интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Схема управления асинхронным электродвигателем. Схема асинхронного электродвигателя


Принцип действия асинхронного двигателя — Asutpp

Электродвигатель предназначен для преобразования, с малыми потерями, электрическую энергию в механическую.

Предлагаем рассмотреть принцип действия асинхронного электродвигателя с короткозамкнутым ротором, трехфазного и однофазного типа, а также его конструкцию и схемы подключения.

Строение двигателя

Основные элементы электродвигателя это – статор, ротор, их обмотки и магнитопровод.

Преобразование электрической энергии в механическую происходит во вращающейся части мотора – роторе.

У двигателя переменного тока, ротор получает энергию не только за счет магнитного поля, но и при помощи индукции. Таким образом, они называются асинхронными двигателями. Это можно сравнить с вторичной обмоткой трансформатора. Эти асинхронные двигатели еще называют вращающимися трансформаторами. Чаще всего используется модели рассчитанные на трех фазное включение.

конструкция асинхронного двигателяКонструкция асинхронного двигателя

Направление вращения электродвигателя задается правилом левой руки буравчика: оно демонстрирует связь между магнитным полем и проводником.

Второй очень важный закон – Фарадея:

  1. ЭДС наводиться в обмотке, но электромагнитный поток меняется во временем.
  2. Величина наведенной ЭДС прямо пропорциональна скорости изменения электрического потока.
  3. Направление ЭДС противодействует току.

Принцип действия

При подаче напряжения на неподвижные обмотки статора, оно создает магнитное в статора. Если подается напряжение переменного тока, то магнитный поток, созданный им, изменяется. Так статор производит изменение магнитного поля, и ротор получает магнитные потоки.

Таким образом, ротор электродвигателя принимает эти поток статора и, следовательно, вращается. Это основной принцип работы и скольжения в асинхронных машинах. Из вышеизложенного следует отметить, что магнитный поток статора (и его напряжение) должно быть равно переменному току для вращения ротора, так что асинхронная машина может работать только от сети переменного тока.

принцип работы асинхронного двигателяПринцип работы асинхронного двигателя

Когда такие двигатели действуют в качестве генератора, они будет генерировать непосредственно переменный ток. В случае такой работы, ротор вращается с помощью внешних средств скажем, турбины. Если ротор имеет некоторый остаточный магнетизм, то есть некоторые магнитные свойства, которые сохраняет по типу магнита внутри материала, то ротор создает переменный поток в стационарной обмотке статора. Так что это обмотки статора будут получать наведенное напряжение по принципу индукции.

Индукционные генераторы используются в небольших магазинах и домашних хозяйствах, чтобы обеспечить дополнительную поддержку питания и являются наименее дорогостоящими из-за легкого монтажа. В последнее время они широко используется людьми в тех странах, где электрические машины теряют мощность из-за постоянных перепадов напряжения в питающей электросети. Большую часть времени, ротор вращается при помощи небольшого дизельного двигателя соединенного с асинхронным генератором переменного напряжения.

Как вращается ротор

Вращающийся магнитный поток проходит через воздушный зазор между статором, ротором и обмоткой неподвижных проводников в роторе. Этот вращающийся поток, создает напряжение в проводниках ротора, тем самым заставляя наводиться в них ЭДС. В соответствии с законом Фарадея электромагнитной индукции, именно это относительное движение между вращающимся магнитным потоком и неподвижными обмотками ротора, которые возбуждает ЭДС, и является основой вращения.

Двигатель с короткозамкнутым ротором, в котором проводники ротора образовывают замкнутую цепь, в следствии чего возникает ЭДС наводящая ток в нем, направление задается законом Ленса, и является таким, чтобы противодействовать причине его возникновения. Относительное движение ротора между вращающимся магнитным потоком и неподвижным проводником и является его действием к вращению. Таким образом, чтобы уменьшить относительную скорость, ротор начинает вращаться в том же направлении, что и вращающийся поток на обмотках статора, пытаясь поймать его. Частота наведенной на него ЭДС такая же, как частота питания.

Гребневые асинхронные двигатели

Когда напряжение питания низкое, возбуждение обмоток короткозамкнутого ротора не происходит. Это обусловлено тем что, когда число зубцов статора и число зубьев ротора равное, таким образом вызывая магнитную фиксацию между статором и ротором. Этот физический контакт иначе называется зубо-блокировкой или магнитной блокировкой. Данная проблема может быть преодолена путем увеличения количества пазов ротора или статора.

Подключение

Асинхронный двигатель можно остановить, просто поменяв местами любые два из выводов статора. Это используется во время чрезвычайных ситуаций. После он изменяет направление вращающегося потока, который производит вращающий момент, тем самым вызывая разрыв питания на роторе. Это называется противофазным торможением.

