интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

22.2. РАСПРЕДЕЛЕНИЕ НА ЗЕМЛЕ СОЛНЕЧНОЙ ЭНЕРГИИ. БИОТИЧЕСКИЙ КРУГОВОРОТ. Схема превращения солнечной энергии в живых существах на земле


Лекция 7. Поток энергии в биосфере

Общая схема превращения энергии в экосистеме. Понятие продукции и продуктивности. Первичная продуктивность крупных биомов. Изменения продуктивности и биомассы в ходе смены (сукцессии) экосистем

7.1. Общая схема превращения энергии в экосистеме. Понятие продукции и продуктивности

Деятельность живых существ в биосфере сопровождается потреблением из среды их обитания больших количеств разнообразных органических и неорганических веществ. После отмирания организмов и последующей минерализации их органических остатков высвободившиеся неорганические вещества вновь возвращаются во внешнюю среду. Так осуществляется биогенный (с участием живых организмов) круговорот веществ в природе, т. е. движение веществ между литосферой, атмосферой, гидросферой и живыми организмами.

Круговорот веществ, как и все происходящие в природе процессы, требует постоянного притока энергии. Основой биогенного круговорота, обеспечивающего существование жизни, является солнечная энергия. Заключенная в органических веществах энергия, передаваемая по ступеням пищевой цепи, уменьшается, потому что значительная ее часть поступает в окружающую среду в виде тепла или же расходуется на осуществление процессов жизнедеятельности (например, мышечная работа, движение крови у животных, передвижение растворов минеральных и органических веществ, транспирация у растений). Поэтому через структурные единицы биосферы осуществляется непрерывный поток энергии и ее преобразование. Таким образом, биосфера может быть устойчивой только при условии постоянного круговорота веществ и притока солнечной энергии.

В конкретных цепях питания можно проследить и рассчитать передачу той энергии, которая заключается в растительной пище. Растения связывают в ходе фотосинтеза в среднем лишь около 1 % энергии света. Животное, съевшее растение, получает запасенную им энергию не полностью. Часть пищи не переваривается и выделяется в виде экскрементов. Обычно усваивается от 20 до 60 % растительного корма. Усвоенная энергия идет на поддержание жизнедеятельности животного. Работа клеток и органов сопровождается выделением тепла, поэтому значительная доля энергии пищи вскоре рассеивается в окружающее пространство. Лишь небольшая часть усвоенной пищи идет на рост, т. е. на построение новых тканей, на запасы в виде отложения жиров. У молодых эта доля несколько больше, чем у взрослых.

Следовательно, уже на первом этапе происходит значительная потеря энергии из пищевой цепи. Хищник, съевший растительноядное животное, представляет третий трофический уровень. Он получает только ту энергию из накопленной растением, которая задержалась в теле его жертвы в виде прироста. Подсчитано, что на каждом этапе передачи вещества и энергии по пищевой цепи теряется примерно 90 % и только около 10 % переходит к очередному потребителю. Это правило передачи энергии в пищевых связях организмов называют правилом десяти процентов (правилом Линдемана).

Представителям четвертого трофического уровня (например, хищнику, поедающему другого хищника) достанется только около одной тысячной доли той энергии, усвоенной растением, с которого начиналась пищевая цепь. Поэтому отдельные цепи питания в природе не могут иметь слишком много звеньев, энергия в них быстро иссякает.

Биологическая продукция экосистем – это скорость создания в них биомассы. Под биомассой (обычно обозначается буквой В) понимают массу тела этих организмов. В сообществах основная доля биомассы обычно приходится на растения – первичные продуценты (автотрофы).

Продукцию выражают в единицах энергии или вещества, отнесенных к площади или объему (для водных экосистем) за единицу времени (час, сутки, год и т. д.).

Количество живого вещества, производимого в единицу времени определенным трофическим уровнем или одним из его компонентов, называют валовой продукцией.

Часть энергии идет на поддержание жизни, дыхание самих растений и теряется для сообщества в виде потерь на дыхание; они составляют 40–70 % от валовой продукции. Разница между валовой продукцией и дыханием как раз и составляет чистую продукцию. Таким образом, чистая продукция является скоростью наращивания биомассы, доступной для потребления гетеротрофами.

Продуктивность автотрофных организмов (продуцентов) – первичная продукция.

Количество биомассы, создаваемой на последующих трофических уровнях, называют вторичной продукцией. Эту группу организмов объединяют во второй трофический уровень, который представлен консументами.

Скорость образования первичной продукции, т. е. количество биомассы, образующейся в единицу времени, называют биологической продуктивностью (биопродуктивностью) экосистемы. Если оценить продукцию в последовательных трофических уровнях в любом биоценозе, получим убывающий ряд чисел, каждое из которых примерно в 10 раз меньше предыдущего. Этот ряд можно выразить графически в виде пирамиды с широким основанием и узкой вершиной. Поэтому закономерности создания биомассы в цепях питания экологи называют правилом пирамиды биологической продукции.

Из правила пирамиды биологической продукции нет исключений, потому что оно отражает законы передачи энергии в цепях питания.

Соотношение биомасс может быть различным, потому что биомасса – это просто запас имеющихся в данный момент организмов. Например, в океанах одноклеточные водоросли делятся с большой скоростью и дают очень высокую продукцию. Однако их общее количество меняется мало, потому что с не меньшей скоростью их поедают различные фильтраторы. Образно говоря, водоросли еле успевают размножаться, чтобы выжить. Рыбы, головоногие моллюски, крупные ракообразные растут и размножаются медленнее, но еще медленнее поедаются врагами, поэтому их биомасса накапливается. Если взвесить все водоросли и всех животных океана, то последние перевесят. Пирамида биомасс в океане оказывается, таким образом, перевернутой. В наземных экосистемах скорость выедания растительного прироста ниже, и пирамида биомасс в большинстве случаев напоминает пирамиду продукции.

Основными параметрами, учитываемыми при биогеохимической классификации ландшафтов, являются общее количество живого вещества в ландшафте (его биомасса B) и годичная продукция (P), измеряемые в центнерах сухого вещества на гектар (ц/га). В формировании B и P ведущую роль играют растения, зоомасса обычно составляет менее 1–2 % (максимум – 4–10 %). В связи с этим энергетическая роль животных по сравнению с растениями мала и при расчетах ею пренебрегают.

studfiles.net

Роль живых организмов в биосфере. Биология 8 класс Сонин



Вопрос 1. Какие организмы обеспечивают превращение солнечной энергии в химическую? Нарисуйте схему фотосинтеза.

Зелёные растения и некоторые другие организмы способны использовать солнечную энергию для образования органических веществ. Фотосинтезирующие организмы делают солнечную энергию доступной для всех живых организмов.

Вопрос 2. Почему без зелёных растений невозможна жизнь животных, грибов и большинства бактерий?

Зеленые растения играют чрезвычайно важную роль и еще в одном отношении: они, и только они, способны в больших масштабах поглощать из атмосферы углекислый газ и, следовательно, препятствовать его накоплению в воздушной оболочке нашей планеты. Увеличение содержания углекислого газа в атмосфере Земли имело бы самые пагубные последствия.

Можно привести много примеров, показывающих, насколько велика роль растительного покрова в жизни природы. Без участия растительности невозможен процесс почвообразования — один из важнейших процессов, протекающих на Земле. Без растений невозможна жизнь диких животных — не только растительноядных, но и хищных. Растительный покров препятствует размыванию берегов рек и горных склонов, развеванию песков и т. д. Растительность влияет на атмосферу и почву, грунтовые воды и животный мир, ручьи и реки, озера и болота. Иначе говоря, это мощный природный фактор, значение которого трудно переоценить.

Вопрос 3. Какие организмы поглощают углекислый газ?

В ходе дыхания живые организмы выделяют углекислый газ, его используют в процессе фотосинтеза зелёные растения.

Вопрос 4. Какова роль озонового слоя?

