Если говорить совсем простым языком, то сетевой фильтр – это такой тройник с выключателем, очень часто применяется для подключения компьютера к электросети. Данное устройство можно встретить на прилавках магазинов электротоваров, а также уже подключенным к розетке в квартирах и домах. Но для чего нужен сетевой фильтр и что в нем особенного? Об этом мы и поговорим далее. Известно, что у вас в розетке имеется сеть переменного тока напряжением в 220 Вольт. «Переменное напряжение (ток)» значит, что его величина и/или знак непостоянны, а меняются с течением времени по определенному закону. Природа генерирующих электрических машин (генераторов) такова, что на выходных клеммах генерируется ЭДС синусоидальной формы. Однако всё было бы хорошо, если бы все устройства имели резистивный характер, отсутствовали пусковые токи, и не имели в своем составе импульсных преобразователей. К сожалению, так не бывает, т.к. большинство устройств имеют индуктивный, емкостной характер, щёточные двигателя, импульсные источники вторичного питания. Весь этот замысловатый набор слов – это главные виновники электромагнитных помех. Мы начали статью с речи об электромагнитных помехах не просто так. Эти помехи «портят» ровную форму синусоиды. Образуются так называемые гармоники. Если разложить реальный сигнал из розетки в виде ряда Фурье мы увидим, что синусоида дополнилась различными функциями, различной частоты и амплитуды. Форма напряжения в настоящей розетке стала далека от идеальной. Ну и что в итоге? Плохое электропитание – проблема для радиопередающих устройств. Попросту ваш телевизор или радиоприемник будет работать с помехами. Кроме помех от потребителей в сети присутствуют помехи случайного происхождения, которые мы не можем предугадать. Это всплески, перепады напряжения от перебоев электроснабжения, включения мощной нагрузки и т.д. Сетевой фильтр нужен для того, чтобы: Фильтрация ненужных составляющих сигнала осуществляется, как это ни странно, специальными фильтрами, их собирают из индуктивностей (L) и конденсаторов (С). Ограничение всплесков высокого напряжения – варисторами. Это работает благодаря таким электротехническим понятиям – постоянная времени и законы коммутации, реактивное сопротивление. Постоянная времени – это время, за которое заряжается конденсатор или накапливает энергию индуктивность. Зависит от элементов фильтра (R, L и C). Реактивное сопротивление – это сопротивление элементов, которое зависит от частоты сигнала, а также от их номинала. Присутствует у индуктивностей и конденсаторов. Обусловлено только передачей энергии переменного тока электрическому или магнитному полю. Простыми словами – с помощью реактивного сопротивления можно снизить, ограничить высокочастотные гармоники нашей синусоиды. Известно, что в розетке частота питания 50 Гц. Значит нужно рассчитывать фильтр на частоты на порядок выше и более. У индуктивности сопротивление растет с ростом частоты, у конденсатора – падает. То есть принцип работы сетевого фильтра заключается в подавлении высокочастотных составляющих сетевой синусоиды, при этом оказывая минимальное влияние на основную 50 Гц составляющую. Мы разобрались, где применяется сетевой фильтр, поэтому теперь давайте разберемся, из чего состоит реальный сетевой фильтр, абстрагируемся от теории. Внутренности дорогого и качественного фильтра, обратите внимание на батарею конденсаторов справа и размеры дросселя по центру: Пойдем по порядку – фильтр. Конструкция такого элемента представляет собой LC-фильтр. Нулевой и фазные провода из розетки подключатся к катушке индуктивности (каждый к своей), а между ними 1 и больше конденсаторов. Типовые номиналы деталей: Варистор – это полупроводниковый элемент с нелинейной ВАХ. При достижении определенного напряжения, приложенного к нему, защищает нагрузку кратковременным замыканием входных цепей питания, принимая «удар» на себя. Нужен для того, чтобы сберечь вашу технику от «плохого питания». Чаще всего применяется варистор на 470 Вольт. Принцип действия такой защиты очевиден – при скачках напряжения цепи питания защищаемой нагрузки шунтируются варистором. Содержимое дешевого фильтра, здесь вообще нет дросселя – его эффективность минимальна, но всё еще есть варистор (голубой в центре кадра), и он спасет от скачков напряжения: Для чего нужен тумблер, если всё может работать и без него? Просто