вход счетчика 01, то есть, должно быть как-то привязано к логическому уровню. Поэтому режим работы каскада по постоянному току не только важен в смысле его коэффициента усиления, но и в смысле установки некоторого порогового значения «междууровневого» напряжения на входе счетчика. В процессе налаживания нужно подобрать таким образом, чтобы при отсутствии входного сигнала напряжение на коллекторе УТ*} воспринималось логическим счетчиком 01 как логический ноль. А наличие достаточно громкого звука - как импульсы высокого логического уровня. Начать следует с постоянного напряжения около 2V, и постепенно его поднимать, пока не будет достигнут уровень уверенной работы схемы при среднем положении ручки переменного резистора (31. Слишком поднимать напряжение на коллекторе VТ1 (до уровня около половины напряжения питания установленного стабилитроном V03) не рекомендуется, так как находясь на пороговом значении логических уровней схема может работать крайне нестабильно.

Теперь о работе схемы в целом. Если темно, то напряжение на фототранзисторе VТ2 высокого уровня и на выходе элемента 02.4 будет ноль. Он приходит на вывод 9 02.3 и никак не влияет на работу данного элемента как инвертора.

При возникновении звука достаточной громкости на коллекторе VТ2 появляются импульсы, которые сбрасывают счетчик 01 в нулевое положение. На старшем выходе 01 (и на

всех его остальных выходах) устанавливается ноль. Инвертируется элементом D2.3 и логической единицей с его выхода открывает ключ на полевых транзисторах VT3 и VT4, через которые питается лампа Н1.

В это же время ноль с выхода 01 проходит на вывод 5 02.2 и запускает мультивибратор D2.1-D2.2, который вырабатывает импульсы, поступающие на вход «С» счетчика D1. Если звуковые сигналы продолжают поступать, то счетчик все время поддерживается обнуленным, а лампа включенной. Когда звуковые сигналы прекращаются состояние счетчика последовательно нарастает с каждым импульсом, приходящим на его вход от мультивибратора. И через некоторое время, зависящее от частоты этих импульсов, на выводе 3 01 появляется логическая единица. Она сразу же делает два дела, - останавливает мультивибратор 02.1-02.2 и изменяет уровень на выходе 02.3. Счет прекращается и на выходе D2.3 устанавливается низкое напряжение. Транзисторы VT3 и VT4 закрываются и лампа Н1 выключается.

Источник питания микросхем выполнен бестрансформаторным. Напряжение от сети выпрямляется диодом V04 (и обратно включенными диодами, которые есть в транзисторах VT4 и VT5 между стоками и истоками) и поступает на параметрический стабилизатор, состоящий из резистора R9 и стабилитрона VD3. Конденсатор С6 сглаживает пульсации.

Выходной каскад можно выполнить и на тиристоре или симисторе, но при мощности нагрузки не более 300 W высоковольтные полевые мощные транзисторы - оптимальный вариант, так как они работают почти как механический контакт, то есть, низкое сопротивление в замкнутом состоянии, а значит минимальная рассеиваемая на них мощность, практически до мощности 300W не требуется радиатора вообще. Плюс, линейность, в следствии чего минимум импульсных помех и искажения формы напряжения сети. В общем можно ничего не опасаясь подключить на выходе энергосберегающую лампу.

Микросхемы К561ИЕ16 и К561ЛЕ5 можно заменить зарубежными аналогами С04020 и СР4001. Диоды 1№148 заменимы любыми диодами типа КД522, КД521. Диод 1Ы4004 можно заменить любым выпрямительным на напряжение не ниже 360V и ток не ниже 0,1 А. Стабилитрон - любой на напряжение 5-6V. Электретный микрофон неизвестной марки, должен подходить любой с двумя выводами (при монтаже соблюдайте полярность).Фототранзистор можно заменить фоторезистором, фотодиодом, самодельным фототранзистором, и соответственно подобрать сопротивление Р8.

Теперь о варианте без свето-датчика, -схема показана на рисунке 2. Практически все то же самое, но нет части схемы на УТ2 и 02.4. Впрочем можно даже и не менять схему, - просто не подключить фототранзистор.

Автор - Антонов В.А.

