интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

8. Принципиальная электрическая схема генераторной секции грщ. Схема грщ


8. Принципиальная электрическая схема генераторной секции грщ

Назначение принципиальных (полных) схем не только облегчить понимание принципа действия устройства во всех подробностях, но и дать исходный материал для составления схем соединений, спецификаций и заявок на основное оборудование, приборы и аппараты, а также для разработки конструктивных чертежей распределительных устройств и щитов.

Схемы выполняют без соблюдения масштаба, действительное пространственное расположение составных частей изделий (установок) либо не учитывается вообще, либо учитывается приближенно.

Схемы должны быть выполнены компактно, но без ущерба для ясности и удобства их чтения. Форматы, на которых выполняют схемы, должны быть удобны для пользования при производстве и эксплуатации изделий (установок).

На принципиальной схеме изображают все электрические элементы, необходимые для нормальной работы установки (все аппараты включения и выключения, измерительные трансформаторы тока и напряжения и т.п.) и все электрические связи между ними, а также электрические элементы (зажимы, разъемы и т.п.), которыми заканчиваются входные и выходные цепи.

Все элементы схемы вычерчиваются в отключенном положении в виде условных графических обозначений в соответствии с действующим ГОСТ. Условные графические обозначения элементов вычерчивают на схеме либо в положении, в котором они изображены в соответствующих стандартах, либо повернутыми на угол, кратный 90 по отношению к этому положению

Условные графические обозначения в схемах выполняют совмещенным или разнесенным способом.

Схемы выполняют в однолинейном или многолинейном изображении. При изображении на одной схеме различных функциональных цепей допускается различать их толщиной линий. Рекомендуется различать цепи первичной и вторичной коммутации, силовые цепи и цепи управления и т.п.

Каждый элемент, входящий в схему, должен иметь буквенно-цифровое позиционное обозначение, составленное из буквенного обозначения и порядкового номера, проставленного после буквенного обозначения.

Следует отметить, что в соответствии с ГОСТ 2.710 – 81 обозначения элементов должны выполняться латинскими буквами.

Цифры порядковых номеров элементов и их буквенные позиционные обозначения следует выполнять одним размером шрифта. Например: А1, 12, КМ1, КМ2 и т.д.

Первая часть позиционного обозначения элементов

По ГОСТ 2.710 – 81

Первая буква кода (обязательная)

Группа видов элементов

Двух- и трехбуквенный код

Виды элементов

А

Устройство

АА

АК

АКS

Регулятор тока

Блок реле

Устройство АПВ

В

Преобразователи неэлектрических величин в электрические (кроме генераторов и источников питания) или наоборот

BA

BF

BK

BL

BM

BS

BE

BC

BV

Громкоговоритель

Телефон (капсюль)