чтобы вы не дергали каждый раз вилку из розетки, ведь, чаще всего через сетевой фильтр подключается стационарное оборудование. Это снизит износ контактных пластин розетки. Принципиальная схема сетевого фильтра: Дело в том, что в качественных блоках питания он должен быть установлен, прям на плате и тем более на БП высокой мощности, например компьютерных. Но, к сожалению, ваши зарядные устройства для смартфона, БП от ноутбука, ЭПРА люминесцентных и светодиодных ламп чаще всего не имеют их в своем составе. Это связано с тем, что китайские производители упрощают схемы своих устройств для снижения их себестоимости. Часто бывает, что на плате есть места для деталей, назначение которых фильтровать помехи, но они просто не распаяны и вместо них стоят перемычки. Компьютерные блоки – это отдельная тема, схема практически у всех одна, но исполнение разное, и в самых дешевых моделях фильтр отсутствует. Вы можете снизить помехи вашего телевизора или другого устройства которое хотите защитить и улучшить свойства его электропитания дополнив обычный удлинитель таким фильтром. Его можно собрать самому или извлечь из хорошего, но ненужного или неисправного БП. Напоследок рекомендуем просмотреть полезное видео по теме: Сетевой фильтр – это простое, но полезное устройство, которое улучшит качество электропитания ваших приборов и снизит вред, наносимый его частоте работой импульсных БП, а область применения достаточно широка – используйте его для любой современной аппаратуры. Его устройство позволяет повторить схему даже начинающему радиолюбителю, а ремонт не составит труда. Использование сетевого фильтра крайне желательно для потребителей любого рода. Будет полезно прочитать: samelectrik.ru Современную оргтехнику и отдельные виды электрических приборов невозможно представить без сетевых фильтров. Любая схема сетевого фильтра предназначена для защиты цепей питания от токов высокой частоты, перепадов напряжения, появляющихся при работе промышленного оборудования. Это является основной задачей данных приборов. Нередко на первое место выходят лишь внешние данные. Отдельные производители просто забывают об основных функциях сетевого фильтра. При неправильном выборе, вместо необходимого функционального прибора, вполне возможно заполучить обыкновенный красивый удлинитель для электрической сети. Поэтому, чтобы не стать жертвой недобросовестных производителей и надежно защитить дорогостоящее оборудование, необходимо хотя-бы в общих чертах иметь представление о правильной схеме сетевого фильтра. Основой всех сетевых фильтров является типовая схема. В различных моделях они могут различаться, но принцип работы у всех один и тот же. Классическая схема рассчитана для работы с так называемой европейской сетью питания, в которую входят земля, фаза и ноль. Варистор VDR1 устанавливается на входе и выполняет задачу подавления выбросов высокого напряжения цепи. При повышенном напряжении, происходит резкое падение электрического сопротивления варистора, который берет эту помеху на себя и не пропускает ее далее. Для небольших значений напряжения дополнительно используется дроссель Tr1 совместно с емкостями С1, С2 и С3. Они представляют собой реактивные элементы с постоянно меняющимся сопротивлением. То есть, при постоянном токе, оно имеет одно значение, а при токах высокой частоты – совсем другое, отличающееся во много раз. Таким образом, питающий ток нормального значения свободно проходит через прибор к потребителю, а помехи с высокой частотой задерживает схема сетевого фильтра. При увеличении частоты, сопротивление фильтра резко повышается, что и позволяет эффективно задерживать помехи. При трех проводной сети питания, возникновение помех происходит не только между нулем и фазой. Могут возникать помехи на участках земля-фаза или земля-ноль. Для того, чтобы более эффективно подавлять такие помехи, устраивается нормальное стандартное заземление. Все эти меры, особенно правильный выбор, обеспечивают надежную защиту электрической техники от пагубного влияния нестандартных электрических токов. electric-220.ru Для предотвращения помех от электро - и радиоприборов необходимо снабдить их фильтром для подавления помех от питающей сети, расположенным внутри аппаратуры, что позволяет бороться с помехами в самом их источнике. В настоящее время отечественные и зарубежные предприятия предлагают целый