Озо́новый слой — часть стратосферы на высоте от 12 до 50 км, в котором под воздействием ультрафиолетового излучения Солнца кислород (О2) ионизируется, приобретая третий атом кислорода, и получается озон (О3). Относительно высокая концентрация озона (около 8 мл/м³) поглощает опасные ультрафиолетовые лучи и защищает всё живущее на суше от губительного излучения. Более того, если бы не озоновый слой, то жизнь не смогла бы вообще выбраться из океанов и высокоразвитые формы жизни типа млекопитающих, включая человека, не возникли бы.

Вопрос 5. Кто насытил атмосферу кислородом? Когда в атмосфере Земли впервые появился кислород?

Как считается, кислородный тип атмосферы Земли возник главным образом в результате деятельности растений. В воде биологические процессы начались около 3,8 млрд лет назад. Через 1 млрд лет содержание кислорода в атмосфере достигло 1% от современного, и лишь 1,4 млрд лет назад, когда в земной коре стали образовываться красноцветные толщи гранита, оно превысило эту величину. Около 550 млн лет назад (в кембрийский период) в воде появились многоклеточные организмы с наружным скелетом и роющие животные, а содержание кислорода в атмосфере подошло к 10% от современного, не превышая 2,1% ее состава.

Рубеж около 400 млн лет назад связан со стремительным ростом содержания атмосферного кислорода. Это привело к появлению первых наземных растений, которые сами начали выделять кислород. Однако за 150 млн лет до этого события количество кислорода в атмосфере каким-то образом увеличилось в 10 раз, и она более чем на 1/5 стала кислородной.

Вопрос 6. Как образуются осадочные породы?

Среди осадочных пород выделяют три группы:

-обломочные породы, возникающие в результате механического разрушения каких-либо пород и накопления образовавшихся обломков;

-глинистые породы, являющиеся продуктом преимущественно химического разрушения пород и накопления возникших при этом глинистых минералов;

-химические (хемогенные) и органогенные породы, образовавшиеся в результате химических и биологических процессов.

Вопрос 7. Объясните выражение К. А. Тимирязева: «Полено – «консерв» солнечной энергии».

Закон сохранения и превращения энергии, вот что имел в виду ученый. Он знал, что солнечная энергия превращается в химическую энергию связей при образовании клетчатки, основного вещества древесины, да и не только ее. При сжигании дров химическая энергия превращается в тепловую. Солнечная энергия, - источник всех видов энергий на Земле.

resheba.com

Обмен веществ и превращение энергии в клетке

Все живые организмы на Земле представляют собой открытые системы, способные активно организовывать поступление энергии и вещества извне. Энергия необходима для осуществления жизненно важных процессов, но прежде всего для химического синтеза веществ, используемых для построения и восстановления структур клетки и организма. Живые существа способны использовать только два вида энергии: световую (энергию солнечного излучения) и химическую (энергию связей химических соединении) – по этому признаку организмы делятся на две группы – фототрофы и хемотрофы.

Главным источником структурных молекул является углерод. В зависимости от источников углерода живые организмы делят на две группы: автотрофы, использующие не органический источник углерода (диоксид углерода), и гетеротрофы, использующие органические источники углерода.

Процесс потребления энергии и вещества называется питанием. Известны два способа питания: голозойный – посредством захвата частиц пищи внутрь тела и голофитный – без захвата, посредством всасывания растворенных пищевых веществ через поверхностные структуры организма. Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма.  

Метаболизм представляет собой совокупность взаимосвязанных и сбалансированных процессов, включающих разнообразные химические превращения в организме. Реакции синтеза, осуществляющиеся с потреблением энергии, составляют основу анаболизма (пластического обмена или ассимиляции).

Реакции расщепления, сопровождающиеся высвобождением энергии, составляют основу катаболизма (энергического обмена или диссимиляции).

1. Значение АТФ в обмене веществ

Энергия, высвобождающая при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам и состоит из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты.

Энергия, высвобождающаяся при гидролизе АТФ, используется клеткой для совершения всех видов работы. Значительные количества энергии расходуются на биологические синтезы. АТФ является универсальным источником энергообеспечения клетки. Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования, происходящему с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 минуты).

2. Энергетический обмен в клетке. Синтез АТФ

Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования, т.е. присоединения неорганического фосфата к АДФ. Энергия для фосфорилирования АДФ образуется в ходе энергетического обмена. Энергетический обмен, или диссимиляция, представляет собой совокупность реакции расщепления органических веществ, сопровождающихся выделением энергии. В зависимости от среды обитания диссимиляция может протекать в два или три этапа.

У большинства живых организмов – аэробов, живущих в кислородной среде, - в ходе диссимиляции осуществляется три этапа: подготовительный, бескислородный, кислородный. У анаэробов, обитающих в среде лишенной кислорода, или у аэробов при его недостатке, диссимиляция протекает лишь в два первых этапа с образованием промежуточных органических соединений, еще богатых энергией.

Первый этап – подготовительный – заключается в ферментативном расщеплении  сложных органических соединении на более простые (белков на аминокислоты; полисахаридов на моносахариды; нуклеиновых кислот на нуклеотиды). Внутриклеточное расщепление органических веществ происходит под действием гидролитических ферментов лизосом. Высвобождающаяся при этом энергия рассеивается в виде теплоты, а образующиеся малые органические молекулы могут подвергнутся дальнейшему расщеплению и использоваться клеткой как «строительный материал» для синтеза собственных органических соединений.

Второй этап – неполное окисление – осуществляется непосредственно в цитоплазме клетки, в присутствии кислорода не нуждается и заключается в дальнейшем расщеплении органических субстратов. Главным источником энергии в клетке является глюкоза. Бескислородное, неполное расщепление глюкозы, называют гликолизом.

Третий этап – полное окисление – протекает при обязательном участие кислорода. В его результате молекула глюкозы расщепляется до неорганического диоксида углерода, а высвободившаяся при этом энергия частично расходуется на синтез АТФ.

3. Пластический обмен

Пластический обмен, или ассимиляция, представляют собой совокупность реакций, обеспечивающих синтез сложных органических соединений в клетке. Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул.

Органические вещества пищи (белки, жиры, углеводы) --> пищеварение --> Простые органические молекулы ( аминокислоты, жирные кислоты, моносахара) --> биологические синтезы --> Макромолекулы тела (белки, жиры, углеводы)

Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе автотрофной ассимиляции реакции фото- и хемосинтеза, обеспечивающие образование простых органических соединений, предшествует биологическим синтезам молекул макромолекул:

Неорганические вещества (углекислый газ, вода) --> фотосинтез, хемосинтез --> Простые органические молекулы (аминокислоты, жирные кислоты, моносахара)-----биологические синтезы --> Макромолекулы тела (белки, жиры, углеводы)

4. Фотосинтез

Фотосинтез – синтез органических соединении из неорганических, идущий за счет энергии клетки. Ведущую роль в процессах фотосинтеза играют фотосинтезирующие пигменты, обладающие уникальным свойством – улавливать свет и превращать его энергию в химическую энергию. Фотосинтезирующие пигменты представляют собой довольно многочисленную группу белково-подобных веществ. Главным и наиболее важным в энергетическом плане является пигмент хлорофилл а, встречающиеся у всех фототрофов, кроме бактерии-фотосинтетиков. Фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид у эукариот или во впячивания цитоплазматической мембраны у прокариот.

В процессе фотосинтеза кроме моносахаридов (глюкоза и др.), которые превращаются в крахмал и запасаются растением, синтезируются мономеры других органических соединении – аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растительные, а точнее – хлорофиллосодержащие, клетки обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.

5. Хемосинтез

Хемосинтез также представляет собой процесс синтеза органических соединении из неорганических, но осуществляется он не за счет энергии света, а за счет химической энергии, получаемой при окислении неорганических веществ (серы, сероводорода, железа, аммиака, нитрита и др.). Наибольшее значение имеют нитрифицирующие, железо- и серобактерии.