Видео: Как работает асинхронный двигатель

Для того чтобы этого не происходило в однофазном асинхронном двигателе, необходимо использование конденсаторного устройства.

Его нужно подключить к пусковой обмотке, но предварительно обязательно проводится его расчет. Формула

QC = Uс I2 = U2 I2 / sin2

Подключение асинхронного двигателяСхема: Подключение асинхронного двигателя

Из которой следует, что электрические машины переменного тока двухфазного или однофазного типа, должны снабжаться конденсаторами с мощностью, равной самой мощности двигателя.

Аналогия с муфтой

Рассматривая принцип действия асинхронного электродвигателя, используемого в промышленных машинах, и его технические характеристики, нужно сказать про вращающуюся муфту механического сцепления . Крутящий момент на валу привода должен равняться крутящему моменту на ведомом валу. Кроме того, следует подчеркнуть, что эти два момента являются одним и тем же, поскольку крутящий момент линейного преобразователя вызывается трением между дисков внутри самой муфты.

Электромагнитная муфта сцепленияЭлектромагнитная муфта сцепления

Похожий принцип действия и у тягового двигателя с фазным ротором. Система такого мотора состоит из восьми полюсов (из которых 4 – основные, а 4 – добавочные), и остовы. На основных полюсах расположены медные катушки. Вращение такого механизма обязано зубчатой передаче, которая получает крутящий момент от вала якоря, так же называемого сердечником. Включение в сеть, производится четырьмя гибкими кабелями. Основное назначение многополюсного электродвигателя – приведение в движение тяжелой техники: тепловозы, тракторы, комбайны и в некоторых случаях, станки.

Достоинства и недостатки

Устройство асинхронного двигателя является практически универсальным, но так же, у данного механизма есть свои плюсы и минусы.

Преимущества асинхронных двигателей переменного тока:

  1. Конструкция простой формы.
  2. Низкая стоимость производства.
  3. Надежная и практичная в обращении конструкция.
  4. Не прихотлив в эксплуатации.
  5. Простая схема управления

Эффективность этих двигателей очень высока, так как нет потерь на трение, и относительно высокий коэффициент мощности.

Недостатки асинхронных двигателей переменного тока:

  1. Не возможен контроль скорости без потерь мощности.
  2. Если увеличивается нагрузка – уменьшается момент.
  3. Относительно небольшой пусковой момент.

www.asutpp.ru

Эквивалентная схема замещения асинхронного электродвигателя

Трехфазные асинхронные электродвигатели, или как их еще называют индукционные электродвигатели, являются наиболее распространенными в промышленности. Данный тип электродвигателя, аналогично машинам постоянного тока тоже обладают свойствами обратимости, и может работать как в двигательном, генераторном, так и в тормозных режимах – противовключение, динамическое торможение. Режим работы асинхронного электродвигателя характеризуют знаком и величиной скольжения.

Пожалуй, основным методом анализа установившихся режимов индукционного электродвигателя является использование эквивалентных схем замещения. В таком случае обычно рассматривают явление, которое относится к одной фазе многофазного двигателя при соединении его обмоток звездой.

Упрощенная картина магнитных потоков работающего асинхронного электродвигателя позволяет представить его в виде эквивалентной схемы:

Упрощенная схема магнитных потоков работающего асинхронного электродвигателя

Электромагнитная связь первичной и вторичной цепи осуществляется потоком взаимоиндукции Ф, индуктирующим в роторной обмотке ЭДС Е2S. Сопротивление индуктивное первичной цепи  Х1 обусловлено наличием потока рассеивания, связанного только с этой цепью. Аналогично сопротивления Х2 обусловлено потоком рассеивания Ф25.

Частота тока ротора будет определяться скоростью его вращения относительно скорости вращения магнитного поля статора, то есть зависеть от скольжения и будет равна f2 = f1S.

Ток вторичной цепи при вращающемся роторе:

Ток вторичной цепи при вращающемся роторе

Также выражения для I2 может иметь:

Также выражения для I2 может иметь

Выше показанные выражения имеют не только различную форму записи, но и имеют совершенно разный физический смысл. А смысл его в том, что вместо вращающегося ротора можно рассматривать неподвижный, в котором будет индуцироваться ЭДС Е2. При этом индуктивное сопротивление будет равно Х2, а активное возрастет на величину  активное возрастет на величину так как 1. При этом I1 останется прежним по фазе и величине, что не повлияет на потребляемую из сети мощность. Поскольку I1 и I2 не изменятся, то естественно и потери в первичных и вторичных цепях также не изменятся, соответственно мощность тоже не будет изменяться, а мощность развиваемая двигателем при вращении, будет равна мощности, потребляемой в добавочном сопротивлении активное возрастет на величину. Таким образом, эквивалентная схема замещения асинхронной машины может быть заменена схемой замещения с добавочным сопротивлением rд во вторичной цепи:

Эквивалентная схема асинхронной машины приведенная к неподвижному ротору

 Т – образная схема замещения

После приведения первичной и вторичной ЭДС они будут равны Е1 = Е2/ и это дает возможность соединить эквивалентные точки и получить такую схему:

Т - образная схема замещения асинхронного электродвигателя

Недостатком Т – образной схемы замещения помимо сложностей расчета, является зависимость всех токов I1, I2/, Iμ от скольжения s.