Тепловой датчик

Фотоэлемент

Микрофон

Звукосниматель

Сельсин – приемник

Сельсин – датчик

Датчик скорости

С

Конденсаторы

CB

CG

Силовая батарея конденсаторов

Блок конденсаторов зарядный

D

Интегральные схемы, микросборки

DA

DD

DT

Интегральная схема аналоговая

Интегральная схема цифровая, логический элемент

Устройство задержки

Е

Элементы разные

EK

EL

Нагревательный элемент

Лампа осветительная

F

Разрядники, предохранители, устройства защиты

FA

FP

FU

FV

Дискретный элемент защиты по току мгновенного действия

То же, но инерционного действия

Предохранитель плавкий

Разрядник

G

Генераторы, источники питания

GB

GC

GE

Батарея аккумуляторов

Синхронный компенсатор

Возбудитель генератора

Н

Устройства индикационные и сигнальные

HA

HG

HL

HLA

HLG

HLR

HLW

HV

Прибор звуковой сигнализации

Индикатор символьный

Прибор световой сигнализации

Табло сигнальное

Лампа сигнальная с зеленой линзой

Лампа сигнальная с красной линзой

Лампа сигнальная с белой линзой

Индикаторы ионные и полупроводниковые

К

Реле, контакторы, пускатели

КА

КН

КК

КМ

КТ

KV

KCC

KCT

KL

KQ

KQC

KQT

KQQ

KQS

Реле токовое

Реле указательное

Реле электротепловое

Контактор, магнитный пускатель

Реле времени

Реле напряжения

Реле команды включения

Реле команды отключения

Реле промежуточное

Реле фиксации положения выключателя

Реле фиксации включенного положения выключателя

Реле фиксации отключенного положения выключателя

Реле фиксации команды на включение или отключение выключателя

Реле фиксации положения разъединителя

L

Катушки индуктивности, дроссели

LL

LR

LG

LE

LM

Дроссель люминесцентного освещения

Реактор

Обмотка возбуждения генератора

Обмотка возбуждения возбудителя

Обмотка возбуждения электродвигателя

Р

Приборы, измерительное оборудование

PA

PF

PI

PK

PR

PT

PS

PV

PW

PC

PG

Амперметр

Частотомер

Счетчик активной энергии

Счетчик реактивной энергии

Омметр

Часы, измеритель времени

Регистрирующий прибор

Вольтметр

Ваттметр

Счетчик импульсов

Осциллограф

Q

Выключатели и разъединители в силовых цепях (электроснабжения, питания оборудования и т. д.)

QF

QK

QS

QR

QW

QSG

Выключатель автоматический

Короткозамыкатель

Разъединитель

Отделитель

Выключатель нагрузки

Заземляющий разъединитель

R

Резисторы

RK

RP

RS

RU

RR

Терморезистор

Потенциометр

Шунт измерительный

Варистор

Реостат

S

Устройства коммутационные в цепях управления, сигнализации и измерительных

Примечание: обозначение применяют для аппаратов, не имеющих контактов в силовых цепях

SA

SF

SB

SBC

SBT

SL

SP

SQ

SR

SK

Выключатель или переключатель

Выключатель автоматический

Выключатель кнопочный

То же, на включение

То же, на отключение

Выключатель, срабатывающий от уровня

То же, срабатывающий от давления

То же, срабатывающий от положения (путевой)

То же, срабатывающий от частоты вращения

То же, срабатывающий от температуры

Т

Трансформаторы, автотрансформаторы

TA

TS

TV

TL

Трансформатор тока

Электромагнитный стабилизатор

Трансформаторы:

напряжения

промежуточный

U

Преобразователи электрических величин в электрические, устройства связи (кроме трансформаторов)

UB

UR

UD

UZ

UG

UF

Модулятор

Демодулятор

Преобразователи:

выпрямительный

инверторный

Блок питания

Преобразователь частоты

V

Приборы электровакуумные, полупроводниковые

VD

VL

VT

VS

Диод, стабилитрон

Прибор электровакуумный

Транзистор

Тиристор

W

Линии и элементы СВЧ, антенны, линии электропередачи

-

-

Х

Соединения контактные

XA

XP

XS

XW

XT

XB

XG

XN

Токосъемник, контакт скользящий

Штырь

Гнездо

Соединитель высокочастотный

Соединение разборное

Накладка, перемычка контактная

Испытательный зажим

Соединение неразборное

Y

Устройства механические с электромагнитным приводом

YA

YAB

YAC

YAT

YB

YC

YH

Электромагнит

Замок электромагнитной блокировки

Электромагнит включения

Электромагнит отключения

Тормоз с электромагнитным приводом

Муфта с электромагнитным приводом

Электромагнитный патрон или плита

Z

Устройства оконечные, фильтры, ограничители

ZL

ZQ

ZA

ZV

ZF

Ограничитель

Фильтр кварцевый

Фильтр тока

Фильтр напряжения

Фильтр частоты

studfiles.net

Грщ — главный распределительный щит; рщ — распределительный щит; врщ — вторичный распределительный щит; п — потребитель; ав — автоматический выключатель; г — генератор

41

СУДОВЫЕ ЭЛЕКТРИЧЕСКИЕ СЕТИ

СИСТЕМЫ РАСПРЕДЕЛЕНИЯ ЭЛЕКТРОЭНЕРГИИ И ТИПЫ СУДОВЫХ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ

Судовая электрическая сеть является важнейшей составной частью СЭЭС и служит для передачи энергии от источников к потребителям или обеспечивает электрическую связь между различными элементами какой либо системы.