Высвобождающаяся в ходе реакций окисления энергия запасается бактериями в виде АТФ и используется для синтеза органических соединений. Хемосинтезирующие бактерии играют очень важную роль в биосфере. Они участвуют в очистке сточных вод, способствуют накоплению в почве минеральных веществ, повышают плодородие почвы.



biofile.ru

Примеры использования энергии Солнца на Земле. Солнечные электростанции. Солнечная энергетика :: SYL.ru

Издавна люди говорили о Солнце как о могучем и великом, возвышая его в своих религиях до одушевленного объекта. Светилу поклонялись, ему возносили хвалу, им мерили время и всегда считали его первоисточником земных благ.

Необходимость в солнечной энергии

Прошли тысячелетия. Человечество вступило в новую эру своего развития и пользуется плодами бурно развивающегося технологического прогресса. Однако и по сегодняшний день именно Солнце представляет собой основной природный источник тепла, а, следовательно, и жизни.

Как человечество использует Солнце в повседневной своей деятельности? Рассмотрим этот вопрос подробнее.

«Работа» Солнца

Небесное светило служит единственным источником той энергии, которая нужна для проведения фотосинтеза растений. Солнце приводит в движение круговорот воды, и только благодаря ему на нашей планете имеются все известные человечеству ископаемые виды топлива. И еще люди пользуются силой этой яркой звезды для того, чтобы обеспечить свои потребности в электрической и тепловой энергии. Без этого жизнь на планете была бы просто невозможна.

Основной источник энергии

Природа мудро заботится о том, чтобы человечество получало от небесного светила его дары. Доставка к Земле солнечной энергии осуществляется путем передачи радиационных волн на поверхность материков и вод. Причем до нас из всего посылаемого спектра доходят только:

1. Ультрафиолетовые волны. Они невидимы для человеческого глаза и составляют примерно 2% в общем спектре.

2. Световые волны. Это примерно половина энергии Солнца, которая достигает поверхности Земли. Благодаря световым волнам человек видит все краски окружающего его мира.

3. Инфракрасные волны. Они составляют примерно 49% спектра и нагревают поверхность воды и суши. Именно эти волны и являются наиболее востребованными в вопросах использования энергии Солнца на Земле.

Принцип преобразования инфракрасных волн

Каким образом происходит процесс использования энергии Солнца на Земле? Как и любое другое подобное действие, он осуществляется по принципу прямого превращения. Для этого нужна только специальная поверхность. Попадая на нее, солнечный свет проходит процесс превращения в энергию. Для получения тепла в этой схеме должен быть задействован коллектор. Он поглощает инфракрасные волны. Далее в устройстве, использующем энергию Солнца, непременно присутствуют накопители. Для нагревания конечного продукта устраивают специальные теплообменники.

При получении электрической энергии используются специальные фотоэлементы. Они принимают лучи света на свою поверхность. Далее солнечные установки производят из них электричество.

Практическое применение

Существуют многочисленные примеры использования энергии Солнца на Земле. Потребность человека в электроэнергии удовлетворяется благодаря применению новейших технологий. Где же используется этот природный источник?

1. За счет солнечной энергии работают специальные устройства для подогрева воды. В некоторых регионах, где столбик термометра достигает высоких отметок, лучи небесного светила помогают людям отапливать здания.

2. Энергия Солнца находит свое применение в дымоходах и пассивных системах вентиляции, где происходит конвекция нагретого световыми волнами воздуха.

3. При помощи Солнца человек научился опреснять морскую воду. Испарителем при этом выступает небесное светило. Опресненная вода идет на нужды промышленности, сельского хозяйства, находит свое применение в быту.

4. Солнечная энергия помогает людям сушить и пастеризовать пищу.

5. Используется этот источник и в космосе. Благодаря энергии Солнца обеспечивается работоспособность спутников и межпланетных станций.

6. Самые простые и маломощные источники электрического тока, действие которых основано на использовании энергии солнечных лучей, – современные калькуляторы.

Эта вычислительная техника используется практически повсеместно.

Новое направление энергетического комплекса

На сегодняшний день человечество внедряет в практику и успешно развивает устройства, позволяющие ему добывать свет и тепло без использования угля, нефти и газа. В народном хозяйстве многих государств возникла новая подотрасль – солнечная энергетика. Это одно из направлений нетрадиционной энергетики. В ее основе лежит принцип непосредственного использования излучения Солнца.

Цель, которую преследует солнечная энергетика, – получение столь необходимого для человечества тепла и света. Новую отрасль порой называют гелиоэнергетикой. Ведь Helios в переводе с греческого – Солнце.

Работа комплекса

Теоретически каждый из нас может произвести расчет солнечной установки. Ведь известно, что, пройдя путь от единственной звезды нашей галактической системы до Земли, поток световых лучей принесет с собой энергетический заряд, равный 1367 Вт на квадратный метр. Это так называемая солнечная постоянная, которая существует на входе в атмосферные слои. Такой вариант возможен только при идеальных условиях, которых в природе просто не существует. После прохождения атмосферы солнечные лучи принесут на экватор 1020 Вт на квадратный метр. Но из-за смены дневного и ночного времени суток мы сможем получить в три раза меньшее значение. Что касается умеренных широт, то здесь меняется не только длительность светового дня, но и сезонность. Таким образом, получение электроэнергии в местах, далеких от экватора, при расчете нужно будет уменьшить еще в два раза.

География излучений небесного Светила

Где может достаточно эффективно работать солнечная энергетика? Природные условия для размещения установок играют немаловажную роль в этой развивающейся отрасли. Распределение солнечного излучения на поверхности Земли происходит неравномерно. В одних регионах луч Солнца – долгожданный и редкий гость, в других он способен угнетающе воздействовать на все живое.

То количество солнечного излучения, которое получает тот или иной район, зависит от широты его нахождения. Самые большие дозы энергии природного светила получают государства, находящиеся рядом с экватором. Но и это еще не все. Объем солнечного потока зависит от количества ясных дней, которые изменяются при переходе от одной климатической зоны к другой. Увеличить или уменьшить степень излучения способны воздушные потоки и прочие особенности региона. Преимущества энергии Солнца более всего знакомы:

- странам северо-восточной Африки и некоторым юго-западным и центральным областям континента;- жителям Аравийского полуострова;- восточному побережью Африки;- северо-западной Австралии и некоторым островам Индонезии;- западному побережью Южной Америки.

Что касается России, то, как показывают произведенные на ее территории замеры, наибольшим дозам солнечного излучения радуются районы, граничащие с Китаем, а также северные зоны. А где в нашей стране Солнце обогревает Землю меньше всего? Это северо-западный регион, в который входит Санкт-Петербург и прилегающие к нему области.

Электростанции

Сложно представить себе нашу жизнь без использования энергии Солнца на Земле. Как применить ее? Использовать лучи света можно для выработки электричества. Потребность в нем растет с каждым годом, а запасы газа, нефти и угля сокращаются стремительными темпами. Именно поэтому в последние десятилетия люди стали строить солнечные электростанции. Ведь эти установки позволяют использовать альтернативные источники энергии, значительно экономя природные ископаемые.

Солнечные электростанции работают благодаря встроенным в их поверхность фотоэлементам. Причем в последние годы удалось значительно повысить КПД работы таких систем. Солнечные установки стали выпускать из новейших материалов и с использованием креативных инженерных решений. Это значительно увеличило их мощность.

По мнению некоторых исследователей, уже в ближайшем будущем человечество может отказаться от существующих ныне традиционных путей получения электроэнергии. Потребности людей полностью удовлетворит небесное светило.

Солнечные электростанции могут иметь различные размеры. Самые небольшие из них – частные. В этих системах предусмотрено всего несколько солнечных панелей. Самые большие и сложные установки занимают площади, превышающие десять квадратных километров.

Все солнечные электростанции делят на шесть типов. Среди них:

- башенные;- установки с фотоэлементами;- тарельчатые;- параболические;- солнечно-вакуумные;- смешанные.