Из Т – образной схемы замещения видно, что в режиме холостого хода, при I2/ = 0 и s = 0, ток в контуре будет обуславливаться сопротивлениями намагничивающего контура и первичной цепи и совсем не будет зависеть от скольжения. Данное обстоятельство позволит вынести на зажимы электродвигателя намагничивающий контур и перейти к Г – образной схеме замещения.

Г – образная схема замещения

Данная схема замещения позволяет изучать процессы в асинхронном электродвигателе, которые имеют место при изменении скольжения электрической машины.

Г - образная схема замещения асинхронного электродвигателя

Учет контура намагничивания необходим при определении I1, который потребляется из сети. Но Г —  образная схема замещения будет справедлива лишь при наличии определенных допущений:

  • Все цепи имеют неизменные (постоянные) параметры. Это значит, что приведенное вторичное сопротивление r2/ не будет зависеть от частоты цепи вторичной (ротора), а насыщение не будет влиять на реактивное сопротивление статорных и роторных обмоток Х1 и Х2/;
  • Полная проводимость намагничивающего контура принимается неизменной, а ток намагничивания, независимо от нагрузки, будет всегда пропорционален напряжению, приложенному к обмоткам;
  • Потери добавочные не учитываются;
  • Паразитные моменты, создаваемые высшими гармониками МДС, также не учитывают.

Следует также помнить и то, что в Г – образной схеме замещения в величины сопротивлений необходимо внести соответствующие поправки:

Поправочные коэффициенты для Г - образной схемы замещения асинхронного электродвигателя

Где:

Поправочный коэффициенты для Г - образной схемы замещения асинхронного электродвигателя

В выше перечисленных уравнениях величины имеющие индекс «дейст» соответствуют реальным значениям параметров асинхронной машины, а без индексов – те, которые используют в эквивалентной схеме.

Поскольку отношение r1/xμ довольно таки мало, то практически  довольно часто принимают:

Практический поправочный коэффициенты для Г - образной схемы замещения асинхронного электродвигателя

Обычно δ лежит в пределах 1,05 – 1,1.

Первичный ток I1 будет равен при любом скольжении:

Первичный ток I1 будет равен при любом скольжении

Приведенный роторный ток:

Приведенный роторный ток

Показанное выше выражение показывает, что ток ротора является функцией скольжения. При s = 0 I2/ = 0. При увеличении скольжения I2/ также будет расти, а при s = 1 достигнет своего максимума, или тока короткого замыкания, или пускового:

достигнет своего максимума, или тока короткого замыкания, или пускового

Если в роторной цепи отсутствует добавочное сопротивление (АД с КЗ ротором), пусковой ток может достигнуть довольно приличных значений, а именно 5 – 8 раз больше чем его номинальное значение.

Данная зависимость показана ниже:

Зависимость тока ротора от скольжения

Отношения пускового значения к номинальному является очень важным параметром для асинхронных машин с короткозамкнутым ротором, так как наличие пусковых токов приводит к просадкам напряжения, что особо ощутимо  при использовании электродвигателей средней и большой мощности. Поэтому данная характеристика приводится в каталогах по выбору электрических машин.

elenergi.ru

Асинхронный двигатель. Устройство и принцип действия однофазного и трехфазного асинхронного электродвигателя.