ряд таких фильтров, как простых, одно- и двухкаскадных, так и многокаскадные фильтры, способные обеспечить максимальный уровень защиты от помех. Фильтры выполнены по всем правилам конструирования радиоаппаратуры, имеют защитные экраны и специальные проходные конденсаторы, предотвращающие прямое прохождение помех и паразитные магнитные помехи самого фильтра. Если не удастся отыскать готовый фильтр, его можно сделать самостоятельно. Схема помехоподавляющего фильтра представлена на рисунке ниже: Фильтр двухкаскадный. Первый каскад выполнен на основе продольного трансформатора (двухобмоточного дросселя) Т1, второй представляет собой высокочастотные дроссели L1 и L2. Обмотки трансформатора Т1 включены последовательно с линейными проводами питающей сети. По этой причине низкочастотные поля частотой 50 Гц в каждой обмотке имеют противоположные направления и взаимно компенсируют друг друга. При воздействии помехи на провода питания, обмотки трансформатора оказываются включенными последовательно, а их индуктивное сопротивление XL растет с увеличением частоты помех: XL = ωL = 2πfL, f — частота помех, L — индуктивность включенных последовательно обмоток трансформатора. Дроссели LI, L2 представляют еще одно последовательное дополнительное сопротивление для высокочастотных помех, обеспечивая их дальнейшее ослабление. Резисторы R2, R3 уменьшают добротность L1, L2 для устранения резонансных явлений. Резистор R1 обеспечивает быстрый разряд конденсаторов C1—С4 при отключении сетевого шнура от питающей сети и необходим для безопасного обращения с устройством. Детали сетевого фильтра размещены на печатной плате, показанной на рисунке ниже: Резисторы MЛT, С2-33, С1 - 4 мощностью 0,25 или 0,125 Вт. Конденсаторы C1 - С4 на рабочее напряжение не ниже 400 В. Лучше всего подходят отечественные конденсаторы К78-2 или зарубежные класса X или Х2. Емкость конденсаторов С1 и С2 может находиться в диапазоне 0,1...0,47 мкФ, а конденсаторов СЗ и С4 - от 2200 пФ до 0,022 мкФ. radiolub.ru СЕТЕВОЙ ФИЛЬТР Сетевой фильтр необходим для устройств, постоянно включенных в электрическую сеть, которые чувствительны к перенапряжениям в сети и помехам. Осветительные лампы, нагревательные приборы и пылесосы менее требовательны к качеству электропитания, и для них сетевой фильтр можно использовать лишь в качестве удлинителя-разветвителя электропитания. Импульсы, возникающие в результате подключения и отключения большого количества потребителей, работа промышленного оборудования и городского электротранспорта, аварии на подстанциях, выбросы тока – это техногенные помехи. Природные помехи: грозовые разряды и удары молнии вблизи кабелей наружной электросети и линий электропередач. Постоянное воздействие электромагнитных импульсов может привести как к полному выходу аппаратуры из строя, так и к потере накопленной информации. Первым уровнем защиты и являются сетевые фильтры. Причиной помех телевидению во многих случаях является недостаточная высокочастотная развязка выходящих из передатчика проводов и особенно провода сетевого питания. Высокочастотная энергия передатчика, попадая в питающую сеть, подводится через провода этой сети к телевизорам и радиоприемникам, включенным в нее, а также излучается в пространство. Для высокочастотной развязки проводов, выходящих наружу от передатчика, применяют дроссели, резисторы и конденсаторы, образующие цепи, шунтирующие на землю высокочастотные сигналы в проводах или образующие заградительные фильтры для высоких частот. В зависимости от номиналов применяемых деталей и частоты сигнала уровень ослабления меняется. Существенно улучшает развязку на высоких частотах применение проходных конденсаторов вместо обычных или конденсаторов опорного типа, поскольку у проходных конденсаторов паразитная индуктивность сведена к минимуму. При выборе типа проходного конденсатора необходимо учитывать допустимый ток, пропускаемый внутренним проводом конденсатора. Хорошую блокировку проводов по высокой частоте можно обеспечить, если поместить их в заземленный экран. Экран создает распределенную емкость вдоль провода и таким образом шунтирует провод на высокой частоте по всей длине, Увеличить сопротивление провода на высокой частоте можно путем увеличения его погонной индуктивности. Для этого на провод одевают ферритовые кольца соответствующего типоразмера с магнитной проницаемостью