интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Как подключить электродвигатель, схема подключения. Схема электродвигателя


схема. Электродвигатели постоянного и переменного тока

В статье вы узнаете, что такое электродвигатели переменного тока, рассмотрите их устройство, принцип действия, область применения. Стоит отметить, что сегодня в промышленности более 95 процентов всех используемых двигателей приходится на асинхронные машины. Они получили большое распространение в связи с тем, что у них высокая надежность, они могут служить очень долго за счёт своей ремонтопригодности.

Принцип работы асинхронных двигателей

электродвигатели переменного тока

Чтобы понять, как функционирует электродвигатель, можно провести небольшой эксперимент. Конечно, для этого потребуется наличие специального инструмента. Установите магнит в форме подковы так, чтобы он приводился в движение при помощи ручки. Как вы знаете, у магнита имеется два полюса. Между ними необходимо расположить цилиндр, изготовленный из меди. С таким расчетом, что он может свободно вокруг своей оси вращаться. Теперь сам эксперимент. Начинаете раскручивать магнит, при этом создается поле, которое двигается. Внутри медного цилиндра начинают возникать вихревые токи, которые противодействуют полю магнита.

В результате этого медный цилиндр начинает вращение в ту сторону, в которую двигается постоянный магнит. Причем его скорость оказывается несколько ниже. Причина этого — при равной скорости силовые линии перестают пересекаться с полем магнита. Магнитное поле вращается синхронно. А вот скорость движения самого магнита несинхронна. А если немножко сократить определение, то асинхронна. Отсюда и название электрической машины — асинхронного электродвигателя. Если грубо, то схема электродвигателя переменного тока примерно такая же, как и в приведенном эксперименте. Только магнитное поле создается статорной обмоткой.

Двигатели постоянного тока

схема электродвигателя переменного тока

Они несколько отличаются от асинхронных электродвигателей переменного тока. Во-первых, в нём имеется одна или две статорных обмотки. Во-вторых, способ изменения частоты вращения ротора несколько иной. Но направление вращения ротора изменяется переполюсовкой (у асинхронных машин меняются местами фазы питающей сети). Изменить скорость ротора двигателя постоянного тока можно, если увеличить или уменьшить напряжение, подаваемое на статорную обмотку.

Двигатель постоянного тока не может работать без обмотки возбуждения, которая находится на роторе. Передача напряжения происходит при помощи щеточного узла. Это самый ненадежный элемент конструкции. Щетки, изготовленные из графита, со временем стираются, что приводит к выходу из строя мотора, ему необходим ремонт. Заметьте, что электродвигатели постоянного и переменного тока имеют одни и те же элементы, но их конструкции отличаются существенно.

Конструкция электродвигателя

асинхронный электродвигатель переменного тока

Как и любая другая нестатическая электрическая машина, асинхронный двигатель состоит из двух основных частей — статора и ротора. Первый элемент неподвижный, на нём размещаются три обмотки, которые соединяются по определенной схеме. Ротор является подвижным, его конструкция называется «беличьей клеткой». Причина такого названия в том, что внутреннее устройство очень похоже на колесо с белкой.

Последней, конечно же, нет в электродвигателе. Центровка ротора производится при помощи двух крышек, устанавливаемых на статоре. В них имеются подшипники, которые облегчают вращение. На задней части электродвигателя устанавливается крыльчатка. С ее помощью проводится охлаждение электрической машины. На статоре сделаны ребра, которые улучшают теплоотдачу. Таким образом электродвигатели переменного тока работают в нормальном тепловом режиме.

Статор асинхронного двигателя

устройство электродвигателя переменного тока

Стоит отметить, что у статора современных асинхронных электродвигателей полюсы невыраженные. Если говорить проще, то внутри вся поверхность идеально гладкая. В целях уменьшения потерь на вихревых токах, сердечник набирается из очень тонких листов стали. Эти листы очень плотно прилегают друг другу и впоследствии закрепляются в корпусе из стали. Статор имеет пазы для закладывания обмоток.

Обмотки изготовлены из медного провода. Соединение их производится в «звезду» или «треугольник». В верхней части корпуса имеется небольшой щиток, полностью заизолированный. В нем находятся контакты для подключения и соединения обмоток. Причем соединить обмотки можно при помощи перемычек, устанавливаемых в этом щитке. Устройство электродвигателя переменного тока позволяет быстро провести соединение обмоток в нужную схему.

Ротор асинхронного электродвигателя

электродвигатели постоянного и переменного тока

О нем было уже немного сказано. Он похож на беличью клетку. Конструкция ротора собирается из тонких стальных листов, как и статора. В пазах ротора находится обмотка, но она может быть нескольких типов. Все зависит от того, фазный или короткозамкнутый ротор. Наиболее распространенные последние конструкции. Толстые медные стержни укладываются в пазы без изоляционного материала. С обоих концов эти стержни соединяются медными кольцами. Иногда вместо "беличьей клетки" применяются литые роторы.

Но есть еще электродвигатели переменного тока с фазным ротором. Они используются намного реже, в основном для электродвигателей, у которых очень большая мощность. Второй случай, при котором необходимо использовать фазные роторы в электродвигателях — создание большого усилия в момент запуска. Правда, для этого необходимо использовать специальный реостат.

Способы запуска асинхронного электродвигателя

работа электродвигателя переменного тока

Запустить асинхронный электродвигатель переменного тока несложно, достаточно только подключить статорные обмотки в трехфазную сеть. Производится подключение при помощи магнитных пускателей. Благодаря им можно практически автоматизировать запуск. Даже реверс сделать можно без особых трудностей. Но в некоторых случаях необходимо снижать напряжение, которое подводится к статорным обмоткам.