Асинхронные электродвигатели (АД) находят в народном хозяйстве широкое применение. По разным данным до 70% всей электрической энергии, преобразуемой в механическую энергию вращательного или поступательного движения, потребляется асинхронным двигателем. Электрическую энергию в механическую энергию поступательного движения преобразуют линейные асинхронные электродвигатели, которые широко используются в электрической тяге, для выполнения технологических операций. Широкое применение АД связано с рядом их достоинств. Асинхронные двигатели - это самые простые в конструктивном отношении и в изготовлении, надежные и самые дешевые из всех типов электрических двигателей. Они не имеют щеточноколлекторного узла либо узла скользящего токосъема, что помимо высокой надежности обеспечивает минимальные эксплуатационные расходы. В зависимости от числа питающих фаз различают трехфазные и однофазные асинхронные двигатели. Трехфазный асинхронный двигатель при определенных условиях может успешно выполнять свои функции и при питании от однофазной сети. АД широко применяются не только в промышленности, строительстве, сельском хозяйстве, но и в частном секторе, в быту, в домашних мастерских, на садовых участках. Однофазные асинхронные двигатели приводят во вращение стиральные машины, вентиляторы, небольшие деревообрабатывающие станки, электрические инструменты, насосы для подачи воды. Чаще всего для ремонта или создания механизмов и устройств промышленного изготовления или собственной конструкции применяют трехфазные АД. Причем в распоряжении конструктора может быть как трехфазная, так и однофазная сеть. Возникают проблемы расчета мощности и выбора двигателя для того или другого случая, выбора наиболее рациональной схемы управления асинхронным двигателем, расчета конденсаторов, обеспечивающих работу трехфазного асинхронного двигателя в однофазном режиме, выбора сечения и типа проводов, аппаратов управления и защиты. Такого рода практическим проблемам посвящена предлагаемая вниманию читателя книга. В книге приводится также описание устройства и принципа действия асинхронного двигателя, основные расчетные соотношения для двигателей в трехфазном и однофазном режимах.

Устройство и принцип действия асинхронных электродвигателей

1. Устройство трехфазных асинхронных двигателей

Трехфазный асинхронный двигатель (АД) традиционного исполнения, обеспечивающий вращательное движение, представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя. Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра - намагничивание машины или создание вращающегося магнитного поля. Магнитопровод статора состоит из тонких (от 0,28 до 1 Мм) изолированных друг от друга листов, штампованных из специальной электротехнической стали. В листах различают зубцовую зону и ярмо (рис. 1.а). Листы собирают и скрепляют таким образом, что в магнитопроводе формируются зубцы и пазы статора (рис. 1.б). Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.

Магнитопровод статора

Рис. 1 Магнитопровод статора

В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).

Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник

Рис 2. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник

Более подробные сведения о схемах соединения и условных обозначениях начал и концов обмоток представлены ниже. Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую. Фазная обмотка аналогична обмотке статора, соединенной в звезду. Концы обмотки ротора соединяют вместе и изолируют, а начала присоединяют к контактным кольцам, располагающимся на валу двигателя. На контактные кольца, изолированные друг от друга и от вала двигателя и вращающиеся вместе с ротором, накладываются неподвижные щетки, к которым присоединяют внешние цепи. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи. Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных АД малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3). На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.

Ротор аснхронного двигателя с короткозамкнутой обмоткой

Рис. 3. Ротор аснхронного двигателя с короткозамкнутой обмоткой

Общий вид асинхронного двигателя серии 4А представлен на рис. 4 [2]. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Статор и ротор разделены воздушным зазором, который для машин небольшой мощности находится в пределах от 0,2 до 0,5 мм. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.

Общий вид асинхронного двигателя серии 4А

Рис. 4. Общий вид асинхронного двигателя серии 4А

Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения - это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.

2. Принцип действия трехфазных асинхронных двигателей

Выше отмечалось, что трехфазная обмотка статора служит для намагничивания машины или создания так называемого вращающегося магнитного поля двигателя. В основе принципа действия асинхронного двигателя лежит закон электромагнитной индукции. Вращающееся магнитное поле статора пересекает проводники короткозамкнутой обмотки ротора, отчего в последних наводится электродвижущая сила, вызывающая в обмотке ротора протекание переменного тока. Ток ротора создает собственное магнитное поле, взаимодействие его с вращающимся магнитным полем статора приводит к вращению ротора вслед за полями. Наиболее наглядно идею работы асинхронного двигателя иллюстрирует простой опыт, который еще в XVIII веке демонстрировал французский академик Араго (рис. 5). Если подковообразный магнит вращать с постоянной скоростью вблизи металлического диска, свободно расположенного на оси, то диск начнет вращаться вслед за магнитом с некоторой скоростью, меньшей скорости вращения магнита.

принцип работы асинхронного двигателя

Рис. 5. Опыт Араго, объясняющий принцип работы асинхронного двигателя

Это явление объясняется на основе закона электромагнитной индукции. При движении полюсов магнита около поверхности диска в контурах под полюсом наводится электродвижущая сила и появляются токи, которые создают магнитное поле диска. Читатель, которому трудно представить проводящие контуры в сплошном диске, может изобразить диск в виде колеса со множеством проводящих ток спиц, соединенных ободом и втулкой. Две спицы, а также соединяющие их сегменты обода и втулки и представляют собой элементарный контур. Поле диска сцепляется с полем полюсов вращающегося постоянного магнита, и диск увлекается собственным магнитным полем. Очевидно, наибольшая электродвижущая сила будет наводиться в контурах диска тогда, когда диск неподвижен, и напротив, наименьшая, когда близка к скорости вращения диска. Перейдя к реальному асинхронному двигателю отметим, что короткозамкнутую обмотку ротора можно уподобить диску, а обмотку статора с магнитопроводом - вращающемуся магниту. Однако вращение магнитного поля в неподвижном статоре а осуществляется благодаря трехфазной системе токов, которые протекают в трехфазной обмотке с пространственным сдвигом фаз.