порядка нескольких сот. Если требуется локально увеличить индуктивность провода, его несколько раз продевают сквозь ферритовое кольцо, образуя таким образом тороидальную катушку с необходимой индуктивностью. Осуществляя развязку сетевого провода передатчика, следует помнить, что ток в нем может быть значительной величины, что накладывает дополнительные требования к катушкам фильтра, индуктивность которых не должна существенно изменяться под действием тока. В противном случае характеристики фильтра будут меняться в зависимости от нагрузки. Это относится к катушкам с сердечниками из магнитных материалов. Для исключения влияния тока подмагничивания катушку наматывают в два провода, в результате чего магнитное поле тока компенсируется. Но все эти меры защиты являются недостаточными и для того чтобы получить хорошее напряжение питания необходимо использовать специальное устройство - сетевой фильтр. Как известно, сетевой фильтр предназначен для защиты цепей электропитания компьютеров и другой электронной аппаратуры от импульсных перенапряжений и выбросов тока, возникающих в результате коммутации и работы промышленного оборудования; высокочастотных помех, распространяющихся по сетям электропитания и импульсных перенапряжений, возникающих в результате грозовых разрядов. Без специального фильтра, помехи и выбросы, попадающие в прибор от сети, могут беспрепятственно проходить через межвитковые емкости силового трансформатора. Помехи от близлежащих радио и телевизионных станций, другой передающей аппаратуры могут серьезно нарушать работу при наладке и эксплуатации устройств. Обычно используют для их подавления простые покупные сетевые фильтры с несколькими розетками, которые и фильтрами то назвать сложно. Такие устройства полноценными сетевым фильтром не являются. Там внутри находится только лишь варистор, ограничивающий высоковольтные импульсы, которые иногда появляются в сети. Конечно в самом простейшем случае можно использовать готовый сетевой фильтр отечественного или зарубежного производства, но качественный сетевой фильтр с подавителем помех лучше изготовить самостоятельно. Типовая схема фильтра изображена на рисунке ниже. Для примера указана схема трёхсекционного фильтра, однако на практике достаточно и двух. Сетевой фильтр, состоит из секций, каждая из которых с некоторым перекрытием работает в определенной области частот - Др3 - 3' в области ВЧ, Др2 - 2' в области СЧ, Др1 и Др1' в области НЧ. Дросселя вместе с конденсаторами и образуют LC фильтры. Сопротивление катушек на высоких частотах большое, а на низких - маленькое, что препятствует проникновению помех дальше. В фильтре синфазных помех обмотки катушки индуктивности находятся в фазе, но переменный ток, который протекает через эти обмотки – в противофазе. В итоге, для тех сигналов, которые совпадают или противоположны по фазе на двух линиях электропитания, синфазный поток внутри сердечника уравновешивается. Проблема проектирования фильтра синфазных помех заключается в том, что при высоких частотах идеальные характеристики компонентов искажаются через паразитарные элементы. Основным паразитарным элементом является межвитковая емкость самого дросселя. Это небольшая емкость, которая существует между всеми обмотками, где разница напряжений между витками ведет себя подобно конденсатору. Этот конденсатор при высокой частоте действует как шунт вокруг обмотки и позволяет ВЧ переменному току протекать в обход обмоток. Частота, при которой это явление является проблемой, выше частоты авторезонанса обмотки. Между индуктивностью самой обмотки и этой распределенной межвитковою емкостью формируется колебательный контур. Выше точки авто резонанса влияние емкости становится большим от влияния индуктивности, что снижает уровень затухания при высоких частотах. В устройстве на фото выполнена только подавление ВЧ и НЧ. Как видно, керамические и бумажные проходные конденсаторы включены попарно-параллельно. Проходные конденсаторы имеют ёмкость по 0,015 мкФ, а конденсаторы НЧ секции - 1 мкФ. Напряжение от 250 В и выше. На фото показан сетевой фильтр, используемый в старой военной радиолокационной аппаратуре. К числу защищаемых устройств относят разнообразную аппаратуру: компьютеры, телевизоры, радиоприемники. Сетевой фильтр включают между сетью и устройством потребления. Конструктивно фильтр собран в трех