Источник – журнал Радиоконструктор №1 2012 года

ВложениеРазмер
z-wave-logo.png139.28 КБ

44kw.com

Акустический выключатель - AmpExpert

Акустический выключатель схема

Если вам необходимо собрать устройство включающую/выключающую по хлопку лампочку, или другую нагрузку, или ищите простую, но полезную схему для новичка радиолюбителя, то оцените схему акустического выключателя.

Собственно схема проста и не содержит друднодоступных деталей.

R1- 10k

R2-1M

R3-22k

R4-270k

R5-2k

R6-1,8k

R7-330 Ом

R8-1,5k

 

С1-2200пф

С2-1мкФх10в

 

VT1-КТ315Г

VT2-КТ315Г

VT3-3107Б

HL1- любой светодиод

VD1-1n4148

M1- любой электретный микрофон

Акустический выключатель схема Акустический выключатель транзисторы

Акустический выключатель работает с легкой нагрузкой, в нашем случае это светодиод, но если заменить светодиод на реле, то можно уже управлять мощной нагрузкой, при этом в схему необходимо включить диод VD1, который выступить в роли защиты транзистора VT3 от ЭДС катушки реле.

Питать схему можно напряжением 5-9 вольт

можно напряжением

Важные детали схемы это транзисторы.

 

И самая необходимая деталь — микрофон. В этой схеме был использован электретный микрофон.

У такого микрофона принцип работы похож на микрофон конденсаторного типа, и имеет квази полярность. Минусом будет корпус микрофона. Это нужно учесть в монтаже схемы.

Схема собрана на макетке.

Акустический выключатель транзисторы

Поделись с друьями:

Это интересно :

ampexpert.ru

Акустический выключатель света CAVR.ru

Рассказать в: Данный акустический выключатель реагирует на звук, и если этот звук имеет достаточный для его срабатывания уровень, он включает освещение. Лампа горит около одной минуты, а затем гаснет. Такой выключатель может найти самые разнообразные области применения. Например, автоматический выключатель света в темном подъезде. Его максимальная чувствительность достаточна даже для срабатывания от звука шагов по бетонной лестнице. Если на каждом этаже поставить такой выключатель, то человек, поднимающийся по лестнице постоянно будет, находится в "световом пятне". А времени, около минуты, в течение которого горит свет после включения, более чем достаточно для отпирания замка квартиры. Такой выключатель можно установить в длинном коридоре или в кладовке, в таких местах, в которых люди бывают не долго, но часто забывают выключить свет. Если такой выключатель установить в прихожей он будет выполнять и некоторые охранные функции, отреагировав на звук в подъезде, на лестничной клетке, звонок, звук от попытки вскрыть замок, он включит свет, и создаст видимость того, как будто кто-то находится дома и, услышав неладное, включил свет. Можно управлять не только светом, но и каким-то звуковоспроизводящим устройством, которое при малейшем шуме будет воспроизводить запись лая крупной собаки. На страницах сайта многократно описывались подобные акустические автоматы, но одни из них имели склонность к зацикливанию, а другие не имели возможности управлять питанием сложной электронной техники. Проанализировав причины зацикливания подобных устройств можно прийти к выводу, что причины две: во-первых, при включении нагрузки, и часто при её работе более сильно нагружается источник низковольтного питания устройства, увеличиваются помехи вызванные работой нагрузки, во-вторых, тиристор, как известно, искажает синусоиду сетевого напряжения, а в результате по электросети, а также по целям питания и через емкости, монтажа на вход микрофонного усилителя, как в первом так и во втором случаях, поступают импульсные помехи и вызывают зацикливание устройства. Наиболее простой и эффективный способ борьбы с этим явлением, это автоматическое отключение выхода микрофонного усилителя от входа цифровой схемы, которое должно происходить сразу после включения нагрузки, а подключение выхода микрофонного усилителя к схеме должно быть с небольшой задержкой, порядка 1-3 секунд. В результате, при включении нагрузки вход устройства блокируется, и схема не реагирует ни на звуки, ни на какие-либо помехи, которые появляются при включении нагрузки. Затем, после выключения нагрузки отводится еще небольшое время (1-3 сек.) для полного 100%-гарантированного "успокоения" схемы нагрузки, полного завершения каких-то переходных процессов в ней, связанных с выключением, которые могут быть источниками или причинами помех (как электрических, так и акустических).