Электрические сети разделяются на первичные и вторичные.

Первичная электрическая сеть соединяет распределительные щиты и отдельные потребители крупной мощности, подключен­ные непосредственно к ГРЩ.

Рис. 110. Однолинейная схема участка первичной и вторич­ной судовой сети:

Вторичная электрическая сеть соединяет потребители элек­трической энергии и вторичные распределительные щиты. На рис. 110 изображены участки первичной и вторичной судовой сети.

Система распределения электроэнергии устанавливает спо­соб соединения главного распределительного щита с потреби­телями.

Для повышения надежности судовых сетей необходимо обес­печивать:

- поддержание высокого сопротивления изоляции кабеля, про­водов, распределительных устройств и аппаратуры;

-защиту кабеля при коротких замыканиях и перегрузках;

-надежное крепление кабе­ля и распределительных уст­ройств;

-выполнение комплекса мероприятий по технике безопасности и пожарной безопасности;

-наибольший срок службы кабеля путем рационального расчета его сечения с учетом режимов и длительности работы потребителей.

Перечисленные требования должны читываться при про­ектировании и эксплуатации судовых электрических сетей.

На судах применяются три системы распределения электро­энергии: радиальная (фидерная), магистральная и смешанная.

Р а д и а л ь н о й системой распределения электроэнергии на­зывается такая система, при которой наиболее ответственные и мощные потребители получают питание непосредственно от ГРЩ по отдельным фидерам, а все остальные потребители — от рас­пределительных щитов, питающихся по отдельным фидерам от ГРЩ.

Принципиальная схема этой системы приведена на рис. 111.

Магистральной системой распределения электроэнер­гии называется такая система, при которой все потребители электроэнергии получают питание по нескольким магистралям через включенные в них щиты или магистральные коробки.

Принципиальная схема этой системы приведена на рис. 112.

Смешанной системой распределения электроэнергии на­зывается такая система, при которой одна часть потребителей получает питание по радиаль­ной системе, а другая часть — по магистральной.

Принципиальная схема этой системы приведена на рис. 113.

Рис. 113. Принципиальная схема рас­пределения

электроэнергии по сме­шанной системе

При выборе системы рас­пределения электроэнергии на судах учитывается возмож­ность централизованного уп­равления включением и отклю­чением потребителей электро­энергии, обеспечения макси­мальной надежности снабжения электроэнергией потребителей, минимального веса се­тей.

Радиальная система обеспе­чивает централизованное уп­равление питанием потребите­лей электроэнергии с ГРЩ, обладает повышенной надежностью при литании потребителей по отдельным линиям (при этом вес ее незначительно отличается от веса магистральной системы). В магистральной системе при повреждениях магистрали ли­шается питания большая группа потребителей электроэнергии и исключается возможность централизованного управления пита­нием потребителей электроэнергии.

Смешанная система распределения электроэнергии сочетает достоинства радиальной системы и недостатки магистральной системы.

Применение той или иной системы на судах обусловлено мощностью электроэнергетической установки судна, количеством и расположением потребителей электроэнергии. При небольших мощностях иногда применяют магистральную систему.

Радиальная система, обладающая техническими и эксплуа­тационными достоинствами, широко применяется на судах.