экранированных секциях, которые помещаются в толстый металлический корпус. Дроссели, находящиеся в соседних секциях, соединяются через проходные конденсаторы, установленные на вертикальных перегородках. Ввод и вывод напряжения желательно реализовать кабелем, с нулевой точкой, которую необходимо заземлить. Форум по сетевым фильтрам elwo.ru Для подключения аппаратуры к сети на рабочем месте необходимо иметь 4-5 розеток. Обычно используют удлинители или сетевые фильтры. Сетевой фильтр — это удлинитель с дополнительными устройствами, предотвращающими проникновение помех из сети на подключаемую аппаратуру. Помехи и выбросы, попадающие в схему от сети, могут беспрепятственно проходить в приборы через межвитковые емкости силового трансформатор-ра. Помехи от близлежащих радио- и телевизионных станций, медицинской аппаратуры могут серьезно нарушать работу при наладке устройств. Кроме защиты от помех сетевой фильтр часто снабжается специальной схемой, защищающей аппаратуру от перенапряжений. Практика показывает, что примерно 100 раз в год в сети возникают перенапряжения — короткие импульсы с напряжением 350… 1000 В. Можно использовать готовый сетевой фильтр отечественного или зарубежного производства, например, «Лидер», «Пилот», «Импульс», Vector, Optima, Sven и др. Сетевой фильтр с подавителем помех нетрудно изготовить самостоятельно. Устройство такого фильтра показано на рис. 1.1. Фильтр состоит из основания i, выполненного из какого-либо изоляционного материала — текстолита, гетинакса или фанеры толщиной 10… 15 мм. На основании закреплены 4 соединенных параллельно стандартных розетки 2, предназначенные для открытого монтажа. Размеры основания — 200 х 80 мм. Напряжение на розетки подается через подавитель высокочастотных по Рис. 1.1. Устройство сетевого удлинителя — подавителя помех мех 4, закрытый крышкой из изоляционного материала. На верхней части крышки размещен индикатор включения сети (светодиод) 3 и выключатель сети 5, на боковой — предохранители б. К сетевому фильтру подключен шнур электросети 7. ПринципиЕшьная схема подавителя высокочастотных помех изображена на рис. 1.2. Напряжение сети через выключатель SA1 и предохранители FU1, FU2 поступает на высокочастотный продольный трансформатор Т1. Симметричному току двухпроводной линии (току питания) обмотки трансформатора не оказывают сколь-либо существенного дополнительного индуктивного сопротивления, так как включены встречно. Вместе с тем по отношению к синфазным помехам, наводимым в сети, трансформатор создает большое последовательное индуктивное сопротивление, возрастающее с повышением частоты помех. Дгшь-нейшему снижению помех способствует конденсатор С1. Кроме того, данный конденсатор снижает выбросы напряжения, которые могут возникнуть при включении и выключении аппаратуры от сети. Это увеличивает срок службы выключателя сети и уменьшает помехи и перенапряжения в схемах приборов. Для индикации включения сети имеется цепь VD1, R1, HL1. Здесь для индикации сети использован светодиод HL1, имеющий большой срок службы по сравнению с неоновыми лампами и лампами накаливания, обычно используемыми для этих целей. Рис. 1.2. Принципиальная схема подавителя помех Детали подавителя помех размещены на печатной плате (рис. 1.3). Печатный монтаж необязателен, можно выполнить плату на пустотелых заклепках, заменив печатные проводники голым луженым проводом диаметром 0,8… 1,2 мм. Высокочастотный продольный трансформатор Т1 выполнен на кольцевом сердечнике из феррита марки 1000НН,.,2000НЕ Рис. 1.3. Размещение деталей на плате подавителя помех диаметром 20…30 мм. Кольцо оборачивается слоем лакоткани или фторопластовой ленты и на него одновременно двумя проводами в хорошей изоляции наматывается 4…6 витков. Можно использовать провод МГТФ сечением около 0,8 мм^ или применить провод, которым будет выполнен монтаж сетевого шнура. Следует обеспечить строгую идентичность обмоток трансформатора. Начало и конец обмоток трансформатора закрепляют нитками. Трансформатор приклеивают к плате термоплавким клеем. Начала обмоток трансформатора показаны на схеме рис. 1.2 и 1.3 точками. Конденсатор С1 типа К78-2, К73-17 на рабочее напряжение не ниже 400 В (лучше 600 или даже 1000 В). Резистор R1 типа МЛТ-2, ОМЛТ-2. Диод VD1 кроме указанного на схеме может быть типа Д223 с индексом А, Б; КД102 с любым буквенным индексом. Светодиод HL1 