Самым распространенным типом электростанции является башенный. Это высокая конструкция. Внешне она напоминает башню с расположенным на ней резервуаром. Емкость наполнена водой и выкрашена в черный цвет. Вокруг башни находятся зеркала, площадь которых превышает 8 квадратных метров. Вся эта система подключена к единому пульту управления, благодаря которому можно направлять угол наклона зеркал таким образом, чтобы они постоянно отражали солнечный свет. Лучи, направленные на резервуар, нагревают воду. Система выдает пар, который и направляется для выработки электроэнергии.

При работе электростанций фотоэлементного типа используются солнечные батареи. Сегодня подобные установки стали особенно популярными. Ведь солнечные батареи могут быть установлены небольшими блоками, что позволяет применять их не только для промышленных предприятий, но и для частных домов.

Если вы увидите целый ряд огромных по своему размеру спутниковых антенн, на внутренней стороне которых установлены зеркальные пластины, то знайте, что это параболические электростанции, работающие на излучении Солнца. Принцип их действия схож с такими же системами башенного типа. Они ловят пучок света и нагревают приемник с жидкостью. Далее вырабатывается пар, который и идет на производство электроэнергии.

Тарельчатые станции работают так же, как и те, которые относят к башенному и параболическому типу. Отличия кроются лишь в конструктивных особенностях установки. На первый взгляд она похожа на металлическое дерево огромных размеров, листьями которого являются плоские зеркала круглой формы. В них и концентрируется солнечная энергия.

Необычный способ получения тепла использован в солнечно-вакуумной электростанции. Ее конструкция представляет собой участок земли, накрытый круглой крышей. В центре этого сооружения возвышается полая башня, в основании которой и установлены турбины. Вращение лопастей такой электростанции происходит благодаря потоку воздуха, который возникает при разности температур. Стеклянная крыша пропускает лучи Солнца. Они нагревают землю. Температура воздуха внутри помещения повышается. Разность показаний столбиков термометров внутри и снаружи и создает воздушную тягу.

Солнечная энергетика задействует и электростанции смешанного типа. О таких системах можно говорить в тех случаях, когда, например, на башнях применяются дополнительные фотоэлементы.

Достоинства и недостатки солнечной энергетики

У каждой отрасли народного хозяйства есть свои положительные и отрицательные стороны. Имеются они и при использовании световых потоков. Плюсы солнечной энергетики заключены в следующем:

- экологичность, ведь она не загрязняет окружающую среду;- доступность основных составляющих – фотоэлементов, которые реализуются не только для промышленного применения, но и для создания личных небольших электростанций;- неисчерпаемость и самовосстанавливаемость источника;- постоянно снижающаяся себестоимость.

Среди недостатков солнечной энергетики можно выделить:

- влияние времени суток и погодных условий на производительность электростанций;- необходимость в аккумулировании энергии;- снижение производительности в зависимости от широты, на которой расположен регион, и от времени года;- большой нагрев воздуха, который имеет место на самой электростанции;- потребность в периодической чистке от загрязнения, в которой нуждается система солнечных батарей, что проблематично в связи с огромными площадями, на которых установлены фотоэлементы;- относительно высокая стоимость оборудования, которая хоть и снижается с каждым годом, но пока еще недоступна для массового потребителя.

Перспективы развития

Каковы дальнейшие возможности использования энергии Солнца на Земле? На сегодняшний день этому альтернативному комплексу пророчат большое будущее.

Перспективы солнечной энергетики радужны. Ведь уже сегодня в этом направлении идут огромные по своим масштабам работы. Каждый год в различных странах мира появляется все больше и больше солнечных электростанций, размеры которых поражают своими техническими решениями и масштабами. Кроме того, специалисты данной отрасли не прекращают проводить научные исследования, цель которых – многократное увеличение коэффициента полезного действия используемых на таких установках фотоэлементов.

Ученые произвели интересный расчет. Если на суше планеты Земля установить фотоэлементы, которые бы расположились на семи сотых ее территории, то они, даже имея КПД 10%, обеспечили бы все человечество необходимым ему теплом и светом. И это не столь уж далекая перспектива. Ведь фотоэлементы, которые используются на сегодняшний день, имеют КПД, равный 30%. При этом ученые надеются довести это значение до 85%.

Развитие солнечной энергетики идет достаточно высокими темпами. Люди серьезно озабочены проблемой истощения природных ресурсов и занимаются выявлением альтернативных источников тепла и света. Такое решение позволит предупредить неизбежный для человечества энергетический кризис, а также надвигающуюся экологическую катастрофу.

www.syl.ru

22.2. РАСПРЕДЕЛЕНИЕ НА ЗЕМЛЕ СОЛНЕЧНОЙ ЭНЕРГИИ. БИОТИЧЕСКИЙ КРУГОВОРОТ

Солнца, он получил, что при расстоянии от Солнца меньше

ями. При гниении растений и окислении в почве накап-

1 а.е. на 5% атмосфера нагрелась бы настолько, что океаны

ливается СО2, и его оказывается в почве больше, чем было

испарились бы в результате разгоняющегося парникового

400 млн лет назад, до появления растений. Поэтому превра-

эффекта, а на расстояниях, больших на 1%, возникло бы

щение силикатных материалов в осадочные карбонатные

разгоняющееся оледенение. То есть только в узкой полоске

породы происходит быстрее. По расчетам, исчезновение

расстояний между 0,95 и 1,01 а.е. Земля смогла избежать

растений повысило бы температуру на 10° за счет отрица-

этой катастрофы климата.

тельной обратной связи силикатно-карбонатногоцикла.

Этот режим саморегуляции, èëè отрицательной обрат-

Во многих геохимических процессах, в том числе в

ной связи, обеспечил нашей планете устойчивость климата.

круговороте азота, углерода и серы ключевую роль играют

Нелепо предполагать, что это случайность — появление

бактерии. Если бы эти процессы прекратились, то почва,

жизни на Земле в таком узком кольце солнечной системы.

атмосфера и вода стали бы непригодны ни для каких форм

Скорее всего, содержание СО2 менялось в соответствии с

жизни, поэтому эти примитивные одноклеточные орга-

изменением температуры поверхности Земли. Эта обрат-

низмы можно назвать организаторами жизни на Земле.

ная связь могла обеспечиватьсякарбонатно-силикатным

Увеличение температуры и возросший парниковый эффект

геохимическим циклом, который способен отвечать за 80%

создали бы на Земле климат, который был в середине

обмена СО2 между планетой и ее атмосферой на временных

мелового периода 100 тыс. лет назад: теплый и подходящий

интервалах более 0,5 млн лет.

для некоторых форм жизни (включая и динозавров). По

Началом цикла карбонатного метаболизма можно

расчетам, только водяной пар, дающий сейчас наибольший

считать растворение атмосферного углекислого газа в

вклад в парниковый эффект, не мог бы обеспечить ста-

водяных капельках и образование угольной кислоты.

бильные тепловые условия на планете при меняющейся

Дождевые осадки разрушали горные породы, состоявшие

светимости Солнца.

из соединений кальция, кремния и кислорода. Угольная

Если бы на Марсе подобные процессы существовали,

кислота вступает в реакцию с породами на поверхности,

они не смогли бы удержать климат в достаточно узких

высвобождая ионы кальция и бикарбоната, которые посту-

пределах. В атмосфере Марса углекислый газ создает

пают в грунтовые воды, а затем в океан, где оседают в

давление только в 0,006 бар, что позволяет обеспечить

скелетах и раковинах планктона и других организмах,

парниковый эффект на уровне 6°С. Фотографии, полу-

состоящих из карбоната кальция (СаСО3). Останки этих

ченные станциями «Маринер» и «Викинг», подтвердили,

организмов откладываются на океанском дне, формируя

что поверхность Марса покрыта каналами, которые могли

осадочные породы. Дно моря расширяется, через много

образоваться при выходе на поверхность глубинных вод,

тысяч лет эти породы приблизятся к краям континентов.