Производится это благодаря использованию схемы подключения типа «треугольник». При этом запуск производится, когда обмотки соединены по схеме «звезда». При увеличении числа оборотов, достижении максимального значения обмотки необходимо переключить на схему «треугольник». При этом происходит уменьшение потребляемого тока примерно в три раза. Но необходимо учитывать, что не каждый статор может нормально функционировать при подключении по схеме «треугольник».

Регулирование частоты вращения

В промышленности и быту все большую популярность приобретают частотные преобразователи. С их помощью можно легким движением руки изменить скорость вращения ротора. Стоит заметить, что электродвигатели переменного тока используются совместно с частотными преобразователями в большинстве механизмов. Он позволяет осуществить тонкую настройку привода, при этом нет необходимости использовать магнитные пускатели. Все органы управления подключаются к контактам на частотном преобразователе. Настройки позволяют изменять время разгона ротора электродвигателя, его остановки, время минимальной и максимальной скорости, а также множество других защитных функций.

Заключение

Теперь вы знаете, как происходит работа электродвигателя переменного тока. Даже изучили конструкцию наиболее популярного асинхронного двигателя. Он является самым дешевым из всех, которые представлены на рынке. Кроме того, для его нормального функционирования нет необходимости использовать различные вспомогательные устройства. В частности, реостаты. И только такое дополнение, как частотный преобразователь, способно облегчить эксплуатацию асинхронного электродвигателя, существенно расширить его возможности.

fb.ru

Электромагнитные двигатели: схема, принцип работы

Электромагнитные двигатели - это устройства, которые работают по принципу индукции. Некоторые люди называют их электромеханическими преобразователями. Побочным эффектом данных устройств считается обильное выделение тепла. Существуют модели постоянного и переменного типа.

Также устройства различают по типу ротора. В частности, есть короткозамкнутые и фазные модификации. Сфера применения электромагнитных двигателей очень широкая. Встретить их можно в бытовых приборах, а также промышленных агрегатах. Активно используются они и в самолетостроении.

Схема двигателя

Схема электромагнитного двигателя включает в себя статор, а также ротор. Коллекторы, как правило, применяются щеточного типа. Ротор состоит из вала, а также наконечника. Для охлаждения системы часто устанавливаются вентиляторы. Для свободного вращения вала имеются роликовые подшипники. Также существуют модификации с магнитопроводами, которые являются неотъемлемой частью статора. Над ротором располагается контактное кольцо. В мощных модификациях используется втягивающее реле. Непосредственно подача тока осуществляется через кабель.

электромагнитные двигатели летательных аппаратов

Принцип работы двигателя

Как говорилось ранее, принцип действия построен на электромагнитной индукции. При подключении модели образуется магнитное поле. Затем на обмотке возрастает напряжение. Под силой действия магнитного поля в действие приводится ротор. Частота вращения устройства в первую очередь зависит от количества магнитных полюсов. Коллектор в данном случае играет роль стабилизатора. Подача тока в цепь происходит через статор. Также важно отметить, что для защиты двигателя используются кожухи и уплотнители.

электромагнитные двигатели

Как сделать своими руками?

Сделать обычный электромагнитный двигатель своими руками довольно просто. В первую очередь следует заняться ротором. Для этого придется найти металлический стержень, который будет играть роль вала. Также потребуется два мощных магнита. На статоре должна находиться обмотка. Далее останется лишь установить щеточный коллектор. Электромагнитные двигатели-самоделки подсоединяются к сети через проводник.

Модификации для машин

Электромагнитные двигатели для автомобилей изготавливаются только коллекторного типа. Мощность их в среднем составляет 40 кВт. В свою очередь, параметр номинального тока равняется 30 А. Статоры в данном случае используются двухполюсные. У некоторых модификаций имеется клеммная коробка. Для охлаждения системы применяются вентиляторы.

Также в устройствах предусмотрены специальные отверстия для циркуляции воздуха. Роторы в двигателях устанавливаются с металлическими сердечниками. Для защиты вала используются уплотнители. Статор в данном случае находится в кожухе. Электромагнитные двигатели для машин с втягивающими реле встречаются редко. В среднем диаметр вала не превышает 3.5 см.

электромагнитный двигатель своими руками

Устройства для самолетов

Работа двигателей данного типа построена на принципе электромагнитной индукции. Для этого статоры применяются трехполюсного типа. Также электромагнитные двигатели летательных аппаратов включают в себя бесщеточные коллекторы. Клеммные коробки в устройствах располагаются над контактными кольцами. Неотъемлемой частью статора является якорь. Вал вращается благодаря роликовым подшипникам. У некоторых модификаций применяются щеткодержатели. Также важно упомянуть о различных типах клеммных коробок. В данном случае многое зависит о мощности модификации. Электромагнитные двигатели для самолетов с целью охлаждения оборудуются вентиляторами.

Двигатели-генераторы

Электромагнитные двигатели-генераторы выпускаются со специальными бендиксами. Также схема устройства включает в себя втягивающие реле. Для запуска ротора применяются сердечники. Статоры в устройствах используются двухполюсного типа. Непосредственно вал у них крепится на роликовых подшипниках. У большинства двигателей имеется резиновая заглушка. Таким образом, ротор изнашивается медленно. Еще есть модификации с щеткодержателями.