Алиев И.И.

www.eti.su

Устройство асинхронного двигателя АД | Электрикам

Трехфазный асинхронный двигатель (АД) традиционного исполнения представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя.

Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра — намагничивание машины или создание вращающегося магнитного поля.

Независимо от типа электродвигателя сердечники (магнитопровод) статора выполняют из листов электротехнической стали толщиной 0,5 мм (для машин небольшой мощности в ряде случаев толщиной 0,65 мм) рис. 1. Листы изолируют друг от друга либо оксидированием, либо лакировкой, либо используют сталь с электроизоляционным покрытием. Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.

Рис. 1 Магнитопровод статора

В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).

Рис 2. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник

Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую.

При фазном роторе в пазы укладывается обычно трехфазная обмотка, которая соединяется по схеме звезды или треугольника и выводится к трем контактным кольцам, расположенным на валу электродвигателя. Контактные кольца с насаженными на них щетками служат для включения пускорегулирующего реостата. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи.

Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных асинхронных двигателей малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3).Короткозамкнутые роторы электродвигателей с повышенным пусковым моментом выполняют с двойной беличьей клеткой, а также глубокопазными. На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.

Рис. 3. Ротор асинхронного двигателя с короткозамкнутой обмоткой

Ответственным конструктивным элементом асинхронных электродвигателей является зазор между статором и ротором. Величина зазора влияет на энергетические и виброакустические показатели, использование активных материалов и надежность электродвигателей При уменьшении зазора понижается реактивная составляющая тока холостого хода и, следовательно, повышается коэффициент мощности электродвигателя; вместе с тем увеличивается магнитное рассеяние, а следовательно, индуктивное сопротивление электродвигателя; увеличиваются добавочные потери, уменьшается фактический кпд электродвигателя и увеличивается нагрев обмоток; увеличивается уровень шума и вибрации магнитного присоединения, возрастает нагрузка на вал и подшипники от силы магнитного притяжения; возникает опасность касания ротора о статор и тем самым понижается надежность электродвигателя. В асинхронных электродвигателях величина воздушного зазора колеблется в пределах от 0,2 до 2 мм.

Общий вид асинхронного двигателя серии 4А представлен на рис. 4. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.

Рис. 4. Общий вид асинхронного двигателя серии 4А

Общий вид асинхронного двигателя

Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения — это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.

electrikam.com

Принцип действия асинхронного электродвигателя

Простейшим по своему устройству и самым распространенным является асинхронный двигатель, изобретенный  М. О. Доливо-Добровольским. Принцип его работы основан на действии вращающегося магнитного поля на приспособленную для вращения короткозамкнутую обмотку. Для усиления магнитного поля и придания ему должной конфигурации обмотки асинхронного двигателя размещены на двух сердечниках, которые собираются из листов электротехнической стали толщиной 0.5 мм. Листы друг от друга изолированы слоем лака для уменьшения потерь на вихревые токи.

Схема устройства асинхронного двигателя

Схема устройства асинхронного двигателя.

У неподвижной части машины, статора, сердечник имеет форму полного цилиндра. В пазах с внутренней стороны этого сердечника уложена трехфазная обмотка. Эта обмотка включается под напряжение трехфазной сети, и возникающие в ней токи возбуждают вращающееся магнитное поле машины.

У подвижной части, ротора, сердечник имеет форму цилиндра. Он укреплен на валу машины. В пазах на поверхности сердечника размещается обмотка ротора, в большинстве случаев короткозамкнутая. Если ее мысленно снять с сердечника, то она будет иметь вид цилиндрической клетки из медных или алюминиевых стержней, замкнутых на торцах двумя кольцами из того же материала. Такую обмотку называют «беличьим колесом». Стержни обмотки вставляются в пазы ротора без изоляции. Часто короткозамкнутая обмотка ротора изготавливается путем заливки расплавленным алюминием пазов сердечника. Причем отливаются и замыкающие кольца.

Схема управления асинхронным двигателем

Схема управления асинхронным двигателем.

Обмотка статора электродвигателя выполняется изолированным проводом и укладывается в пазы статора. Каждая из катушек распределяется по нескольким пазам. Если обмотка состоит из трех катушек, то трехфазная система токов, ее обтекающих, возбуждает вышеописанное двухполюсное вращение. За один период переменного тока такое поле делает один оборот. Следовательно, при стандартной промышленной частоте 50 Гц,  т. е. 50 периодов в секунду, двухполюсное поле делает 50 х 60 =3000 об./мин. Скорость вращения ротора обычно лишь  на несколько процентов меньше скорости вращения поля.