когда на Марсе было теплее. Геологи не определили,

Дно подтягивает их под берег, они попадают в земные

насколько когда-тотемпература Марса была выше. Может

недра, где на них действуют давление и температура.

быть, тогда было больше (раз в 100) углекислого газа,

Карбонат кальция соединяется с кремнием, образуя ñèëè-

обеспечивающего парниковый эффект. Но Марс меньше

катные породы и выделяя углекислый газ. Газ попадает

Земли по массе почти в 10 раз, и круговорот СО2 должен

вновь в атмосферу через извержения вулканов и срединно-

быть слабее. Оценки возраста каналов по количеству

океанические хребты. Цикл завершается.

покрывающих их метеоритных кратеров показывают, что

Изменения температуры земной поверхности влияют

он больше 3,8 млрд лет. Замедление процесса круговорота

на количество СО2 в атмосфере и величину парникового

ÑÎ2 произошлоèç-çàмеханизма возврата газа в атмосферу,

эффекта. Пусть по какой-топричине на Земле стало прох-

поскольку на Марсе, вероятно, не была столь выражена

ладнее. Тогда меньше воды испарится из океана, меньше

тектоника плит. Вулканическая лава покрывала карбо-

выпадет дождей, и уменьшится эрозия почвы, вызванная

натные остатки, они погружались на глубины, где под

осадками. Для СО2 уменьшится скорость покидания атмо-

действием давления высвобождался газообразный СО2, è

сферы, а скорость регенерации в процессе карбонатного

по оценкам, так могло продолжаться примерно 1 млрд лет.

метаболизма и поступления в атмосферу останется на

Видимо, Марс èç-çàменьших размеров охлаждался быстрее,

прежней. Будет накапливаться СО2, усилится парниковый

чем Земля: у него было меньше внутреннего тепла, которое

эффект и восстановится более теплый климат. Если по

îí èç-çàбольшего отношения площади поверхности к

какой-топричине на Земле произойдет потепление, обрат-

объему скорее терял, его недра охлаждались, теряя способ-

ная связь сработает в другую сторону, и равновесие уста-

ность высвобождать углекислый газ из пород. Углекислый

новится. Предположим, что все океаны вымерзли, дожди

газ из атмосферы постепенно накапливался в грунте,

прекратились, содержание СО2 в атмосфере возросло. При

планета становилась все тоньше, меняя климат, и сейчас

современной скорости выделения его давление в 1 бар

Марс имеет воду только в замороженном виде.

создается за 20 млн лет, такого количества углекислого газа

На Венере вообще почти нет воды. Одни ученые счи-

хватит на поднятие средней температуры до +50°С. Значит,

тают, что ее там не было больше, чем нужно для образо-

льды растают и восстановится нормальный для жизни

вания гидратированных минералов, так как Венера обра-

климат.

зовалась из слишком горячей части туманности. Другие —

В круговороте углекислого газа большую роль играют

что воды было почти столько, сколько и у Земли, но она,

организмы, определяющие изменения климата. Около 20%

попав в верхние слои атмосферы, распалась под действием

ÑÎ2, не участвующего вкарбонатно-силикатномобмене,

солнечного света, а водород улетучился в космическое

выводится из атмосферы фотосинтезирующими растени-

пространство.

studfiles.net

2.2. Энергетический круговорот. Трансформация энергии в биосфере

Экосистему можно описать как совокупность живых организмов, обменивающихся непрерывно энергией, веществом, информацией. Энергию можно определить как способность производить работу. Свойства энергии, в том числе и движение энергии в экосистемах, описываются законами термодинамики.

Первый закон термодинамики или закон сохранения энергии утверждает, что энергия не исчезает и не создаётся заново, она лишь переходит из одной формы в другую.

Второй закон термодинамики утверждает, что в замкнутой системе энтропия может только возрастать. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращением энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует. Мера количества энергии, которая становится недоступной для использования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия. Чем выше упорядоченность системы, тем меньше её энтропия.

Говоря другими словами, живое вещество получает и трансформирует энергию космоса, солнца в энергию земных процессов (химическую, механическую, тепловую, электрическую). Вовлекает эту энергию и неорганическую материю в непрерывный круговорот веществ в биосфере. Поток энергии в биосфере имеет одно направление – от Солнца через растения (автотрофы) к животным (гетеротрофы). Природные нетронутые экосистемы в устойчивом состоянии с постоянными важнейшими экологическими показателями (гомеостаз), являются наиболее упорядоченными системами, и характеризуются наименьшей энтропией.

2.3 Круговорот веществ в живой природе

Образование живого вещества и его разложение – две стороны единого процесса, который называется биологическим круговоротом химических элементов. Жизнь – круговорот химических элементов между организмами и средой.

Причина круговорота – ограниченность элементов, из которых строятся тела организмов. Каждый организм извлекает из окружающей среды необходимые для жизнедеятельности вещества и возвращает неиспользованные. При этом:

одни организмы потребляют минеральные вещества непосредственно из окружающей среды;

другие используют продукты, переработанные и выделенные первыми;

третьи – вторыми и т.д., пока вещества не возвратятся в окружающую среду в первоначальном состоянии.

В биосфере очевидна необходимость сосуществования различных организмов, способных использовать продукты жизнедеятельности друг друга. Мы видим практически безотходное биологическое производство.

Круговорот веществ в живых организмах условно можно свести к четырём процессам:

1).Фотосинтез. В результате фотосинтеза растения усваивают и аккумулируют солнечную энергию и синтезируют из неорганических веществ органические вещества - первичную биологическую продукцию - и кислород. Первичная биологическая продукция отличается большим разнообразием – содержит углеводы (глюкозу), крахмал, клетчатку, белки, жиры.

Схема фотосинтеза простейшего углевода (глюкозы) имеет следующую схему:

6СО2+6Н2О+ свет (энергия Солнца) С6Н12О6+ 6О2 – 2620 кДж

хлорофилл (катализатор) глюкоза

Этот процесс протекает только днём и сопровождается увеличением массы растений.

На Земле ежегодно в результате фотосинтеза образуется около 100 млрд. т. органического вещества, усваивается около 200 млрд. т. углекислого газа, выделяется примерно 145 млрд. т кислорода.

Фотосинтезу принадлежит решающая роль в обеспечении существования жизни на Земле. Его глобальное значение объясняется тем, что фотосинтез является единственным процессом, в ходе которого энергия в термодинамическом процессе согласно с минималистским принципом не рассеивается, а наоборот – накапливается.

Синтезируя необходимые для построения белков аминокислоты, растения могут существовать относительно независимо от других живых организмов. В этом проявляется автотрофность растений (самостоятельность в питании). В то же время зелёная масса растений и кислород, образующийся в процессе фотосинтеза, являются основой для поддержания жизни следующей группы живых организмов – животных, микроорганизмов. В этом проявляется гетеротрофность этой группы организмов.

2).Дыхание. Процесс обратный фотосинтезу. Происходит во всех живых клетках. При дыхании органическое вещество окисляется кислородом, в результате образуется углекислый газ, вода и выделяется энергия.

3). Пищевые (трофические) связи между автотрофными и гетеротрофными организмами.

4). Процесс транспирации. Один из самых важных процессов в биологическом круговороте.

Схематично его можно описать следующим образом. Растения поглощают почвенную влагу корнями. При этом в них поступают растворённые в воде минеральные вещества, которые усваиваются, а влага более или менее интенсивно испаряется в зависимости от условий среды.

studfiles.net

Превращение энергии в живой клетке

    Биологическая цель превращений заключается не в образовании теплоты, а в получении свободной энергии, необходимой для работы клетки. Поэтому важно непрямое сгорание с многими промежуточными ступенями. Некоторые из этих ступеней могут быть обратимыми, и чем больше условий для осуществления обратимого процесса, тем больше экономичность использования таких переносов энергии живой клетки. [c.149]     Обмен веществ. Обменом веществ называются биохимические процессы, приводящие к обновлению состава живой клетки. Для их осуществления необходимую энергию клетка получает при биохимических превращениях химических веществ с высокой потенциальной энергией. [c.256]

    В основе несколько иного подхода, развиваемого Мак-Кларом [27— 29], лежит представление о том, что второй закон термодинамики не является, как это обычно считают, статистическим. Если его соответствующим образом сформулировать, он может быть применим и к бактериям, обладающим единственной молекулой ДНК. Следовательно, классическая термодинамика применима и к живым клеткам. Автор указывает, что характерной особенностью живых организмов, отличающей их от систем, которыми обычно занимается термодинамика, яв-ляется то, что все реакции в них протекают очень быстро. Например, в случае превращения внутримолекулярной энергии в мышцах в механическую энергию очень важно, чтобы процесс совершался достаточно быстро и энергия не успевала рассеиваться в виде тепла. Мак-Клар> полагает, что для метаболических реакций большее значение имеет изменение энтальпии, нежели свободной энергии или энтропии. [c.233]

    Основным процессом жизнедеятельности растительного сырья является процесс дыхания, который сводится к добыванию живой клеткой необходимой энергии, получаемой при распаде — окислении сложных органических веществ С дыханием связаны все процессы, протекающие в растительном сырье превращение и расход углеводов, потери воды, инфекционные и физиологические заболевания, удушение. Чем интенсивней дышат фрукты, тем быстрее протекает все эти процессы и тем больше потери сухих веществ и влаги. [c.144]

    Никотинамидные коферменты принимают участие в отдельных реакциях углеводного, липидного и аминокислотного обмена в процессах фотосинтеза в растениях. Дегидрогеназы катализируют отдельные этапы реакций анаэробного расщепления моносахаридов с высвобождением свободной энергии и накоплением ее в аденозин-5 -трифосфате (АТФ), который является основным аккумулятором и затем генератором энергии в живой клетке. В этой метаболической реакции происходит образование макроэргической связи с превращением АДФ в АТФ, которые являются ключевыми энергетическими переносчиками. [c.318]

    Необходимо иметь в виду, что в молоке при превращении молочного сахара в молочную кислоту мы имеем не свободные ферменты, 41 живые клетки дрожжей и бактерий, что ферменты тесно связаны с клеткой и процессы совершаются в живом организме. Они связаны - с жизнью клетки, с ее ростом, размножением и потреблением нужной для ее существования энергии. Необходимо иметь в виду, что прекращение жизни бактерий и дрожжей еще не останавливает процесса, так как он катализируется ферментами этих организмов можно ввести яды и убить микроорганизмы распад сахара и прекращение его в молочную кислоту от этого не остановится для прекращения процесса требуется не только убить микроорганизмы, но и разрушить ферменты. [c.59]

    Производные моносахаридов активно участвуют в метаболизме живой клетки. С их многообразными превращениями связаны фотосинтез, обес печение клетки энергией, детоксикация и вывод ядовитых веществ, проникающих извне или возникающих в ходе метаболизма, биосинтез ароматических аминокислот —тирозина и фенилаланина, а также ряда других ароматических соединений, образование сложных биополимеров (полисахаридов, гликопротеинов, гликолипидов, нуклеиновых кислот), которые играют главную роль в построении субклеточных структур, обеспечивающих правильное функционирование клетки. [c.15]

    В течение длительного времени считали, что АТФ и другие высокоэнергетические соединения, находящиеся в равновесии с ним, представляют собой единственную форму энергии, которая может использоваться живыми клетками во всех энергозависимых процессах. Вопрос о характере связи между транспортом электронов, с одной стороны, и превращением фосфорных соединений, с другой, долгое время оставался неясным. Было установлено, что использование энергетических ресурсов (органических или неорганических соединений при дыхании, света при фотосинтезе) связано с переносом электронов по цепи, состоящей из белковых и небелковых компонентов, способных к обратимому окислению — восстановлению. В результате этого переноса освобождающаяся на отдельных участках дыхательной или фотосинтетической цепи энергия трансформируется в химическую энергию фосфатных связей АТФ. Молекулярный механизм фосфорилирования, сопряженный с электронным транспортом, был неизвестен. [c.100]

    Перейдем теперь от этих макроскопических аспектов метаболизма к метаболическим событиям, совершающимся в живых клетках на микроскопическом уровне, не упуская при этом, однако, из виду, что каждый тип клеток характеризуется особыми, ему одному свойственными потребностями в тех или иных источниках углерода, кислорода и азота, а также в соответствующих источниках энергии. Клеточный метаболизм-это система ферментативных превращений как веществ, так и энергии, начинающихся от исходных продуктов и завершающихся биосинтезом живой материи. [c.378]

    Раздел биохимии, занимающийся вопросами преобразования и использования энергии в живых клетках, носит название биоэнергетики. Мы начнем эту главу с рассмотрения нескольких основных принципов термодинамики, т.е. той области физики, которая имеет дело с превращениями энергии. После этого мы обратимся к системе АТР, чтобы выяснить, как с ее помощью совершается в клетках перенос энергии от катаболических реакций, в которых энергия выделяется, к тем клеточным процессам, для которых она необходима. [c.403]

    Эти два процесса не могут идти независимо друг от друга они обязательно должны быть сопряжены. Однако, написав оба уравнения по отдельности, мы видим, что превращение 1 моль глюкозы в лактат в стандартных условиях приводит к высвобождению гораздо большего количества свободной энергии (47,0 ккал), чем необходимо для образования 2 моль АТР из ADP и фосфата (2 7,3 = -I-14,6 ккал). В живой клетке при истинных внутриклеточных концентрациях АТР, ADP и Р , а также глюкозы и лактата эффективность запасания высвобождающейся при гликолизе энергии в форме АТР превышает 60%. Пользуясь уравнениями (1) и (2), мы [c.441]

    Не менее важную роль играют белки в процессах превращения химической энергии питательных веществ в механическую энергию живого организма. Такое превращение происходит с очень высоким коэффициентом полезного действия не только в мышцах высших животных, но и в клетках растений и микроорганизмов, а также в вирусах. [c.442]

    При попытках рассматривать фотосинтез вне его связи с жизненными процессами можно идти двумя путями или начиная с живой клетки, разрушать ее и наблюдать результаты этого вмешательства на различных сторонах фотосинтеза, или же создавать простейшие светочувствительные окислительно-восстановительные системы и затем переходить к более сложным системам, способным к максимальному превращению света в химическую энергию. [c.65]

    Можно возразить, что для формы кривой квантового выхода ниже 570 может существовать и другое объяснение. Это объяснение предполагает, что полная инертность каротиноидов частично компенсируется повышенной производительностью хлорофилла. Возможная разница между фотохимическим действием хлорофилла в трех возбужденных состояниях (соответствующих сине-фиолетовой, оранжевой и красной системам полос поглощения) является очень важной проблемой. Имеющиеся материалы дают мало указаний на существование такой разницы. Как известно, хлорофилл испускает одну и ту же красную полосу флуоресценции независимо от того, в какой области спектра происходит возбуждение (см. гл. XXI и ХХШ). Основываясь на этом факте, мы пришли к заключению, что молекулы хлорофилла, возбужденные до электронных состояний А и В, быстро переходят без излучения энергии на низший уровень электронного возбуждения Y, который является высшим уровнем красной полосы флуоресценции. Однако из данных Ливингстона (см. стр. 160) мы сделали вывод, что при возбуждении флуоресценции в сине-фиолетовой полосе поглощения эффективность такого превращения очень далека от 100% другими словами, что значительная часть возбужденных до уровня А молекул хлорофилла не переходит на уровень У, а изменяется другим способом (например, переходя в метастабильное состояние см. схему на фиг. 110). Имеет ли это место только для хлорофилла в растворах или так же ведет себя и хлорофилл в живых клетках, остается пока неизвестным. [c.592]

    В процессе фотосинтеза происходит превращение световой энергии в потенциальную энергию химических связей. В живых клетках все процессы, за исключением фотосинтеза, протекают за счет этой потенциальной химической энергии. Следовательно, фотосинтез является единственным источником всей энергии, используемой в растительных и животных клетках. [c.535]

    Превращение АДФ АТФ в живых клетках является уникальным способом сохранения энергии, освобождающейся в экзергонических реакциях  [c.577]

    ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды. С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни. Благодаря крупным успехам биохимии к настоящему времени в основном раскрыт химизм таких кардинальных звеньев обмена веществ, как дыхание и брожение, фотосинтез, обмен азотистых соединений, жиров, углеводов и органических кислот и многие другие процессы. Выяснено также влияние многих внешних и внутренних факторов на интенсивность и направленность отдельных звеньев обмена веществ, что позволяет путем изменения внешних условий изменять обмен веществ микроорганизмов, растений и животных в желаемом для человека направлении. Процессы обмена веществ делятся на две группы — катаболизм и анаболизм. Катаболизм — это процессы, при которых происходит распад, расщепление сложных органических соединений до белее простых (например, распад белков до аминокислот, крахмала до глюкозы, сахаров до углекислоты и воды т. д.). Анаболизм — это синтетические процессы, при которых образуются более сложные соединения из более простых. При катаболизме происходит выделение энергии, а при анаболизме ее поглощение. Всякое усиление синтетических процессов в организме неизбежно сопровождается усилением процессов распада веществ. [c.204]

    Учение о энергии и законах ее превращений составляет предмет термодинамики в клетках и организмах превращения энергии совершаются постоянно и подчиняются тем же законам, которые изучает термодинамика. Однако живой мир обнаруживает такие явления, которые термодинамика предвидеть не в состоянии. Поэтому энергетика биологических систем представляет большой интерес. [c.67]

    Эта внутренняя регуляция распада и синтеза, накопления энергии и ее потребления сама по себе заслуживает отдельной главы. Но пока нас интересует другое. Мы хотим сейчас отметить то главное, что характерно для всех превращений в клетке. В принципе эти превращения могут протекать и вне живой клетки, но слишком медленно. Дело здес (помимо всего прочего) в том, что реакции органических соединений, т. ё. соединений углерода, протекают с низкой скоростью — этим органические соединения резко отличаются от неорганических ионов. Последние реагируют друг с другом мгновенно. Если к раствору поваренной соли добавить каплю раствора нитрата серебра, то сейчас же выпадет нерастворимый осадок хлорида серебра. Если же слить вместе глицерин и жирные кислоты (это вещества, из которых состоят жиры), то даже спустя несколько дней мы не обнаружим в смеси никакого жира. [c.20]

    Превращения энергии в живых клетках [c.291]

    Гликолиз — сложный, многоступенчатый внутриклеточный ферментативный процесс превращения гексоз, в основном глюкозы. Он имеет важное биологическое значение, заключающееся в обеспечении энергией живых организмов в анаэробных условиях. Промежуточные продукты гликолиза широко используются клетками для биосинтеза различных веществ (например диоксиацетонфосфат для биосинтеза жиров), [c.175]

    Превращение энергии в живой клетке подчиняется тем же законам термодинамики, которые действуют в неживой природе. Согласно первому закону термодинамики, живые организмы не могут ни создать, ни уничтожить энергию, они могут лишь преобразовать одну форму энергии в другую. Клетка представляет собой термодинамически открытую систему, обменивающуюся с внешней средой, которая служит для клетки [c.406]

    Биологические виды энергии. Энергетические превращения в живой клетке подразделяют на две группы локализованные в мембранах и протекающие в цитоплазме. В каждом случае для оплаты энергетических затрат используется своя валюта в мембране это ДцН или ДцМа, а в цитоплазме—АТФ, креатинфосфат и другие макроэргические соединения. Непосредственным источником АТФ являются процессы субстратного и окислительного фосфорилирования. Процессы субстратного фосфорилирования наблюдаются при гликолизе и на одной из стадий цикла трикарбоновых кислот (реакция сукцинил-КоА —> сукцинат см. главу 10). Генерация А(1Н и А(1Ка, используемых для окислительного фосфорилирования, осуществляется в процессе транспорта электронов в дыхательной цепи энергосопрягающих мембран. [c.305]

    Метаболизм и метаболические пути. Как во время роста, так и в состоянии покоя вегетативные клетки нуждаются в постоянном притоке энергии. Живая клетка лредставля ет собой высокоорганизованную материю. Энергия необходима не только для создания такой организации, но и для ее поддержания. Эту энергию организм получает в процессе обмена веществ, или метаболизма, т.е. путем регулируемых превращений, которым различные вещества подвергаются внутри клеток. Источниками энергии служат питательные вещества, поступающие из внешней среды. В клетках эти вещества претерпевают ряд изменений в результате последовательных ферментативных реакций, образующих этапы определенных метаболических путей. Такие пути выполняют две главные функции они, во-первых, поставляют материалы-предшествен-ники для построения клеточных компонентов и, во-вторых, обеспечивают энергию для клеточных синтезов и других процессов, требующих затраты энергии. [c.214]

    Цитология (от греч. ку1оз — ячейка, клетка) — это наука о структуре и жизнедеятельности клетки. Исследование клеточной структуры началось более 100 лет назад. Один из основополол -ников диалектического материализма Фридрих Энгельс в своем труде Диалектика природы указывал, что в XIX в. особое значение имели три великих открытия доказательство превращения энергии, открытие клетки — структурной единицы всех живых организмов и теория развития, впервые обоснованная в трудах Чарльза Дарвина. [c.3]

    Открытие клеток и разработка клеточной теории строения животных и растительных организмов оказали огромиое влияние на развитие биологии и медицины. С применением электронного микроскопа успешно проводятся исследования субмик-роскопической организации клетки, открыты неизвестные ранее структуры, о существовании которых даже ие догадывались. Это прежде всего различные полимембранные системы, на которых осуществляются процессы обмена веществ. Познание ультраструктуры клетки и интегрирование явлений обмена веществ в ней дали возможность проникнуть в сущность биохимических процессов и превращения энергии в клетке на молекулярном уровне. Молекулярная организация тесно связана со структурой и функцией, структурой и обменом, что дает определенные представления о живой клетке как единой морфологической, биохимической и физиологической диалектической системе. [c.30]

    Все эти Процессы этерификации (образование эфира) эндотер" мичны, причем превращения аденозин- -адениловая кислота требует 3 ккал на 1 моль лревращение АК- АДФ требует 9 ккал на 1 моль, а АДФ АТФ — 11 ккал/моль. Поглощение большого количества энергии обозначается волнистой линией на месте связи 0 Р. Следовательно, при образовании этих соединений возрастает их внутренняя энергия, которая затем выделяется в процессе передачи фосфатных групп в живых клетках, эту энергию и использует организм в процессе своей жизнедеятельности. [c.263]

    Мембраны играют также важную роль в механизме освобождения и потребления энергии в живых организмах. Различные виды живых клеток получают энергию из окружающей среды в разных формах, однако накопление и использование ее происходит в виде аденозинтри-фосфата (АТФ). При передаче энергии АТФ переходит в аденозин-дифоефат (АДФ), который в свою очередь за счет разных видов энергии присоединяет фосфатную группу и превращается в АТФ. Процесс образования АТФ называется фосфорилированием. Этот процесс в организмах животных и человека сопряжен с процессом дыхания. Аистом генерирования АТФ в животных клетках являются особые компоненты клеток — митохондрии, которые служат своеобразными силовыми станциями , поставляющими энергию, необходимую для функционирования клеток. Митохондрия окружена двумя мембранами внешней и внутренней. На внутренней мембране, содержащей ферментные комплексы, происходит превращение энергии химических связей в мембранный потенциал. При этом важную роль играют проницаемость и электронная проводимость мембран. [c.140]