Модели с короткозамкнутым ротором

Электромагнитный двигатель с короткозамкнутым ротором часто устанавливается в бытовых приборах. Мощность моделей в среднем равняется 4 кВт. Непосредственно статоры используются двухполюсного типа. Роторы крепятся в задней части двигателя. Вал у моделей применяется небольшого диаметра. На сегодняшний день чаще всего выпускаются асинхронные модификации.

Клеммные коробки в устройствах отсутствуют. Для подачи тока используются специальные полюсные наконечники. Также схема двигателя включает в себя магнитопроводы. Крепятся они возле статоров. Еще важно отметить, что выпускаются устройства с щеткодержателями и без них. Если рассматривать первый вариант, то в данном случае устанавливаются специальные зубчатые передачи. Таким образом, статор ограждается от магнитного поля. Устройства без щеткодержателя имеют уплотнитель. Бендиксы в двигателях устанавливаются за статором. Для их фиксации применяются шпонки. Недостатком данных устройств считается быстрый износ сердечника. Возникает он из-за повышенной температуры в двигателе.

Модификации с фазным ротором

Электромагнитный двигатель с фазным ротором устанавливается на станки и часто используется в тяжелой промышленности. Магнитопроводы в данном случае имеются с якорями. Отличительной чертой устройств принято считать большие валы. Непосредственно напряжение на обмотку подается через статор. Для вращения вала используется щеткодержатель. В некоторых из них установлены контактные кольца. Также важно отметить, что мощность моделей в среднем составляет 45 кВт. Непосредственно питание двигателей может осуществляться только от сети с переменным током.

электромагнитные двигатели для самолетов

Коллекторный электромагнитный двигатель: принцип работы

Коллекторные модификации активно применяются для электроприводов. Принцип действия у них довольно простой. После подачи напряжения в цепь задействуется ротор. Электромагнитное поле запускает процесс индукции. Возбуждение обмотки заставляет вал ротора вращаться. Тем самым приводится в действие диск устройства. Для уменьшения силы трения используются подшипники. Также важно отметить, что в моделях устанавливаются щеткодержатели. В задней части устройств часто имеется вентилятор. Для того чтобы вал не терся об уплотнитель, применяется защитное кольцо.

Бесколлекторные модификации

Бесколлекторные модификации в наше время не являются распространенными. Используются они для вентиляционных систем. Отличительной их особенностью считается бесшумность. Однако следует учитывать, что модели выпускаются небольшой мощности. В среднем указанный параметр не превышает 12 кВт. Статоры в них часто устанавливаются двухполюсного типа. Валы используются короткие. Для ограждения ротора применяются специальные уплотнители. Иногда двигатели заключаются в кожух, у которого имеются вентиляционные каналы.

электромагнитные двигатели для машин

Модели с независимым возбуждением

Модификации данного типа отличаются клеммными магнитопроводами. В данном случае устройства работают в сети только с переменным током. Непосредственно напряжение в первую очередь подается на статор. Роторы у моделей изготавливаются с коллекторами. У некоторых модификаций мощность достигает 55 кВт.

По типу якорей устройства отличаются. Щеткодержатели часто устанавливаются на стопорном кольце. Также важно отметить, что коллекторы в устройствах используются с уплотнителями. Диски в данном случае располагаются за статорами. У многих двигателей бендиксы отсутствуют.

Схема двигателя с самовозбуждением

Электромагнитные двигатели данного типа способны похвастаться высокой мощностью. В данном случае обмотки имеются высоковольтного типа. Подача напряжения происходит через клеммные контакты. Непосредственно ротор крепится за щеткодержателем. Уровень рабочего тока в устройствах составляет 30 А. В некоторых модификациях применяются якоря с щеткодержателями.

Также есть устройства с однополюсными статорами. Непосредственно вал находится в центре двигателя. Если рассматривать устройства большой мощности, то у них применяются вентилятор для охлаждения системы. Также на кожухе располагаются небольшие отверстия.

Модели с параллельным возбуждением

Электромагнитные двигатели данного типа изготавливаются на базе щеточных коллекторов. Якоря в данном случае отсутствуют. Вал в устройствах крепится на роликовых подшипниках. Также для уменьшения силы трения используются специальные лапы. У некоторых конфигураций есть магнитопроводы. Подключаться модели могут только к сети с постоянным током.

Еще важно отметить, что на рынке в основном представлены трехтактные модификации. Щеткодержатели в устройствах выполнены в форме цилиндров. По мощности модели отличаются. В среднем параметр рабочего тока на холостом ходе не превышает 50 А. Для усиления электромагнитного поля применяются роторы с высоковольтной обмоткой. У некоторых конфигураций используются наконечники на магнитопроводах.

Устройства последовательного возбуждения

Принцип работы двигателей данного типа довольно простой. Непосредственно напряжение подается на статор. Далее ток проходит по обмотке ротора. На данном этапе происходит возбуждение первичной обмотки. Вследствие этого приводится в действие ротор. Однако следует учитывать, что работать двигатели способны только в сети с переменным током. Наконечники в данном случае применяются с магнитопроводом.

Некоторые устройства оснащены щеткодержателями. Мощность моделей колеблется от 20 до 60 кВт. Для фиксации вала используются стопорные кольца. Бендиксы в данном случае располагаются в нижней части конструкции. Клеммники отсутствуют. Также важно отметить, что вал устанавливается различного диаметра.

электромагнитный двигатель принцип работы

Двигатели смешанного возбуждения

Электромагнитные двигатели данного типа могут использоваться только для приводов. Ротор здесь чаще всего устанавливается с первичной обмоткой. В данном случае показатель мощности не превышает 40 кВт. Номинальная перегрузка системы составляет около 30 А. Статор в устройствах применяется трехполюсного типа. Подключать указанный двигатель можно только в сеть с переменным током. Клеммные коробки у них используются с контактами.