АЛ307, КИПД-24 или АЛ310А. Можно использовать и неоновую лампочку, например, ТН-0,2. В этом случае резистор R1 должен быть мощностью 0,5 Вт и иметь сопротивление 150 кОм. Диод VD1 из схемы следует исключить. Держатели предохранителей типа ДПМ, выключатель любого типа на напряжение 250 В и ток не менее 10 А. Центральные выводы держателей предохранителей соединены с выводами выключателя SA1. Такое подключение необходимо с точки зрения безопасности при смене предохранителей. При монтаже используйте для изоляции трубки в полихлорвиниловой изоляции или специальные термоусадочные трубки. Ни в коем случае не применяйте изоляционную ленту! Монтаж розеток должен быть выполнен проводом в двойной изоляции сечением не менее 1…1,5 мм^. Такие же требования предъявляются к сетевому шнуру. Его длина может быть 2…4 м. Испытания устройства показали, что высокочастотные помехи с частотой 100 кГц подавляются на 8 дБ, а с частотой 1 МГц — 36 дБ. Для защиты аппаратуры от высоковольтных импульсов в сети можно дополнить сетевой фильтр микросборкой ЗА-1-1,5-400А(Б), выполненной в виде пластмассовой сетевой вилки с жесткими штырями для установки в одну из свободных розеток сетевого фильтра. Защитные микросборки выпускаются серийно, их характеристики приведены в [66]. На лицевую сторону микросборки выведены три светодиодных индикатора. Средний индикатор — зеленого света, два других — красного. Зеленый светодиод светит при наличии сетевого напряжения и при исправных ограничителях напряжения. Светодиоды красного свечения (оба или один) включаются при выходе из строя обоих или одного ограничителя соответственно. Если удастся приобрести микросборку ЗА-0-1,5-400А (можно с индексом Б), имеющую гибкие проволочные выводы, ее впаивают в сетевой фильтр параллельно выводам розеток. nauchebe.net Как устроены и работают сетевые фильтры?В бытовой домашней электросети, которая приходит в наши квартиры, имеется большое количество всплесков (бросков) напряжений, которые возникают на очень короткое время и имеют порой достаточно большую амплитуду, возникающие в следствии переходных процессов, наведенные молнией, грозовыми разрядами и др.Всплески от переходных процессов, порожденные оборудованием, причиной которых разряды запасенной энергии индуктивными и емкостными элементами. Электродвигатели используемые в лифтах, системе отопления, кондиционирования, охлаждения и другие индуктивные нагрузки создают непрерывный поток всплесков разной амплитудой до 1000В. Приводы постоянного тока, с переменной скоростью вращения, импульсные источники питания, переносной электроинструмент и т.п. являются так же источниками переходных процессов и следовательно, дополнительных всплесков напряжений.Пример схемы подавления импульсного перенапряжения состоит из варистора (VDR)и газового разрядника (GDT), соединенных последовательно. Схема предназначена для защиты чувствительных электронных устройств от перенапряжения, переходных процессов, и короткого замыкания. Схема защиты включается в разрыв между источником напряжения, в данном случае это розетка, и нагрузка. В обычном нормальном режиме ток не протекает через GDT и VDR1, но когда напряжение становится больше, чем сумма напряжения срабатывания GDT и VDR1 (GDT UZ470B и VDR S20K250 общее напряжение 250v), то ток начинает протекать через элементы. Чем больше превышение напряжение, тем больше протекает ток через GDT и VDR1. При уменьшении напряжения до нормального значения, схема переводится в исходное состояние. Из-за физических свойств разрядника и варистора, протекающий ток через защитные элементы не увеличивается больше определенного значения в течение короткого периода времени. Когда напряжение возвращается к нормальному значению, ток через элементы G1 и VDR1 прекращается, схема возвращается к обычному режиму.Если протекающий ток значительно увеличиться, то срабатывает защитный предохранитель, нагрузка обесточивается. Две неоновые контрольные лампы, примененные в схеме, показывают наличие напряжения на входе и на нагрузке.* VDR варистор - полупроводниковый резистор, представляет собой электронный компонент имеющий нелинейную вольт амперную характеристику (ВАХ). Название происходит от английского слова - переменный резистор. Подобные схемы часто используются для защиты цепей от чрезмерных переходных напряжений путем включения их в схему таким образом, что при их срабатывании, они будут шунтировать возникающий чрезмерный ток, создаваемый высоким напряжением для чувствительных компонентов. Задача VDR еще в том, чтобы защитить от увеличения тока через устройства, когда напряжение становиться чрезмерным.