    Простые аминокислоты, как и многие другие простые биологические молекулы, не накапливаются в клетке как правило, их избыток разрушается при помощи реакций, которые снабжают живую систему энергией. Деза ш-нирование, иереаминирование и декарбоксилирование — три основные реакции, благодаря которым осуществляется превращение аминокислот в клетке и которые катализируются ферментами. Ниже мы рассмотрим эти процессы. [c.396]

    Разность электрических потенциалов на митохондриальной мембране, создаваемая дыхательной цепью, которая выступает в качестве молекулярного проводника электронов, является движущей силой для образования АТФ и других видов полезной биологической энергии (см. рис. 9.6). Механизмы этих превращений описывает хемиосмотическая концепция превращения энергии в живых клетках. Она была вьщвинута П. Митчеллом в 1960 г. для объяснения молекулярного механизма [c.311]

    В круговороте веществ на земле углеводы занимают промежуточное место между неорганическими и органическими соединениями. Они являются первичными продуктами фотохимического восстановления двуокиси углерода — главного и, вероятно, единственного пути биосинтеза органических веществ в современных геологических условиях. Моносахариды в результате последующих превращений образуют полисахариды — необходимые компоненты любой живой клетки. С другой стороны, при распаде моносахаридов выделяется энергия, требуемая для синтетических процессов в организме, и образуются продукты, являющиеся исходными веществами для биосинтеза других полимеров живой клетки белков, нуклеиновых кислот и липидов. Все сказанное определяет большое разнообразие биохимических реакций моносахаридов и их центральное лоложение в метаболизме живой клеткк [c.363]

    Водород позволяет отказаться от использования солнечной энергии в процессах синтеза биологических систем с участием диоксида углерода биосферы. Микроорганизмы типа lostridium a eti um способны бурно развиваться в неорганическом субстрате, используя водород как источник энергии и восстановитель. Эффективность использования энергии водорода, т, е. отношение энергии органических продуктов и энергии водорода, в этом случае довольно велика и составляет примерно 50 % [567] и, что не менее важно, велика скорость процесса превращения — биомасса удваивается в течение нескольких часов. Водородоокисляющие бактерии для синтеза всех компонентов живой клетки нуждаются в водороде, диоксиде углерода и кислороде, а также в источниках минерального питания солях азота, фосфора, магния и железа. Для производства 1 т сухих клеток водородных бактерий требуется 5 тыс. м водорода, около 2 тыс. кислорода и около [c.552]

    Важнейшие биохимические реакции связаны с превращениями энергии в живой клетке. Энергия накапливается и передается в молекулах аденозинтрифосфорной кислоты (АТФ) — нуклеотида, состоящего из азотистого (пуринового) основания аденина, сахара (рибозы) и трех остатков фосфорной кислоты, которые связаны между собой богатыми свободной энергией (макроэргическими) химическими связями. Исходным источником энерги1Г является солнечный свет, энергия которого в зеленых листьях растений при участии красящего вещества—хлорофилла расходуется на синтез АТФ (фотосинтетическое фосфорилирование). В дал1.нейшем АТФ расходует накопленную энергию в последующих стадиях фотосинтеза, приводящих к образованию из двуокиси углерода и воды крахмала — полимерного сахаристого вещества в котором на длительное время запасается [c.491]

    Сейчас концентрация органических соединений в океанах относительно невелика вне живых организмов биомолекулы можно обнаружить лишь в следовьк количествах. Что же случилось с первичным бульоном , богатым органическим веществом Предполагают, что первые живые клетки использовали содержащиеся в морях органические соединения не только как строительные блоки для создания собственных структур, но и в качестве питательных веществ или топлива , чтобы обеспечить себя энергией, необходимой для роста. Постепенно с течением времени органические вещества в первичном море стали исчезать быстрее, чем они образовывались под воздействием природных сил. Эта идея, а по существу и вся концепция химической эволюции в целом, бьша сформулирована более 100 лет назад Чарлзом Дарвином. Об этом свидетельствует следующий отрывок из письма, которое он написал в 1871 г. сэру Джозефу Хукеру Часто говорят, что и сейчас существуют все условия, которые необходимы были для возникновения первьгх живых организмов. Но если (о, как велико это если ) предположить, что в одном из небольших теплых водоемов из всех содержащихся в нем производных аммиака и солей фосфорной кислоты под влиянием света, тепла, электричества и т.д. возникло белковое соединение, готовое к дальнейшим более сложным превращениям, то в наши дни оно было бы немедленно поглощено или уничтожено. Однако до того, как появились живые существа, этого произойти не могло . [c.75]

    Пфвые указания на то, что в биологических системах происходят какие-то каталитические процессы, были получены в начале XIX в. при изучении переваривания мяса под действием желудочного сока и превращения крахмала в сахар под действием слюны и раздичньгх экстрактов из тканей растений. Вслед за этим были зарегистрированы и другие случаи биологического катализа, который теперь называется ферментативным. В 50-х годах прошлого века Луи Пастер пришел к выводу, что сбраживание дрожжами сахара в спирт катализируется ферментами . Он считал, что эти ферменты (впоследствии для их обозначения бьш введен еще один термин- энзил1ы, что в переводе означает структуры живой клетки дрожжей. Эта точка зрения господствовала в науке в течение длительного времени. Поэтому важной вехой в истории биохимии стало открытие, которое сделал в 1897 г. Эдвард Бухнер ему удалось экстрагировать из дрожжевых клеток в водный раствор набор ферментов, катализирующих расщепление сахара до спирта в процессе брожения. Тем самым бьшо доказано, что столь важные ферменты, катализирующие один из основных метаболических путей, приводящих к высвобождению энергии, сохраняют способность функционировать и после выделения их из живых клеток. Это открытие вдохновило биохимиков на новые поиски, направленные на вьщеление разнообразных ферментов и изучение их каталитических свойств. [c.227]

    При действии раздражителя на нервное или мышечное волокно мембранный потенциал Е в месте раздражения нарушается. Нерв воспламеняется , и поляризация мембраны меняется на обратную (рис. 55, б). Поток ионов Ма+ устремляется внутрь клетки (заса сывается), а затем (рис. 55, в) ионы К+направляются во внешнюю среду. Возвращение к исходному положению (рис. 55, г) происходит спустя одну-две миллисекунды. Нервный импульс пиковый потенциал (потенциал действия) передается по нервному волокну дальше. Мембраны играют важную роль в процессах освобождения и запасания энергии в живых организмах. Ее накопление происходит в виде аденозинтрифосфорной кислоты (АТФ), а при необходимости энергия освобождается за счет разрыва одной из трех богатых энергией связей Р—О—Р. На мембране митохондрии — одного из компонентов клетки — происходит превращение энергии химических связей в мембранный потенциал. При этом важную роль играют проницаемость и электронная проводимость мембран. [c.159]

    Первый этап — активация карбоксильной группы аминокислот с целью последующего образования ею пептидных связей с аминогруппами (реакционная способность карбоксильной и аминогрупп недостаточна для их реагирования без предварительной активации). В органических синтезах карбоксильная группа может быть активирована при превращении ее в хлорангидрид. В живой клетке карбоксильная группа активируется более мягким и эффективным путем при помощи ферментов, специфичных для каждой аминокислоты, взаимодействием Ь-аминокислоты с аденозинтрифосфатом (АТФ). Эта реакция приводит к образованию смешанного ангидрида аминокислоты и аденозинтрифосфата — аминоацил-аденилата, у которого ангидридная связь обладает повышенной энергией (макроэргичес-кая связь). Реакция аденозинтрифосфата с аминокислотой сопровождается отщеплением остатка пирофосфорной кислоты. На этом этапе, по-видимому, происходит отбор Ь-аминокислот вследствие специфичности активирующих ферментов по отношению к аминокислотам, именно Ь-, а не О-ряда. [c.624]

    При каталитическом разложении перекисей не только защищаются чувствительные части протоплазмы, но имеет место превращение в теплоту химической энергии, содернощейся в перекисях. Таким образом, использование перекисей в живой клетке регулируется комбинированным действием пероксидазы и каталазы. [c.343]

chem21.info


Каталог товаров
    .