Некоторые модификации оснащены щеткодержателями. Также на рынке представлены устройства с вентиляторами. Уплотнители чаще всего располагаются над статорами. Действуют устройства по принципу электромагнитной индукции. Первичное возбуждение осуществляется на магнитопроводе статора. Также важно отметить, что в устройствах применятся высоковольтная обмотка. Для фиксации вала используются защитные кольца.

Устройства переменного тока

Схема модели данного типа включает статор двухполюсного типа. В среднем мощность устройства равняется 40 кВт. Ротор здесь применяется с первичной обмоткой. Также есть модификации, у которых имеются бендиксы. Устанавливаются они у статора и играю роль стабилизатора электромагнитного поля.

Для вращения вала применяется ведущая шестерня. В данном случае лапы устанавливаются для уменьшения силы трения. Также используются полюсные наконечники. Для защиты механизма применяются кожухи. Магнитопроводы у моделей устанавливаются лишь с якорями. В среднем рабочий ток в системе поддерживается на уровне 45 А.

электромагнитный двигатель

Синхронные устройства

Схема синхронного двигателя включает в себя двухполюсный статор, а также щеточный коллектор. В некоторых устройствах применяется магнитопровод. Если рассматривать бытовые модификации, то в них используются щеткодержатели. В среднем параметр мощности составляет 30 кВт. Устройства с вентиляторами встречаются редко. У некоторых моделей применяются зубчатые передачи.

Для охлаждения двигателя на кожухе имеются вентиляционные отверстия. В данном случае стопорное кольцо устанавливается у основания вала. Обмотка используется низковольтного типа. Принцип работы синхронной модификации построен на индукции электромагнитного поля. Для этого в статоре устанавливаются магниты разной мощности. При возбуждении обмотки вал начинается вращаться. Однако частотность у него невысокая. Мощных модели имеют коллекторы с реле.

Схема асинхронного двигателя

Асинхронные модели являются компактными и часто используются в бытовых приборах. Однако в тяжелой промышленности они также являются востребованными. В первую очередь следует отметить их защищенность. Роторы в устройствах применяются только однополюсного типа. Однако статоры устанавливаются с магнитопроводами. В данном случае обмотка применяется высоковольтного типа. Для стабилизации электромагнитного поля есть бендикс.

Крепится он в устройстве благодаря шпонке. Втягивающее реле в них располагается за якорем. Вал устройства вращается на специальных роликовых подшипниках. Также важно отметить, что есть модификации с бесщеточными коллекторами. Используются они в основном для приводов различной мощности. Сердечники в данном случае установлены удлиненные, и располагаются они за магнитопроводами.

fb.ru

Электродвигатель переменного тока | Техника и человек

Электрические двигатели давно и прочно заняли лидирующие позиции среди силовых агрегатов различного типа оборудования. Их можно найти в автомобиле и в пылесосе, в сложнейших станках и в обычных детских игрушках. Они есть практически везде, хотя и отличаются между собой типом, строением и рабочими характеристиками.

Электродвигатели – это силовые агрегаты, способные превращать электрическую энергию в механическую. Различают два их основных вида: двигатели переменного и постоянного тока. Разница между ними, как понятно из названия, заключается в типе питающего тока. В данной статье речь пойдет о первом виде – электродвигателе переменного тока

Устройство и принцип работы

принцип работы электродвигателя Основная движущая сила любого электрического двигателя – электромагнитная индукция. Электромагнитная индукция, если описать ее в двух словах – это появление силы тока в проводнике, помещенном в переменное магнитное поле. Источником переменного магнитного поля является неподвижный корпус двигателя с размещенными на нем обмотками – статор, подключенный к источнику переменного тока. В нем расположен подвижный элемент – ротор, в котором и возникает ток. По закону Ампера на заряженный проводник, помещенный в магнитное поле, начинает действовать электродвижущая сила – ЭДС, которая вращает вал ротора. Таким образом, электрическая энергия, которая подается на статор, превращается в механическую энергию ротора. К вращающемуся валу можно подключать различные механизмы, выполняющие полезную работу.

Электродвигатели переменного тока делятся на синхронные и асинхронные. Разница между ними в том, что в первых ротор и магнитное поле статора вращаются с одной скоростью, а во вторых ротор вращается медленнее, чем магнитное поле. Отличаются они и по устройству, и по принципу работы.

Асинхронный двигатель

Устройство асинхронного двигателя

Устройство асинхронного двигателя

На статоре асинхронного двигателя закреплены обмотки, создающие переменное вращающееся магнитное поле, концы которой выводятся на клеммную коробку. Поскольку при работе двигатель нагревается, на его валу устанавливается вентилятор системы охлаждения.

Ротор асинхронного двигателя выполнен с валом как одно целое. Он представляет собой металлические стержни, замкнутые между собой с двух сторон, из-за чего такой ротор еще именуется короткозамкнутым. Своим видом он напоминает клетку, поэтому его часто называют «беличьим колесом» Более медленное вращение ротора в сравнении с вращением магнитного поля – результат потери мощности при трении подшипников. Кстати, если бы не было этой разницы в скорости, ЭДС бы не возникала, а без нее не было бы и тока в роторе и самого вращения.Короткозамкнутый ротор асинхронного двигателя

Магнитное поле вращается за счет постоянной смены полюсов. При этом соответственно меняется направление тока в обмотках. Скорость вращения вала асинхронного двигателя зависит от числа полюсов магнитного поля.