Чтобы получить двигатель с меньшей скоростью поля, нужно посредством многополюсной обмотки увеличить число полюсов вращающегося магнитного поля. Каждым трем катушкам статорной обмотки соответствует одна пара полюсов вращающегося поля. Следовательно, если трехфазная обмотка статора состоит из К катушек. то число пар полюсов вращающегося поля, возбуждаемого этой обмоткой, будет: Р=К:З.

Направление вращения ротора асинхронного двигателя определяется направлением вращения его магнитного поля.

А направление вращения поля обуславливается последовательностью фаз А, В, С трехфазной сети. Для изменения направления вращения двигателя достаточно изменить соединение обмотки статора с сетью, чтобы зажим статора, соединенный первоначально с фазой А сети, был бы присоединен к фазе В сети. Соответственно, зажим статора, соединенный с фазой В сети, должен быть соединен с фазой А сети. Соединение третьего зажима статора с сетью остается без изменений.

Пока ротор неподвижен, условия в асинхронном двигателе подобны условиям в трансформаторе: первичной обмотке трансформатора соответствует обмотка статора, а вторичной - обмотка ротора. Напряжение на зажимах каждой фазной обмотки статора уравновешивается ЭДС, индуктируемой в этой обмотке вращающимся магнитным полем. Ток в обмотке ротора индуктируется вращающимся магнитным полем.

Схема принципа работы асинхронного двигателя

Схема принципа работы асинхронного двигателя.

Согласно принципу Ленца, этот индуктированный ток стремится ослабить магнитное поле, его индуктирующее. Но ослабление магнитного поля уменьшает ЭДС, индуктируемую этим полем в обмотке статора. Следовательно, нарушается электрическое равновесие на зажимах статора. Так образуется неуравновешенный избыток напряжения. Это вызывает увеличение силы тока в обмотке статора. Ток статора усиливает магнитное поле примерно до его прежней величины, и электрическое равновесие на зажимах статора восстанавливается.

Соотношение токов статора и ротора в асинхронном двигателе подобно соотношениям первичного и вторичного токов в трансформаторе. Ток статора является ненамагничивающим, а ток ротора – размагничивающим. Всякое изменение тока ротора вызывает  пропорциональное изменение тока статора.

http://fazaa.ru/www.youtube.com/watch?v=5tZjzpUa_ok

При пуске двигателя в ход вращающееся магнитное поле пересекает обмотку ротора с большой скоростью (угловой скоростью W:P) и индуктирует в ней значительную ЭДС. Эта ЭДС создает в короткозамкнутом роторе большой пусковой ток. Соответственно, и в обмотке статора возникает тоже значительный пусковой ток. Он больше рабочего тока двигателя примерно раз в семь. Пусковой толчок тока характерен для асинхронного двигателя с короткозамкнутым ротором.

По мере того как скорость ротора возрастает. уменьшается индуктируемая в нем ЭДС, а вместе с ней уменьшаются токи ротора и статора. В конце пуска ненагруженного  двигателя сила тока ротора должна быть такой, чтобы вращающий момент, развиваемый двигателем, покрывал все его механические потери от трений в подшипниках о воздух и т. д.

Если нагрузить уже вращающийся асинхронный двигатель, то механический тормозящий момент на валу двигателя сначала окажется дольше вращающего момента и ротор уменьшит скорость n2 /. Соответственно, возрастет разность скоростей n1 – n2 поля и ротора, т. е. увеличится скольжение.

http://fazaa.ru/www.youtube.com/watch?v=0bnY6LWnME0

Вращающееся поле будет пересекать ротор с относительно большой скоростью и индуктировать в роторе большую ЭДС. Возрастание ЭДС вызовет увеличение силы тока в роторе. Пропорционально силе тока возрастет вращающий момент и уравновесит тормозящий момент нагрузки на валу двигателя.Одновременно увеличение силы тока ротора вызовет соответствующее повышение силы тока статора, в результате чего возрастет и потребление мощности двигателем из сети. Таким образом, с увеличением нагрузки на валу двигателя возрастает скольжение, силы тока статора и потребление мощности двигателем из сети.

Поделитесь полезной статьей:

Top

fazaa.ru

Асинхронный электродвигатель трехфазного тока с короткозамкнутым ротором

Рассмотрим весьма распространенную схему управления асинхронным двигателем при помощи магнитного пускателя.

Устройство однофазного асинхронного двигателя

Устройство однофазного асинхронного двигателя.

На рис.1 приведена схема управления без возможности изменения направления вращения (реверсирования). Нереверсивный магнитный пускатель состоит из трехполюсного контактора и теплового реле.

Проследим устройство и работу вначале силовых (главных) цепей, а затем цепей управления.