При радиальной системе распределения электроэнергии не­посредственно от главного распределительного щита получают питание ответственные и мощные потребители; к ним относятся:

- электроприводы рулевого устройства, шпилей, брашпилей, по­жарных насосов,

- спасательных средств, радиотехнические средства, гирокомпас, коммутатор

- сигнальных и отличительных огнейи групповые щиты вспомогательных механизмов, вентиляции, освещения и другие, имеющиеся на судах ответственные потребители.

По Правилам Регистра на морских судах для постоянного тока допускается двухпроводная изолированная система пита­ния потребителей электроэнергии, для переменного однофазно­го — двухпроводная, изолированная, для трехфазного — трехпроводная изолированная.

Передача электрической энергии на судах выполняется от­дельными сетями: силовой, нормального и аварийного освеще­ния, слабого тока, радиотрансляции и т. д.

От силовой сети питаются электроприводы энергетической установки, палубных механизмов, насосов судовых систем, ре­фрижераторных установок, вентиляторов, а также преобразова­телей электрической энергии и т. п.

Сеть нормального освещения состоит из отдельных цепей наружного и внутреннего освещения, сигнальных и отличитель­ных огней и других цепей.

Сеть аварийного освещения разделяется на сети основного и малого аварийного освещения. Сеть основного аварийного осве­щения является составной частью сети нормального освещения, но питается от щита аварийной электростанции.

Сеть малого аварийного освещения питается от аккумулятор­ной батареи и имеет ограниченное число осветительных точек в постах управления, в коридорах и проходах.

В сеть установок слабого тока включаются телефонные уста­новки, звонковая и пожарная сигнализация, машинные теле­графы, рулевые указатели, тахометры и т. п.

Сеть радиотрансляции включает радиотрансляционную аппа­ратуру.

Число отдельных сетей определяется при проектировании в зависимости от типа, назначения и степени электрооборудова­ния судна.

СУДОВЫЕ КАБЕЛИ И ИХ МОНТАЖ

В судовых электрических сетях в зависимости от назначения, места прокладки и условий работы электрооборудования при­меняются кабели и провода разных марок.

Судовые кабели и провода, применяемые на судах, должны сохранять высокие изоляционные качества при повышенной влажности, обеспечивать механическую прочность при трясках, вибрациях и ударных сотрясениях и стойкость изоляции при воз­действии нефтепродуктов, масла и соленой воды и действия окружающей температуры до +50° С. По условиям прокладки в судовых помещениях кабель должен выдерживать многократ­ные резкие изгибы и значительные механические воздействия.

Токопрсводящие жилы кабеля выполняются из ряда тонких проволок, которые обеспечивают механическую прочность и гиб­кость. Токопроводящие жилы кабеля имеют изоляцию, состоя­щую из теплостойкой натуральной и синтетической резины, которая допускает длительный нагрев до 65° С и обеспечивает высокое электрическое сопротивление изоляции. Защита изоляционных оболочек кабеля от попадания влаги, механических повреждений обеспечивается защитными оболоч­ками из прочной негорючей и маслостойкой резины, свинца и оплетки из хлопчатобумажной ткани.

Защитные резиновые оболочки покрываются стальными или медными оплетками, которые защищают кабель от механиче­ских повреждений, а медная оплетка одновременно служит эк­раном от помех радиоприему.

Судовые кабели и провода, применяемые в силовых и осве­тительных сетях, допускают напряжение до 700В для пере­менного тока и 1000В —для постоянного.

Для неподвижных прокладок в этих сетях применяют кабе­ли марок КНР, КНРП, СРМ, КНРЭ, для прокладки к подвиж­ным токоприемникам во внутренних помещениях — кабель РШМ, а на открытых местах — кабель НРШМ.

В сетях установок слабого тока применяются кабели КНРТ, КНРТМ и СРТМ и в качестве экранированных — кабели СРЭШ, КНРЭТ, КНРЭТМ и КНРТЭ.

В сетях и для монтажа распределительных устройств приме­няются провода марки РМ и РГМ.

Марки судовых кабелей расшифровываются следующим об­разом: К — кабель, Н — негорючий, Р — резиновый, П — пан­цирный в стальной оплетке, Э— экранированный в панцирной медной оплетке (буква Э в середине указывает на экранирова­ние отдельных жил, а справа в конце — на экранирование всего кабеля), Т — телефонный, Ш — шланговый, Г — гибкий, С — ос­винцованный, М — морской.

В судовых сетях применяются одножильные, двухжильные, трехжильные и многожильные кабели. При однофазном пере­менном и постоянном токах применяются одножильные и двух­жильные кабели, а при трехфазном переменном токе — только трехжильные.

Для установок слабого тока в основном применяются мно­гожильные кабели. При трехфазном переменном токе совмест­ная прокладка одножильных кабелей вызывает сильный на­грев вихревыми токами металлических переборок и палуб в местах его прокладки.

На современных судах с увеличением степени электрообору­дования судов соответственно увеличилось число и сечение ка­белей судовых сетей, что требует значительной площади для их прокладки. Ограниченные возможности прокладки кабелей в судовых помещениях, а также необходимость ускорения монтажа кабельных сетей привели к выполнению многорядной пучко­вой прокладки кабеля в судовых помещениях.

Для прокладки и крепления пучков кабелей применяются подвески, называемые кассетами.

Монтаж трасс кабелей в кассетах позволяет применить современную технологию прокладки кабеля от прибора к прибору без промежуточной бухтовки по всей длине кабельной трассы, а также облегчает и ускоряет крепление кабелей.

Кассеты нормализованы по типоразмерам в зависимости от числа, диаметров и рядности пучков кабельных трасс.

На рис. 114 изображена кассета, состоящая из П-образного корпуса с двумя лапками и подвижного замка, который пере­двигается по всей длине кор­пуса. Кассета приваривает­ся лапками к корпусным кон­струкциям. Кассеты могут устанавливаться горизонталь­но, наклонно, вертикально; при расположении пучков кабе­ля в несколько рядов допуска­ется приварка кассеты к кас­сете.

Рис. 114. Крепление в кассетах пуч­ков магистральных кабелей по борту машинного отделения

При прокладке отдель­ных кабелей на судах также применяются скоб-мосты, пер­форированные панели и скобы.

При монтаже кабелей су­довых сетей особое внимание уделяется способам уплотнения кабеля в местах прохода их через водонепроницаемые перебор­ки, определяющие живучесть судна при авариях. При пучковой прокладке кабеля уплотнение кабеля в водонепроницаемых пе­реборках обеспечивается установкой кабельных уплотнительных коробок и групповых сальников. Уплотнение пучка кабелей трас­сы в групповых сальниках и коробках производится специаль­ными уплотнительными массами, обеспечивающими водонепро­ницаемость.

РАСЧЕТ СУДОВЫХ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ

В процессе проектирования судовых сетей уделяется внима­ние рациональному выбору сечения кабеля с учетом его факти­ческой нагрузки.

Максимальная температура нагрева соответствующего сече­ния кабеля будет определяться значением тока его фактической загрузки. В расчетах кабельной сети можно определять допу­стимый ток нагрузки кабеля с учетом заданной температуры на­гревания или допустимую температуру нагрева жил кабеля при фактическом токе нагрузки.

Обычно для расчетов судовых сетей используют таблицы с величинами токов нагрузки для разных сечений одножильных, двухжильных и трехжильных кабелей и проводов при их одиноч­ной прокладке с расчетом на то, что нагрев кабелей не превы­шает допустимой температуры нагрева токопроводящей жилы + 65° С при температуре окружающего воздуха 40° С.

Предельно допустимый ток загрузки кабелей зависит от про­должительности режима нагрузки (длительный, кратковремен­ный и повторно-кратковременный). Нормы нагрузки кабелей и проводов для выбора сечения кабеля по величине расчетного то­ка приведены в Правилах Регистра.

Расчетный ток определяется по следующим формулам:

постоянный ток

; (1)

однофазный переменный ток

; (2)

трехфазный переменный ток

,

где РП — потребляемая мощность потребителей, кВт;

U — номинальное напряжение, в;

k3 — коэффициент загрузки потребителя;

cosφ — коэффициент мощности потребителя.

Расчетный ток кабеля распределительного щита, питающего группу потребителей, определяется по формуле:

для переменного тока

,

где k0— коэффициент одновременности работы потребителей;

Σ1 — сумма токов всех потребителей;

Іа — активные токи потребителей;

Іr — реактивные токи потребителей.

Расчетный ток потребителей принимается наибольшим c учетом возможной его максимальной загрузки в режимах по таблице нагрузок генераторов.

Согласно величине расчетного тока, по Т а б л и ц а 54

Температура окружающего

воздуха, °С

Значение поправоч­ного коэф-

фициента

0

1,61

10

1,48

20

1,34

25

1,26

30

1,1

35

1,1

40

1,0

45

0,89

50

0,78

55

0,63

60

0,45

таблицам допускаемых нагрузок выби­рается сечение кабеля с учетом режима продолжительности «работы, числа жил кабеля, рода тока.

На пучковую прокладку кабельных трасс и окружающую температуру выше и ниже 40° С вводятся соответствующие поправочные коэффициенты для каждо­го выбранного сечения. Правила Реги­стра в зависимости от температуры уста­навливают различные поправочные коэф­фициенты для пересчета расчетного то­ка (табл. 54).

При выборе сечения кабеля для мно­горядной открытой (пучковой) прокладки и скрытой прокладки кабелей Правилами Регистра предусматривают снижение рас­четного тока на 25%.

В отдельных случаях при пучковой прокладке кабеля допу­стимый ток нагрузки определяется по существующей методике расчета. При определении расчетного тока нагрузки при пучко­вой прокладке следует установить, нагружены ли кабели пучка номинальной нагрузкой с учетом фактических режимов работы потребителей, питающихся от проложенных кабелей в пучке.

Расчеты электрических сетей для некоторых типов судов по­казали необоснованность снижения расчетного тока кабеля, про­ложенного в пучках, так как в режимах работы судна кабели фактически не загружены номинальным рабочим током.

Выбранное сечение кабеля проверяется на потерю напря­жения.

Определение потерь напряжения в электрических сетях постоянного и переменного тока

В силовых сетях определяется потеря напряжения от ГРЩ до каждого потребителя электроэнергии. Потребители электро­энергии могут нормально работать при определенном значении напряжения. Снижение напряжения ниже допустимой вели­чины приводит к уменьшению скорости вращения электродви­гателя и соответственно к изменению параметров судовых ме­ханизмов.

Согласно Правилам Регистра, потери (или падение) напря­жения в сетях переменного и постоянного токов от ГРЩ до по­требителей электроэнергии не должны превышать: для силовой сети и нагревательных приборов - 7% от номинального напря­жения, для осветительной сети напряжением 220В — 5%, для осветительной сети напряжением 36 В и ниже—10%, для телефонных установок — 5%.

Определим потери напряжения для сети ооднофазного пере­менного тока с распределенными нагрузками, где учитываются активные и реактивные сопротивления кабелей (рис. 116). Для первого участка сети с нагрузкой I1 соsφ1 с учетом активного r1´, реактивного X1´ и полного Z1´ сопротивлений на векторной диаграмме напряжений изображены активное ес=2I1'r1´, реак­тивное сd=211´ Х1´ и полное еd = 2I1´Z1´ падения напряжений сети.

Потеря напряжения на первом участке сети определяется как алгебраическая разность векторов напряжения в начале и конце первого участка сети Ū—Ū1. которая с достаточной точностью для расчетов может быть принята за отрезок ее', соответствую­щий проекции вектора полного падения напряжения на ли­нии вектора Ū1.

Рис.116. Однолинейная схема сети переменного тока с несколькими потребителями и векторная диаграмма потери напряжения для одной нагрузки

При этих допущениях потеря напряжения 1 первом участке сети определяется по выражению

,

где ;

.

Отсюда

Реактивные сопротивления кабелей судовой сети значитель­но меньше активного сопротивления, поэтому при расчетах по­терь напряжения реактивным сопротивлением кабеля можно пренебречь. Тогда получим окончательное выражение для поте­ри напряжения первого участка сети:

%.

В трехфазных сетях переменного тока линейная потеря на­пряжения в % для участка сетей с учетом вышеизложенных по­ложений и допущений для однофазной сети определяется по выражению

% .

Суммарные потери напряжения трехфазной сети с нескольки­ми потребителями определяются по выражениям:

% .

Ниже приводим примерный расчет сечения кабелей и потерь напряжения на участках судовой электрической сети перемен­ного трехфазного тока, изображенной на рис. 117.

Расчет выполняется в следующем порядке:

по таблице электрических нагрузок генераторов судовых электростанций устанавливаем режим, в котором потребители электрической энергии, подключенные к РЩ, имеют максималь­ную нагрузку;

по значениям максимальных потребляемых мощностей потре­бителями определяем расчетный ток фидеров РЩ;

по величинам расчетных токов каждого фидера РЩ выби­раем сечение кабеля по таблицам допустимых нагрузок для од­норядной прокладки кабелей;

сечение питающего кабеля РЩ определяем по суммарному расчетному току всех подключенных потребителей РЩ с учетом коэффициентов одновременности k0 и запаса kзап, т. е. ІΣ Р. Коэффициент запаса учитывает увеличение загрузки питающе­го фидера РЩ за счет подключения в дальнейшем к запасному фидеру потребителя;

по величине полного расчетного тока ІΣ Р по таблицам допу­стимых нагрузок на кабели выбираем сечение кабеля питающего фидера РЩ;

по заданной мощности генератора определяем полный рас­четный ток и соответственно сечение кабеля от генератора до ГРЩ;

Рис. 117. Принципиальная схема участков электрической сети

на основании выбранных сечений и известных длин участков определяем потерю напряжения от ГРЩ до потребителей.

В табл. 55 приведены исходные и расчетные данные отдель­ных фидеров, питающих потребители, и фидера питания РЩ.

В этой же таблице для определения суммарного расчетного тока питающего фидера РЩ определены суммарные потребляе­мые активные и реактивные мощности, средние значения коэф­фициента мощности и расчетная мощность РЩ.

1. Расчетная мощность равна

РΣР = kokзапΣР=27∙0,9∙1,07=26кВт.

2. Полный расчетный ток определяется по выражению

По величине расчетного тока выбрано сечение питающе­го кабеля РЩ, равное Зх10 ммг. Длина кабеля питающего фидера равна l2 = 30 м.

Для подключения фидера к шинам ГРЩ выбран автомат А3324 с номинальным током 100 A и номиналь­ным током максимального расцепителя 60 A, с уставкой макси­мального расцепителя на ток 420 A.

3. Расчетный ток генератора равен

По величине расчетного тока по таблице допускаемых на­грузок на кабели с однорядной прокладкой выбираем сечение и жильность кабеля от генератора до ГРЩ.

S1 = 2(3X185) мм2 .

4. Потеря напряжения на участке ГРЩ—РЩ составляет:

5. Потери напряжения на участках сети РЩ до потребителейопределяются по выражениям

6. Суммарные потери напряжения от ГРЩ до потребителей равны:

studfiles.net

Схемы электрощитовых для дома и квартиры

Проектирование и сборка электрощитов, электрошкафов и узлов учета является важным этапом строительства частного дома, так как от этого этапа на прямую зависит пожаробезопасность и электробезопасность объектов электроснабжения. Такое направление электромонтажных работ, как сборка электрощитов требует особого внимания.

Для того, чтобы составить электрическую схему щита нужно учесть все особенности электропроводки квартиры или частного дома. Основные факторы, определяющие электрическую схему щита это:

  • Суммарная потребляемая мощность
  • Потребляемая мощность каждой отходящей электрической группы
  • Количество отходящих электрических групп
  • Место установки электросчётчика: квартирный или этажный электрощит (для многоквартирных домов)
  • Электрощитовое оборудование предназначено для безопасности вашего дома

    Для того чтобы ваша система электроснабжения работала безопасно, нужно предусмотреть установку специальных распределительных и защитных устройств – электрощитового оборудования, благодаря которому станет возможным группировать питание к потребителям, а также:

    Включать/отключать подачу электричества

    Защищать пользователей от поражения электрическим током

    Защищать электроприборы от превышения напряжения

    Защищать электроприборы от пропадания или перекоса фаз

    Электрощитовое оборудование отличается простотой установки, обслуживания и контроля, т.к. монтируется оно в один корпус, который называется распределительным щитом (РЩ).

    Если ваш дом небольшой, и потребителей электрической энергии не большое количество, то здесь достаточно установить один РЩ. Если же вам нужно установить электрощитовое оборудование в достаточно большом здании или запитать несколько зданий и объектов, где система электроснабжения сложна, то для каждой группы потребителей стоит организовать отдельный щит и разместить его поблизости точки потребления. Например, в гараже или отделенной от дома мастерской стоит поставить свой РЩ, а если дом имеет несколько этажей, то целесообразно на каждом этаже организовать распределительный щит питания с электрощитовым оборудованием.

    Схема простой однофазной цепи электрощита с УЗО, на малое число потребителей

    схема щита с узо

    В этом случае в щите должны быть две клемные планки. Одна рабочий ноль (N), вторая - земля (PE). Проводник от контура заземления надо подключить к планке N , а от нее пустить перемычку на ноль до вводного автомата.

    Эта схема актуальна для частного дома. В квартирах ситуация несколько иная , но заземление с нулем никогда не соединяется в розетках, распаячных коробках и т.п. А строго до счетчика.

    Соединять заземление с нулем нужно обязательно. В противном случае у вас получится система заземления ТТ, которая используется только в передвижных установках. При такой схеме, автомат в вашем щите может просто не сработать в случае пробоя фазы на заземленный предмет, например корпус техники.

    УЗО (устройство защитного отключения) необходимо ставить вместе с автоматическими выключателями. Дело в том что у них разное назначение, автоматический выключатель срабатывает при коротком замыкании или перегрузке. А УЗО срабатывает при небольшой утечке тока, например если человек прикоснется к проводу или корпусу прибора, находящегося под напряжением.

    Вот электрическая схема щита с учётом электроэнергии. Питающее напряжение подаётся на вводной 2х-полюсный автоматический выключатель 1, далее идет на однофазный электросчётчик 2, откуда поступает на УЗО 3, после чего расходится по модульным автоматическим выключателям (автоматам) 6, 7, 8 - 25 А (розеточная группа) и на автомат 9 – на 16А.

    Схема трехфазной цепи электрощита, с УЗО для различных групп потребителей

    Обозначение на схеме: 1- электрощит, 2- нулевой провод, 3- заземляющий проводник, 4- фазные проводники, 5,8 - устройство защитного отключения, 6- трехфазный и однофазный автоматический выключатель, 7- подключение потребителей.

    Вариант разводки трехфазной цепи электрощита

    Эта схема отличается от предыдущей наличием общего 3х фазного УЗО -3.

    В этой схеме питание 380В подаётся на вводной автомат 1, с автомата на трёхфазный электросчётчик 2, после чего поступает на УЗО (дифавтомат) 3, откуда равномерно распределяется по нагрузке через модульные автоматические выключатели 6, и однополюсные УЗО 7.

    eurostrojka.net


    Каталог товаров
      .