Акустический выключатель света

Принципиальная схема выключателя показана на рисунке 1. Акустический сенсор включает в себя электретный микрофон со встроенным предусилителем М1, регулятор чувствительности R2, двухкаскадный усилитель ЗЧ на транзисторах VT1 и VT2, а также детектор на VD1 и VD2 и ключ на VT3. При наличии звука переменное напряжение с выхода микрофона усиливается транзисторными каскадами и преобразуется в некоторое постоянное напряжение при помощи детектора. Как только уровень звука превысит установленный резистором R2 порог, напряжение на С8 станет достаточным для открывания транзистора VT3 и он откроется. В этот момент на его коллекторе будет напряжение, соответствующее низкому логическому уровню КМОП. Пока звука нет, или его громкость не достаточна для срабатывания выключателя, на коллекторе VT3 будет единица. Логическое устройство выполнено на микросхеме D1. Оно отрабатывает временную задержку выключения (около одной минуты) и отключает выход транзисторной схемы во время включения нагрузки. В исходном состоянии, когда нагрузка выключена на входы элемента D1.4 через резистор R14 поступает единичный логический уровень. Значит, на его выходе будет нуль. Этот нуль разряжает конденсатор С10 и на выводе 9 D1.3 будет также нуль. На вывод 8 D1.3 поступает единица через R8. В момент срабатывания на коллекторе VT3, пусть даже на очень короткое время, появляется логический ноль. В результате на оба входа D1.3 поступают нули, и на его выходе в этот момент появляется единица. Эта единица устанавливает RS-триггер на D1.1 и D1.2 в единичное состояние. Единица с его выхода, с вывода 3 D1.1 поступает на транзисторный ключ на VT4 и он открывается. Реле Р1 срабатывает и своими контактами включает нагрузку. В тоже время открывается диод VD10 и понижает уровень на входах D1.4 до нулевого. На выходе D1.4 устанавливается единичный уровень, который через VD3 достаточно быстро заряжает конденсатор С10 до единицы. Эта единица поступает на вывод 9 D1.3 и практически закрывает этот элемент, делая его не восприимчивым к тому, что происходит на его выводе 8. Таким образом, схема никак не реагирует на те сигналы, которые имеются на коллекторе VT3, и зацикливание схемы полностью исключается. А в это время, конденсатор С9 не спеша, заряжается через R9, и примерно через минуту после срабатывания реле напряжение нем достигнет единичного логического уровня. При том на выходе D1.3 будет нуль, поскольку на один из его входов с С10 поступает единица. В результате триггер D1.1 D1.2 перекидывается в обратное, исходное состояние и на его выходе (вывод 3 D1.1) будет ноль. Это приведет к закрыванию транзистора VT4 , отключению обмотки реле и выключению нагрузки. Диод VD10 при этом закроется и на входах D1.4 опять установиться единица. Теперь конденсатор С10 станет разряжаться через R11, на что уйдет примерно 1-3 секунды. И только после этого схема возвратится в исходное положение и будет готова снова включить свет по звуковому сигналу. Источник питания бестрансформаторный, избыток сетевого напряжения гасится реактивным сопротивлением С12 (он составлен из двух конденсаторов по 0,33 мкФ каждый), затем следует выпрямление диодами VD6-VD9 и стабилизация стабилитроном VD5 на уровне 12В. Электретный микрофон можно заменить на любой электретным с встроенным усилителем, например от электронного телефонного аппарата или от магнитофона. Транзисторы КТ315 — с любой буквой, или КТ3102. Транзистор КТ815 можно заменить на КТ503, КТ817. Конденсатор С11 должен быть на напряжение не менее 12В, конденсаторы, входящие в С12 — на напряжение не менее 300В. Диоды VD6-V09 — любые выпрямительные, например КД209. Реле КУЦ-1 реле выключения питания от штатной системы дис­танционного управления телевизорами типа УСЦТ. Контакты этого реле могут управлять нагрузкой мощность до 120 Вт. Детали смонтированы на одной печатной плате.

Радиоконструктор №5 2000г стр. 25

Раздел: [Конструкции простой сложности] Сохрани статью в: Оставь свой комментарий или вопрос:

www.cavr.ru


Каталог товаров
    .