Синхронный двигатель

Синхронный двигатель переменного тока

Устройство синхронного двигателя

Устройство синхронного электродвигателя немного отличается. Как понятно из названия, в этом двигателе ротор вращается с одной скоростью с магнитным полем. Он состоит из корпуса с закрепленными на нем обмотками и ротора или якоря, снабженного такими же обмотками. Концы обмоток выводятся и закрепляются на коллекторе. На коллектор или токосъемное кольцо подается напряжение посредством графитовых щеток. При этом концы обмоток размещены таким образом, что одновременно напряжение может подаваться только на одну пару.

В отличие от асинхронных на ротор синхронных двигателей напряжение подается щетками, заряжая его обмотки, а не индуцируется переменным магнитным полем. Направление тока в обмотках ротора меняется параллельно с изменением направления магнитного поля, поэтому выходной вал всегда вращается в одну сторону. Синхронные электродвигатели позволяют регулировать скорость вращения вала путем изменения значения напряжения. На практике для этого обычно используются реостаты.

Краткая история создания

Опыт ФарадеяВпервые возможность превратить электричество в механическую энергию открыл британский ученый М.Фарадей еще в 1821 году. Его опыт с проводом, помещенным в ванну с ртутью, оснащенной магнитом, показал, что при подключении провода к источнику электроэнергии он начинает вращаться. Этот нехитрый опыт наверняка многие помнят по школе, правда, ртуть там заменяется безопасным рассолом. Следующим шагом в изучении этого феномена было создание униполярного двигателя – колеса Барлоу. Никакого полезного применения он так и не нашел, зато наглядно демонстрировал поведение заряженного проводника в магнитном поле.

На заре истории электродвигателей ученые пытались создать модель с сердечником, двигающимся в магнитном поле не по кругу, а возвратно-поступательно. Такой вариант был предложен, как альтернатива поршневым двигателям. Электродвигатель в привычном для нас виде впервые был создан в 1834 году русским ученым Б.С. Якоби. Именно он предложил идею использования вращающегося в магнитном поле якоря, и даже создал первый рабочий образец.

Первый асинхронный двигатель, в основе работы которого заложено вращающееся магнитное поле, появился в 1870 году. Авторами эффекта вращающегося магнитного поля независимо друг от друга стали два ученых: Г.Феррарис и Н. Тесла. Последнему принадлежит также идея создания бесколлекторного электродвигателя. По его чертежам были построены несколько электростанций с применением двухфазных двигателей переменного тока. Следующей более удачной разработкой оказался трехфазный двигатель, предложенный М.О. Доливо-Добровольским. Его первая действующая модель была запущена в 1888 году, после чего последовал ряд более совершенных двигателей. Этот русский ученый не только описал принцип действия трехфазного электродвигателя, но и изучал различные типы соединений фаз (треугольник и звезда), возможность использование разных напряжений тока. Именно он изобрел пусковые реостаты, трехфазные трансформаторы, разработал схемы подключения двигателей и генераторов.

Особенности электродвигателя переменного тока, его достоинства и недостатки

На сегодня электродвигатели являются одними из самых распространенных видов силовых установок, и тому есть немало причин. У них высокий КПД порядка 90%, а иногда и выше, довольно низкая себестоимость и простая конструкция, они не выделяют вредных веществ в процессе эксплуатации, дают возможность плавно менять скорость во время работы без использования дополнительных механизмов типа коробки передач, надежны и долговечны.

Среди недостатков всех типов электромоторов — отсутствие высокоемкостного аккумулятора электроэнергии для автономной работы.

Основное отличие электродвигателя переменного тока от его ближайшего родственника – электродвигателя постоянного тока – заключается в том, что первый питается переменным током. Если сравнивать их функциональные возможности, первый менее мощный, у него сложно регулировать скорость в широком диапазоне, он имеет меньший КПД.

Если же сравнивать асинхронный и синхронный электродвигатель переменного тока, то первый имеет более простую конструкцию и лишен «слабого звена» — графитовых щеток. Именно они обычно первыми выходят из строя при поломке синхронных двигателей. Вместе с тем, у него сложно получить и регулировать постоянную скорость, которая зависит от нагрузки. Синхронные двигатели позволяют регулировать скорость вращения с помощью реостатов.

Сфера применения

тельферЭлектродвигатели переменного тока широко используются практически во всех сферах. Ими оснащаются электростанции, их используют в автомобиле- и машиностроении, есть они и в домашней бытовой технике. Простота их конструкции, надежность, долговечность и высокий показатель КПД делает их практически универсальными.

Асинхронные двигатели нашли применение в приводных системах различных станков, машин, центрифуг, вентиляторов, компрессоров, а также бытовых приборов. Трехфазные асинхронные двигатели являются наиболее распространенными и востребованными. Синхронные двигатели используются не только в качестве силовых агрегатов, но и генераторов, а также для привода крупных установок, где важно контролировать скорость.

Схема подключения электродвигателя к сети

Электродвигатели переменного тока бывают трех и однофазные.Асинхронные однофазные двигатели имеют на корпусе 2 вывода и подключить их к сети не составляет трудности. Т.к. вся бытовая электрическая сеть в основном однофазная 220В и имеет 2 провода — фаза и ноль. С синхронными все намного интереснее, их тоже можно подключить с помощью 2 проводов, достаточно обмотки ротора и статора соединить. Но соединять их нужно так, чтобы обмотки однополюсного намагничивания ротора и статора располагались напротив друг друга.Сложности представляют двигатели для 3ех фазной сети. Ну во-первых у таких двигателей в основном в клеммной коробке 6 выводов и это означает что обмотки двигателя нужно подключать самому, а во-вторых их обмотки можно подключать разными способами — по типу «звезда» и «треугольник». Ниже приведен рисунок соединения клем в клеммной коробке, в зависимости от типа соединения обмоток. соединение клемм асинхронного двигателя

Подключение одного и того же электродвигателя разным способом в одну и туже электрическую сеть приведет к потреблению разной мощности. При этом не правильное подключение электродвигателя, может привести к расплавлению обмоток статора.

Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающиеся в  раз.  Например, двигатель рассчитан для включения в сеть на напряжения 380/660 В. Если в сети линейное напряжение 660 В, то обмотку статора следует соединить звездой, а если 380 В, то треугольником. В обоих случаях напряжение на обмотке каждой фазы будет 380 В. Выводы обмоток фаз располагают на панели таким образом, чтобы соединения обмоток фаз было удобно выполнять посредством перемычек, без перекрещивания последних. В некоторых двигателях небольшой мощности в коробке выводов имеется лишь три зажима. В этом случае двигатель может быть включен в сеть на одно напряжение (соединение обмотки статора такого двигателя звездой или треугольником выполнено внутри двигателя).

 

схема кключения синхронного и ахинхронного двигателя трехфазного в сетьПринципиальная схема включения в трехфазную сеть асинхронного двигателя с фазным ротором показана на рисунке. Обмотка ротора этого двигате­ля соединена с пусковым реостатом ЯР, создающим в цепи рото­ра добавочное сопротивление Rдобав.

zewerok.ru

Устройство и принцип работы электродвигателя переменного тока

Электродвигатель – это электротехническое  устройство для преобразования электрической энергии в механическую. Сегодня повсеместно применяются электромоторы в промышленности для привода различных станков и механизмов. В домашнем хозяйстве они установлены в стиральной машине, холодильнике, соковыжималке, кухонном комбайне, вентиляторах, электробритвах и т. п. Электродвигатели приводят в движение, подключенные к ней устройства и механизмы.

В этой статье Я расскажу о самых распространенных видах и принципах работы электрических двигателей переменного тока, широко используемых в гараже, в домашнем хозяйстве или мастерской.

Как работает электродвигатель

Двигатель работает на основе эффекта, обнаруженного Майклом Фарадеем еще в 1821 году. Он сделал открытие, что при взаимодействии электрического тока в проводнике и магнита может возникнуть непрерывное вращение.

Если в однородном магнитном поле расположить в вертикальном положении  рамку и пропустить по ней ток, тогда вокруг проводника возникнет электромагнитное поле, которое будет взаимодействовать с полюсами магнитов. От одного рамка будет отталкиваться, а к другому притягиваться. В результате рамка повернется в горизонтальное положения, в котором будет нулевым воздействие магнитного поля на проводник. Для того что бы вращение продолжилось необходимо добавить еще одну рамку под углом или изменить направление тока в рамке в подходящий момент.  На рисунке это делается при помощи двух полуколец, к которым примыкают контактные пластины от батарейки. В результате после совершения полуоборота меняется полярность и вращение продолжается. как работает электрический двигатель

В современных электродвигателях вместо постоянных магнитов для создания  магнитного поля используются катушки индуктивности или электромагниты. Если разобрать любой мотор, то Вы увидите намотанные витки проволоки, покрытой изоляционным лаком. Эти витки и есть электромагнит или как их еще называют обмотка возбуждения.

В быту же постоянные магниты используются в детских игрушках на батарейках.

В других же более мощных двигателях используются только электромагниты или обмотки. Вращающаяся часть с ними называется ротор, а неподвижная- статор.

Виды электродвигателей

Сегодня существуют довольно много электродвигателей разных конструкций и типов. Их можно разделить по типу электропитания:

  1. Переменного тока, работающие напрямую от электросети.
  2. Постоянного тока, которые работают от батареек, АКБ, блоков питания или других источников постоянного тока.

По принципу работы:

  1. Синхронные, в которых есть обмотки на роторе и щеточный механизм для подачи на них электрического тока.
  2. Асинхронные, самый простой и распространенный вид мотора. В них нет щеток и обмоток на роторе.

Синхронный мотор вращается синхронно с магнитным полем, которое его вращает, а у асинхронного ротор вращается медленнее вращающегося магнитного поля в статоре .

Принцип работы и устройство асинхронного электродвигателя

В корпусе асинхронного двигателя укладываются обмотки статора (для 380 Вольт их будет 3), которые создают вращающееся магнитное поле. Концы их для подключения выводятся на специальную клеммную колодку. Охлаждаются обмотки, благодаря вентилятору, установленному на вале в торце электродвигателя.как устроен асинхронный двигатель

Ротор, являющиеся одним целым с валом, изготавливается из металлических стержней, которые замыкаются  между собой с обоих сторон, поэтому он и называется короткозамкнутым.Благодаря такой конструкции отпадает необходимость в частом периодическом обслуживании и замене токоподающих щеток, многократно увеличивается надежность, долговечность и безотказность.

Как правило, основной причиной поломки асинхронного мотора является износ подшипников, в которых вращается вал.

Принцип работы. Для того что бы работал асинхронный двигатель необходимо, что бы ротор вращался медленнее электромагнитного поля статора, в результате чего наводится ЭДС (возникает электроток) в роторе. Здесь важное условие, если бы ротор вращался с такой же скоростью как и магнитное поле, то в нем по закону электромагнитной индукции не наводилось бы ЭДС и, следовательно не было бы вращения. Но в реальности, из-за трения подшипников или нагрузки на вал, ротор всегда будет вращаться медленнее.принцип работы ассинхроного двигателя

Магнитные полюса постоянно вращаются в обмотках мотора, и постоянно меняется направление тока в роторе. В один момент времени, например направление токов в обмотках статора и ротора изображено схематично в виде крестиков (ток течет от нас) и точек (ток на нас). Вращающееся магнитное поле изображено изображено пунктиром.

Например, как работает циркулярная пила. Наибольшие обороты у нее без нагрузки. Но как только мы начинаем резать доску, скорость вращения уменьшается и одновременно с этим ротор начинает медленнее вращаться относительно электромагнитного поля и в нем по законам электротехники начинает наводится еще большей величины ЭДС. Вырастает потребляемый ток мотором и он начинает работать на полной мощности. Если же нагрузка на вал будет столь велика, что его застопорит, то может возникнуть повреждение короткозамкнутого ротора из-за максимальной величины наводимой в нем ЭДС. Вот почему важно подбирать двигатель, подходящей мощности. Если же взять большей, то неоправданными будут энергозатраты.

Скорость вращения ротора зависит от количества полюсов. При 2 полюсах скорость вращения будет равна скорости вращения магнитного поля, равного максимум 3000 оборотов в секунду при частоте сети 50 Гц. Что бы понизить скорость вдвое, необходимо увеличить количество полюсов в статоре до четырех.

Весомым недостатком асинхронных двигателей является то, что они подаются регулировке скорости вращения вала только при помощи изменения частоты электрического тока. А так не возможно добиться  постоянной частоты вращения вала.

Принцип работы и устройство синхронного электродвигателя переменного тока

Данный вид электродвигателя используется в быту там, где необходима постоянная скорость вращения, возможность ее регулировки, а так же если необходима скорость вращения более 3000 оборотов в минуту (это максимум для асинхронных).

Синхронные моторы устанавливаются в электроинструменте, пылесосе, стиральной машине и т. д.

устройство синхронного двигателяВ корпусе синхронного двигателя переменного тока расположены обмотки (3 на рисунке), которые также намотаны и на ротор или якорь (1). Их выводы припаяны к секторам токосъемного кольца или коллектора (5), на которые при помощи графитовых щеток (4) подается напряжение. При чем выводы расположены так, что щетки всегда подают напряжение только на одну пару.

Наиболее частыми поломками коллекторных двигателей является:

  1. Износ щеток или их плохой их контакт из-за ослабления прижимной пружины.
  2. Загрязнение коллектора. Чистите либо спиртом или нулевой наждачной бумагой.
  3. Износ подшипников.

Принцип работы. Вращающий момент в электромоторе создается в результате взаимодействия между током тока якоря и магнитным потоком в обмотке возбуждения. С изменением направления переменного тока будет меняться и направление магнитного потока одновременно в корпусе и якоре, благодаря чему вращение всегда будет в одну сторону.

Регулировка скорости вращения меняется методом изменения величины подаваемого напряжения. В дрелях и пылесосах для этого используется реостат или переменное сопротивление.

Изменение направления вращения происходит также как и у двигателей постоянного тока, о которых Я расскажу в следующей статье.

Самое главное о синхронных двигателях Я постарался изложить, более подробно Вы можете прочитать на них на Википедии.

Режимы работы электродвигателя в следующей статье.

jelektro.ru

РАБОТА ЭЛЕКТРОДВИГАТЕЛЯ

   Сегодняшняя тема - обзор различных электродвигателей. Электродвигатели нашли широчайшее применение в науке и технике. Жизнь человека трудно представить без машин и механизмов на основе электрических двигателей. Они применяются повсюду - в заводах, в автомобильной технике, в бытовой аппаратуре, в медицинской технике, одним словом - везде! Электрический двигатель - это своего рода преобразователь, который превращает электрическую энергию в механическую энергию вращения вала двигателя.

Электрический двигатель - схема и принцип действия

   Электродвигатель состоит из двух основных частей - неподвижной части (статор) и вращающая часть (ротор). Двигатели разделяются на две основные группы - двигатели постоянного тока и переменного тока. Основные части простого электродвигателя постоянного тока - неподвижная часть (статор) постоянные магниты, в центре на валу собран ротор, который состоит из стальных пластин, а на них намотана обмотка. Ротор еще и называют якорем электродвигателя.

Детали в Электродвигатель

   Питание подается через контакты (щетки) на обмотку. В результате этого якорь превращается в электромагнит, в результате магнитного воздействия, ротор пытается <ускользнуть> из магнитного поля, а убежать ему некуда, и ротор начинает вращаться с большей скоростью, иногда число оборотов ротора за одну минуту превышает 10000! На роторе обычно мотают несколько обмоток, для эффективной работы и повышения мощности двигателя. Ниже показана схема двигателя в электродрели.

схема двигателя в электродрели

   Двигатели переменного тока - двигатели которые работают под определенной частотой тока, то есть питание двигателей осуществляется переменным током, работают в основном на сетевой частоте 50-60 герц. Двигатели переменного тока делятся на две группы - синхронные и асинхронные двигатели. В основном они пускаются вручную или имеют пусковую обмотку. Двухфазовые или конденсаторные двигатели - это электродвигатели которые имеют конечное число положения ротора. Заданное положение ротора фиксируется подачей питания на соответствующей обмотке. Переход в другое состояние осуществляется путем снятия напряжения с одной обмотки и передачи ее на другой, так напряжение проходит по всем обмоткам, каждая в свою очередь превращается в электромагнит. 

Разобранный двигатель переменного тока

   Синхронный электродвигатель - это разновидность двигателей переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Асинхронный электродвигатель - это двигатель переменного тока в котором частота вращения ротора отличается от частоты вращающего магнитного поля создавая ему питающее напряжение. 

В технике в основном используют двигатели переменного тока

   В технике в основном используют двигатели переменного тока, там не используются постоянные магниты, которые расчитаны на стабильную мощность, для повышенной мощности используют электромагнит, мощность которого во много раз повышает мощность постоянного магнита, хотя для питания электромагнитной обмотки нужно на нее подать добавочное напряжение. Вот в кратце вся основная информация, на сегодня достаточно, автор - АКА.

el-shema.ru

Как подключить электродвигатель, схема подключения

Трехфазные электродвигатели - имеют более высокую эффективностью, чем однофазные электродвигатели на 220 вольт. Поэтому подключение электродвигателя на 380 вольт обеспечивает более стабильную и экономичную работу устройства. Для запуска электродвигателя не понадобятся конденсаторы или другие пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.

На шильде электродвигателя должно быть видно, что обмотки электродвигателя можно соединить, как треугольником на 220 Вольт, так звездой на 380 Вольт. В клеммной коробке электродвигателя вы увидите шесть выводов - U1, U2, V1,V2, W1, W2. Это означает что электродвигатель можно подключить на 220 или 380 Вольт.

Схема подключения трехфазного электродвигателя:

схема подключения электродвигателя

Подключение звездой - большинство промышленных трехфазных электродвигателей подключается по схеме - "звезда" 380В. При подключении звездой вам нужно подключить 3 фазы на разъемы А, В, С.

При подключении треугольником на 220В - необходимо сделать три разные последовательные соединения. После чего можно подключать к 3 независимым последовательным соединениям 3 фазы на разъемы А, В и С как не рисунке.

Подключение звезда-треугольник - В очень редких случаях для получения большей отдачи по мощности, электродвигатель подключают "звезда-треугольник"

Внимание:

Указанная мощность на бирке электродвигателя, это не электрическая, а механическая мощность на валу.

Хочу заметить, что при подключении электродвигателя по схеме "звезда" запуск будет достаточно плавным, но при этом сложно будет достичь максимальной мощности работы трехфазного асинхронного электродвигателя. Поэтому для достижения максимальных показателей электродвигатель подключают "треугольником" и тогда он выдаст полную заявленную мощность, а это в 1,5 раза больше чем при подключении звездой. Но нужно знать что при запуске "треугольником" ток настолько высокий, что может повредить изоляцию проводки и сократить срок службы электродвигателя. Именно поэтому для мощных электродвигателей применяют комбинированную схему подключения по принципу "звезда-треугольник". Сначала запуск мотора происходит по схеме "звезда", но когда электродвигатель набирает достаточную мощность происходит ручное или автоматическое (через реле) переключение на схему "треугольник". После чего мощность возрастает в несколько раз.

Подключение трехфазного электродвигателя, видео:

mirprivoda.ru

Принципиальная схема электрического двигателя

Любой электрический двигатель представляет собой устройство, превращающее электрическую энергию в механическую. Подобно генератору, принципиальная схема электрического двигателя включает в себя статор и ротор, что позволяет отнести его к разряду вращающихся электрических машин.

Устройство двигателя

Применение короткозамкнутого трехфазного асинхронного двигателя сделало его наиболее популярным для большинства машин и механизмов. Обмотка его ротора состоит из системы, объединяющей алюминиевые или медные стержни, расположенные в пазах ротора параллельно между собой. Концы этих стержней соединяются друг с другом при помощи специальных короткозамкнутых колец. Кроме ротора и статора устройство электродвигателя включает в себя вал и корпус.

Регулирование скорости вращения производится ступенчатым способом, при помощи статорной обмотки, где количество полюсов может переключаться. Этот принцип используется в асинхронных двигателях с различным количеством скоростей. Плавное регулирование скорости осуществляется с помощью регулируемого преобразователя частоты, подающего питание к электродвигателю.

Основными положительными характеристиками короткозамкнутых асинхронных электродвигателей являются их высокая надежность, незначительная масса, компактность, более высокий срок службы, чем у двигателей внутреннего сгорания аналогичной мощности. Изготовление таких электродвигателей производится в очень широком диапазоне мощностей, где номинал устройства может составлять всего лишь несколько ватт, а может иметь мощность и в десятки мегаватт. Электродвигатели малой мощности, чаще всего, выпускаются однофазными.

Особенности электрических двигателей

Устройство синхронных электродвигателей очень напоминает синхронный генератор. Таким образом, принципиальная схема электрического двигателя данной модификации, отличается от асинхронных моделей. При одинаковой частоте электрического тока в сети, скорость их вращения остается постоянной, вне зависимости от нагрузки. В отличие от асинхронных, у этих моделей не происходит потребления из сети реактивной энергии. Эта энергия отдается в сеть, таким образом, перекрывая реактивную энергию, потребляемую другими источниками.

Применение синхронных электродвигателей не допускает частых пусков, поэтому, как правило, их используют в условиях относительно неизменной нагрузки, при необходимости обеспечения постоянной скорости вращения.

Следует отдельно отметить двигатели постоянного тока, используемые в условиях необходимости плавного регулирования скоростей. Эти действия производятся с помощью изменяемого тока в якоре или с применением устройств на полупроводниках. Однако, такие двигатели стали применяться все реже из-за их больших размеров, высокой стоимости и значительных потерь в процессе эксплуатации.

Схема подключения двигателя по реверсивной схеме

electric-220.ru


Каталог товаров
    .