Схема управления асинхронным короткозамкнутым двигателем при помощи нереверсивного магнитного пускателя

Рисунок.1 Схема управления асинхронным короткозамкнутым двигателем при помощи нереверсивного магнитного пускателя.

Силовые цепи. Трехфазный ток к статору электродви­гателяД поступает через трехполюсный рубильник Р. Рубильник дает возможность отключить электродвигатель в случае ремонта или выхода из строя магнитного пускателя. Далее в силовой цепи находятся предохранители 1П, которые помещаются обычно на групповом распределительном щитке; они защищают цепи от корот­ких замыканий. Главные контакты Л трехполюсного линейного контактора включают или отключают обмотку статораэлектро­двигателя. Подключены главные контакты таким образом, чтобы подвижные контакты располагались со стороны двигателя, а неподвижные, всегда находящиеся под напряжением, - со стороны сети, такое подключение повышает безопасность обслуживания. Тепловые реле включаются в две фазы, так как чрезмерно большой ток возможен не менее чем в двух проводах, они служат для защиты двигателя от длительных перегрузок и от работы на двух фазах.

Применение в схеме наряду с тепловыми реле плавких предо­хранителей объясняется тем, что силовые контакты магнитных пускателей допускают разрыв токов перегрузки не больше семи­кратной величины номинального тока электродвигателя, мощность которого допустима в данном пускателе; а на разрыв токов корот­кого замыкания эти контакты не рассчитаны. В силовую цепь включаются нагревательные элементы реле.

Цепи управления. Питание цепи управления осущест­вляется здесь через рубильник и предохранители главной цепи. Кроме того, цепи управления защищены своим одним предохра­нителем 2П, он защищает цепь управления от коротких замыканий. Как видно из схемы, цепь управления питается напряжением такой же величины, что и силовая цепь.

В цепь управления включены кнопки «стоп» и «пуск».

Схема управления асинхронным короткозамкнутым двигателем с возможностью реверсирования

Рисунок 2 Схема управления асинхронным короткозамкнутым двигателем с возможностью реверсирования.

Катушка Л линейного контактора с блок-контактном Л1 при помощи своих главных контактов Л в силовой цепи осуществляет включение и отключение электродвигателя Д. Далее в цепь управ­ления включены размыкающие контакты (с ручным возвратом) тепловых реле 1РТ и 2РТ, нагревательные элементы которых включены в главную цепь. У некоторых типов тепловых реле име­ются два нагревательных элемента и только один размыкающий контакт, на который может воздействовать посредством рычажной системы каждая из биметаллических пластин.

Схема работает следующим образом. Для пуска двигателя пос­ле включения рубильника Р следует нажать кнопку «пуск». При этом замыкается цепь катушки контактора Л. Ток идет по следую­щей цепи: фаза Л1 - предохранитель 2П - размыкающая кнопка «стоп» - кнопка «пуск» - катушка контактора Л - размыкающие контакты тепловых реле 1РТ и 2РТ - фаза Л3. Вследствие того, что по катушке контактора проходит ток, сердечник ее намагни­чивается, якорь втягивается и включает главные контакты. Вы­воды обмотки статора С1C2С3 присоединяются к сети питания Л1, Л2, Л3, и двигатель включается. Одновременно с главными контактами замыкаются и блок-контакты так, что цепь катушки контактора замыкается через блок-контакт Л1 шунтирующий кнопку «пуск». Теперь уже не нужно больше удерживать кнопку в нажатом состоянии; за счет действия пружины она возвращается в исходное положение. Для отключения двигателя следует нажать кнопку «стоп»; при этом питание катушки контактора Л преры­вается, и главные контакты под действием веса или пружины размы­каются и отсоединяют обмотку статора от сети.

Статор трехфазного асинхронного двигателя

Статор трехфазного асинхронного двигателя.

Рассмотренная схема осуществляет и так называемую «нуле­вую» (или минимальную) защиту: при исчезновении или значительном снижении напряжения сети до 35—40% номинального значения контактор отключается и отключает электродвигатель от сети.

При восстановлении напряжения самопуска двигателя уже не произойдет, так как кнопка «пуск» отпущена, а блок-кон­такт Л1 разомкнут.

В случае длительной перегрузки размыкающий контакт тепло­вого реле 1РТ (2РТ) отключает контактор, а следовательно, и двигатель. После действия реле тепловой защиты (если тепловое реле выполнено по принципу принудительного возврата) для воз­врата контакта реле в исходное положение следует нажать на кноп­ку, которая помещается на крышке пускателя; возврат контактов реле 1РТ (2РТ) после отключения возможен только через время, необходимое для того, чтобы биметаллические пластинки остыли.

Магнитные пускатели изготовляются для управления электродвигателями до 75—100 кВт. Рассмотренная схема может быть собрана также и с контактором. Для асинхронных двигателей напряжением до 500 В обычно применяются трехполюсные контак­торы переменного тока серии КТ с катушкой переменного тюка.

Асинхронный двигатель с фазным ротором

Асинхронный двигатель с фазным ротором.

Для управления механизмами, требующими изменения направления вращения (реверсирования), применяется либо реверсив­ный магнитный пускатель, либо схема управления с двумя контак­торами, мало отличающаяся от схемы реверсивного пускателя.

На рис. 2 приведена схема управления асинхронным корот­козамкнутым двигателем с возможностью реверсирования. Как и схема управления с магнитным пускателем, данная схема допускает дистанционное управление, так как кнопки управления, которых в этой схеме три - «вперед», «назад» и «стоп», можно поместить на некотором расстоянии от двигателя. При помощи схемы, изо­браженной на рис. 2, можно пустить двигатель (и, следова­тельно, связанный с ним механизм), изменить направление вра­щения, остановить его; кроме того, схема осуществляет защиту установки от коротких замыканий, от перегрузки, от падения напряжения в сети (нулевая защита) и от самопуска. В этой схеме совмещаются две схемы нереверсивного пуска и имеются некоторые особенности. Схема снабжена двумя контакторами: контактором «вперед» (катушка и ее три главных контакта обозначены буквой В, а блок-контактыB1и В2) и контактором «назад» (катушка и три главных контакта обозначены буквой Н, а блок-контакты h2 и Н2). Главные контакты контакторов В и Н включены в силовую цепь таким образом, что когда замыкаются контакты В (контакты Н при этом разомкнуты), на обмотку статора подаются три фазы сети в одном порядке, а когда замыкаются контакты Н, две фазы из трех меняются местами. В связи с этим магнитное поле статора двигателя начинает вращаться в обратную сторону, и двигатель реверсируется.

Действительно, при включении контактов В фаза Л1 сети по­дается на обмотку статора С1, фаза Л2- на С2, фаза Л3- на С3. Если же замыкаются контакты Н, то фаза Л1 подается на об­мотку С3, фаза Л2 - на С2 (без изменения), фаза Л3 - наС1, следо­вательно, фазы Л1 и Л3 меняются местами.

Схема работает следующим образом. Для включения двига­теля в направлении «вперед» нажимается кнопка «вперед»; при этом ток от фазы Л2 идет по цепи: 1 - 3 - 5 - 7 - 6 - 4 - 2 -  фаза Л3; катушка В замыкает свои главные контакты В, и двигатель вклю­чается на движение «вперед». Для изменения направления враще­ния включается кнопка «стоп», а затем включается кнопка «назад»; при этом ток идет по цепи: фаза Л2 - 1 - 3 - 9 - 11 - 6 - 4 - 2 - фаза Л3. Теперь ток уже идет по катушке Н, которая замы­кает свои контакты, и двигатель реверсируется. Одновременное включение обоих контакторов в рассмотренной схеме может при­вести к короткому замыканию в силовой цепи. Если двигатель включить в направлении, например, «вперед» и по ошибке нажать кнопку «назад», то катушка Н также включит свои контакты (кон­такты В были включены ранее, поскольку двигатель работал в направлении «вперед»), в силовой цепи окажутся включенными все шесть главных контактов, что приведет к короткому замыканию в двух фазах (Л1и Л3). Чтобы этого не произошло, в схеме при­меняются двухцепные кнопки «вперед» и «назад»; при нажатии кноп­ки «вперед» одновременно размыкается контакт в цепи катушки Н, и наоборот, если нажать кнопку «назад», то размыкается кон­такт катушки В. Это устройство называется механической блоки­ровкой. Для увеличения надежности работы схемы механической блокировкой снабжаются также якори катушек контакторов, которые имеют специальный рычаг: втягивание якоря одной ка­тушки делает невозможным одновременное втягивание якоря второй катушки.

Кроме механической применяется также электрическая бло­кировка. На рис. 2 кнопки управления «вперед» и «назад» обычные; однако в цепь катушки «вперед» включен размыкающий контакт контактора «назад», и наоборот, в цепь катушки «назад» включен размыкающий контакт контактора «вперед». Если нажать, например, кнопку «назад», то ток пройдет по катушке контактора «назад», контактор замкнет свои замыкающие контакты и разомк­нет свой размыкающий контакт Н2 в цепи катушки В. Следователь­но, пока включена катушка контактора Н, цепь катушки контак­тора В будет разомкнутой, и включить катушку В одновременно с катушкой Н невозможно. Это устройство называется электриче­ской блокировкой. Для увеличения надежности работы схемы одно­временно с электрической применяют механическую блокировку.

Поделитесь полезной статьей:

Top

fazaa.ru


Каталог товаров
    .