Преимущества1) Нормальное рабочее напряжение 230V AC / DC2) Максимальная номинальный ток 16A3) Максимальный ток 16A4) Напряжения отключения => 300В RMS5) Защита от перегрузок.6) Защита от короткого замыкания.Применение1) Защита чувствительных компонентов.2) Защита двигателя.3) Защита телефонных линий. Бытовые фильтры-удлинители и схемы фильтров применяемые в них. Задумывались Вы, что Вам необходимо:просто удлинитель или удлинитель с фильтром?Если Вы подключаете электрический чайник, лампу освещения, то конечно, фильтр здесь абсолютно не нужен, зачем тратить деньги впустую. Здесь важно качество розеток в удлинителе, толщина провода и его длина, но в тоже время излишняя длина не нужна, иначе придется сматывать в клубок.Если несколько бытовых приборов расположенных рядом друг с другом, для подключения можно использовать тройник. А что делать, если дорогая бытовая техника: телевизор, компьютер, аудиоцентр, то в этом случае ответ однозначен - надо защищать приборы как минимум сетевым фильтром. www.110volt.ru Не секрет, что качественное питание аудиотехники является необходимым условием для обеспечения ее качественной работы [1]. Современная сеть питания представляет собой сложный «организм», в котором кроме привычных 220 В / 50Гц «живет» масса всего не нужного. Как правило, сеть «загрязнена» высокочастотными помехами, создаваемыми различными устройствами, включенными в эту сеть. В число главных загрязнителей попадают как компьютеры, так и с виду безобидные энергосберегающие лампы, и прочие регуляторы «диммеры». Второй опасностью современных сетей питания является, так называемая, постоянная составляющая питающего напряжения, которой по идеи в сети быть не должно. Данное постоянное напряжение влияет на работу трансформатора, негативно сказываясь на его работе. Опустим тонкие физические моменты, объясняющие это явление, заключим только то, что если трансформатор в блоке питания Вашего усилителя периодически гудит сильнее обычного, то это как раз следствие этого явления. В данной статье рассматривается конструкция сетевого фильтра, призванного снизить влияние обозначенных помех на работу подключенного оборудования. Предлагаемое техническое решение не претендует на оригинальность и является некой компиляцией решений, которые удалось найти автору на бескрайних просторах сети Интернет. В основу элементной базы и общей конструкции был положен фильтр, рассмотренный в [1], а также материалы из тематического форума [2]. Предлагаемый фильтр несколько проще, чем предложен в [1] и, как следствие, значительно дешевле в изготовлении, хотя ключевые детали остались. Хочу отметить, что я не силен в области изготовления печатных плат, занятие это «на любителя», долгое и муторное, поэтому предлагаемое в данной статье решение было изготовлено на базе односторонней платы для макетирования. В целом, можно сказать, что все используемые в предлагаемом устройстве детали не являются экзотическими и легко находятся в специализированных магазинах. Мое устройство выполнено не в виде некого разветвителя с розетками, а виде самостоятельного блока, снабженного входом и выходом сетевого напряжения, при этом используются стандартные евро-разъемы (как на компьютерной технике). К выходу соответственно подключается разветвитель с обычными розетками, к которому уже и подключается нагрузка. Эстеты могут изготовить по такому фильтру на каждое ключевое устройство своей аудиоаппаратуры. В бескомпромиссном решении [1] предлагается устанавливать по фильтру ВЧ помех на каждую розетку, чтобы фильтровать «мусор» от самих подключенных потребителей. В своем решении я отказался от этой идеи в угоду удешевления устройства. На рис. 1 представлена схема фильтра. Рис. 1. Схема фильтра. Фильтр в целом состоит из трех частей: Список использованных деталей в моем варианте: При сборке устройства внимательно соблюдайте подключение деталей согласно схеме, особенно не перепутайте полярность подключения C4 и C5. Внимание! Помните, устройство будет использоваться в сети с напряжением 220В! Собирая это устройство вы все делаете исключительно на свой страх и риск. Законченное устройство может выглядеть как на рис. 2 и рис. 3. Рис. 2. Рис. 3. Конденсатор C7 является опциальным, его нахождение в схеме продиктовано исключительно изотерическими соображениями, а именно он призван гасить «звон» трансформаторов в нагрузке. Однако по-хорошему этот конденсатор должен находиться непосредственно на трансформаторных вводах внутри самой аппаратуры. Прошло некоторое время и описанную выше конструкцию захотелось слегка модернезировать, а именно реализовать все-таки независимую фильтрацию по линиям питания, и сделать все это дело управляемым с ПК. Раньше для этого использовался отдельный блок с реле. В результате получилась штука, представленная на рис. 4 и рис. 5. Рис. 4. Рис. 5. На этот раз я уже научился разводить печатные платы методом ЛУТ, поэтому фильтр стал еще больше похож на промышленно изготовленный. В качестве блока реле использовалась готовая сборка от KernelChip, которая будучи подключенной по USB к ПК позволяет включать/выключать то или иное реле при помощи специальных комманд. В моем исполении фильтр двухканальный, третий выход реализован без фильтра EPCOS, он просто коммутируется реле. К фильтрующим выходам подключаются ЦАП и усилитель соответственно. Электролиты на этот раз были применены EPCOS ECAP (К50-35), 22000 мкФ, 16В. Существуют и обратные точки зрения, что сетевые фильтры негативно сказываются на качестве работы аудиоаппаратуры. Я этой точки зрения пока не придерживаюсь, потому как использование описанного устройства дало положительный результат, в частности немного улучшилась детализация и локализация звуковых образов, трансформатор в усилителе мощности перестал гудеть. Так что, наверное, каждый уже пусть выбирает сам: есть влияние или его нет, или это все злобная плацебо. Дмитрий Иванов© 2010 - 2013 idaudio.ruЧто такое сетевой фильтр и для чего он нужен? Сетевой фильтр схема
Сетевой фильтр: устройство, принцип работы, назначение
Предназначение сетевого фильтра
Как работает сетевой фильтр
Смотрим что внутри
Где применяется фильтр и что делать, если его нет
Схема сетевого фильтра
Особенности сетевых фильтров
Сетевой фильтр: типовая схема
Ремонт сетевого фильтра
Фильтр для подавления помех от питающей сети
СЕТЕВОЙ ФИЛЬТР
Сетевой фильтр схема | Техника и Программы
Как устроены и работают сетевые фильтры в бытовых приборах и нужны ли они?
Самому собрать фильтр
Схема высококачественного сетевого фильтра. Высококачественный сетевой фильтр позволяет отфильтровать помехи и кратковременные импульсные скачки напряжения. Особенно актуальна схема для проживающих в поселках, где электричество подводится по воздушным линиям и когда во время грозы, при разрядах молний наводится высокое напряжение. Детали применяются от ненужных компьютерных блоков питания, которые могут заваляться дома или выбрасываются на работе - дайте им вторую жизнь! Необходимо намотать симметрирующие дроссели-трансформаторы, варисторы и конденсаторы выпаять из блоков питания, лучше всего подойдут класса Y2 и X2. Номиналы элементов для фильтра могут иметь значения:
Розетки можно дополнительно зашунтировать разрядными резисторами номиналом 470 КОм, мощностью 0,5 Вт (для того чтобы не щелкало, правильнее составить из двух резисторов общим номиналом) Для исключения резких бросков тока добавьте последовательно с каждым варистором резистор 1Вт по 10Ом. Для исключения возгорания и разлета осколков керамики, наденьте сверху на варисторы термоусадочную трубку. Удлинитель типа Пилот
Сетевой фильтр // iDmitryAudio
Введение
Конструкция
Наименование Обозначение на схеме Количество (шт) Печатная макетная плата (80х100) 1 Корпус пластиковый 195х80х55 мм 1 B72240-L 271-K100, LS40K275QP, варистор R1 1 B72220-S 271-K101, S20K275 151J 275v, варистор R2, R3 2 B84112-B-B110, 2x10A 250v, сетевой фильтр B84112-B-B110 1 B81130-C1104-M, 0.1uF x 275v, X2 конденсатор C1 1 B81123-C1472-M, MKP 4.7nF x 250v, Y1 конденсатор C2, C3 2 К50-35 Jamicon 15000 мкФ / 25В 85°C, конденсатор C4, C5 2 16CTU04, диодная сборка с общим катодом 16А 400В 60нс TO220 VD1 + VD2 1 AS-207 (SS-7B) евровилка сетевая на корпус 1 AS-208 (K2414) евророзетка сетевая на корпус 1 Провод монтажный (сечение 1 - 1.5 мм) 0.5 м Конденсатор полипропиленовый Mundorf MCAP 3.3 мкФ (опциально) C7 1 Крепежные элементы в корпус (винтики, стойки, саморезики и т.д.) А можно еще и так...
Заключение
Поделиться с друзьями: