интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Как проверить светодиод мультиметром (тестером) на работоспособность? Led tester схема


Тестер светодиодов с автоматическим выбором параметров SID-GJ2C.

Здравствуйте. В своём сегодняшнем обзоре я расскажу вам о тестере светодиодов с автоматическим выбором параметров, который очень экономит время при ремонте светодиодной подсветки мониторов и телевизоров, светодиодных ламп, лент и так далее. Если вам это интересно, то добро пожаловать под кат.

Заказ был сделан 27 апреля. 30 апреля магазин отправил товар, и уже 17 мая я получил его на почте.

Пакет

В этом пакете, лежал комплект тестера для проверки светодиодов SID-GJ2C упакованный в пакет с zip замком и укутанный во много слоёв вспененного полиэтилена:

Вот, что входит в комплект:

Инструкция на английском языке:

Инструкция

Шнур питания:

Переходник – не потребуется:

Щупы, имеющие немалый вес и очень качественно исполненные:

1000В, 20А:

С острыми иглами на конце:

Провода мягкие, марка провода:

И конечно же в комплект входит сам тестер светодиодов — SID-GJ2C.

Вот его краткие характеристики:

Model No: SID-GJ2C Input Voltage: 85-265V International General Output Voltage: 0-300V 1.High Brightness No Disassemble More Accurate. 2.Double Isolated Safe Protection. 3.Voltage and Current Intelligent Adjustment. 4.Voltage Range:0-300V (slow boost safety design of soft start)

Тестер не имеет никаких органов управления. На лицевой стороне находится вольтметр, который показывает напряжение, которое тестер выдаёт на щупы для проверки светодиодов.

На одном из торцов тестера – находятся два разъёма для подключения щупов:

На другом – разъём для подключения шнура питания:

Вид сзади:

Произведём вскрытие:

Открутим и перевернём плату:

Маркировка на микросхеме – удалена:

Собираем тестер обратно, подключаем шнуры и включаем его в сеть:

Отображается напряжение на щупах в 193В.

Подключим щупы к одиночному одноваттному светодиоду:

Тестер выдаёт на светодиод 2,2 вольта.

Подключим тестер к группе светодиодов в лампе типа «кукуруза»:

Таким образом, тестером можно проверять как одиночные светодиоды, так и светодиодные сборки. В лампах, лентах, подсветках мониторов и телевизоров. Тестер обеспечивает плавный запуск светодиодов и позволяет быстро локализовать неисправность, а также убедиться в исправности или неисправности светодиодного драйвера.

Для того, чтобы лучше понять принцип работы тестера светодиодов SID-GJ2C — я впервые снял видео обзор, дополняющий этот текстовый обзор. Поэтому прошу за него особо строго не судить, так как раньше я снимал только коротенькие видео о товарах без комментариев.

После, примерно, 1-2 минут подключения — тестер плавно начинает приподнимать напряжение на выходе. Это очень быстро помогает выловить виновника в случае, если светодиодная сборка при работе начинает мигать.

Защита в тестере организована на отлично. При замыкании – напряжение на щупах падает до ноля:

Если взяться за оголенные концы щупов руками – удара током не будет. Но я всё же не рекомендую долго замыкать щупы или долго за них держаться, зачем насиловать защиту.

Весит тестер немного, и не огрузит при переноске:

Ну, заодно, и лампу починил.

Всем света!

Дополнение по вопросам в комментариях.

Сначала по напряжению. Табло на тестере крайне инерционно. Это к вопросу, почему на трех светодиодах напряжение то 7,4 то 123 вольта. При подключении диода — тестер сразу сбрасыват напряжение до ноля, а потом плавно поднимает его. Табло это так быстро отразить не может. И оно занижает показания во всём диапазоне на 0,3 вольта. Идем дальше, после подключения одного одноваттного светодиода, напяжение плавно поднимается до момента, когда светодиод загорится. По тестеру это 2,2 вольта, В реальности — 2,5. Ток при этом составляет 1мА. Примерно через 2 минуты тестер начинает плавно поднимать напряжение и останавливается на 2,6 В. В реальности — 2,9 вольта. Всё, выше оно не поднимется, сколько бы мы не держали щупы на светодиоде. Несмотря на то, что паспортное напряжение одноваттного светодиода составляет 3,2 — 3,4 вольта. Хотя, может, производитель тестера просто перестраховывается, учитывая, что светодиоды бывают разного качества. И при этом ток выдаваемый тестером составляет 24,5 мА. Ну, и протестировал, заодно, на оказавшейся под рукой сборке из семи одноваттных светодиодов. Сборка начинает светится при 16 вольтах на тестере светодиодов. В реальности на 16,3 вольтах. Ток 2 мА. Через две минуты тестер плавно поднимает напряжение до 18,3 вольт. На самом деле до 18,6 вольт и подъём напряжения на этом завершается. Получается примерно 2,66В на светодиод. При этом ток составляет 24,7 мА

Дополнение номер два: Для проверки — необязательно ждать 2 минуты. Работоспособность диодов видно сразу. Посмотрите видео. Полное рабочее напряжение и ток не к чему. За исключением случаев, когда подсветка мигает при работе. Но чаще — или светодиод полностью неисправен, или драйвер, что реже. Мигание — хуже всего выявлять мультиметром. На холодных светодиодах — вы увидете, что все светодиоды исправны. Приходится включать, ждать пока нагреется, выключать и сразу проверять. На горячем будет обрыв. Это занимает намного больше тех двух минут, которые требует тестер светодиодов, что бы найти виновника этой неисправности.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

ТЕСТЕР СВЕТОДИОДОВ С ЖК-ДИСПЛЕЕМ

Большинство совеременных проектов включают в себя по меньшей мере один светодиод. Но прежде чем паять светодиод в схему, как-то нужно определить, что цвет и яркость соответствует потребностям. А после этого рассчитать правильное значение резистора. Предлагаемый микроконтроллерный тестер имеет токоограничивающий принцип проверки светодиода, а также дисплей, который показывает:

  1. Напряжение светодиода
  2. Предельный ток в миллиампер (регулируемый)
  3. Желаемое целевое напряжение (также регулируемое)
  4. Расчетные значения резисторов

Схема испытателя светодиодов

Схема испытателя светодиодов 1

Схема испытателя светодиодов на МК

Для питания выбрана 9 В батарея по многим причинам:

  • Щелочная батарея имеет от 9.6 до 7 В в течение всей срока службы. После вычитания 1,5 В падения на LM317 регуляторе останется еще много напряжения для большинства современных светодиодов.
  • Легко получить стабильные 5 В для микроконтроллера и ЖКИ.
  • Схема потребляет около 40 мА - ёмкости хватает.
  • Девятивольтовая батарея компактна и имеет свой собственный штеккер.
  • Щелочные аккумуляторы стоят недорого.
  • Аккумулятор прослужит много лет при умеренном использовании.

Итак, эта схема основана на регуляторе постоянного тока LM317 (смотрите простую версию), но с дополнительными компонентами для поддержки измерений. Расчет напряжения на сопротивлении 47 ом определяет ток через испытываемый LED. Например, 0.94 вольт на 47 Ом = 20 мА.

ТЕСТЕР СВЕТОДИОДОВ С ЖК-ДИСПЛЕЕМ

ТЕСТЕР СВЕТОДИОДОВ С ДИСПЛЕЕМ

Цифровой прибор для определениясветодиодов

Цифровой прибор для определения основных параметров LED

ТЕСТЕР СВЕТОДИОДОВ С LCD-ДИСПЛЕЕМ

Atmel ATtiny84 микроконтроллер выполняет все измерения и расчеты, а также обновляет информацию на дисплее. Этот микроконтроллер имеет 8 КБ памяти, хотя программа занимает менее 4 КБ. Программа для него в этом архиве, там же смотрите файлы плат.

Видео работы LED тестера

 

Поделитесь полезной информацией с друзьями:

elwo.ru

ПРОВЕРКА СВЕТОДИОДОВ

   Захотелось определённости в отношениях со светодиодами. Надоело заглядывать через лупу в их внутренности для предположительного определения анода–катода, идентично надоело определять их пригодность и распиновку мультиметром, пусть и не слишком большой ритуал, но... да и он полную «картину» характеристик не отражает. Нет, должен каждый уважающий себя радиолюбитель обладать достаточным количеством информации о держащем в руках светодиоде. И для этого существует тестер светодиодов на компоненте под названием резистор. Схема реально потрясает воображение :)

Схема приставки LED тестера

Схема приставки LED тестера

   Изготовить, предлагаю, как приставку к любому цифровому мультиметру. Первое, что нужно сделать, добыть из старой батарейки «Крона» соединительную колодку и комплект крепления для неё.

из батарейки «Крона» соединительная колодка

   Дальше находим подходящий корпус для будущего девайса и крепим на него колодку. Изготавливаем штыри для соединения с мультиметром (нарезать резьбу М4 только на необходимую для крепления длину, а не так как на фото – сделано из латунных винтов, что было под рукой).

подходящий корпус для будущего девайса тестера

   По размеру и конфигурации отсека для компонентов вырезаем крышку – плату, на которую устанавливаем кнопку включения и разъем для подключения проверяемого светодиода.

вырезаем крышку – плату, на которую устанавливаем кнопку включения

   С внутренней стороны платы, согласно схемы, припаиваем резистор (1 к, 0,25 Вт) и провода.

Делаем устройство для ПРОВЕРКИ СВЕТОДИОДОВ

   Монтируем всё в корпус, соединяем провода опять же согласно схемы.

ПРОВЕРКА СВЕТОДИОДОВ - тестер

   Клеим на свободное место на плате схематичное изображение светодиода, которое ориентируем согласно схеме подключения, при которой светодиод будет, безусловно, функционировать. Подсоединяем к мультиметру. Устанавливаем предел измерения 20V постоянки.

ПРОВЕРКА СВЕТОДИОДОВ мультиметром

   Подсоединяем источник питания и проверяемый светодиод. Нажимаем кнопку включения. Имеем:

  • а) светодиод исправен
  • б) напряжение его питания 2V
  • в) распиновка известна

ПРОВЕРКА СВЕТОДИОДОВ - приставка к тестеру

   Если же напряжение питания не интересует можно вообще обойтись без мультиметра.

Самодельная приставка - ПРОВЕРКА СВЕТОДИОДОВ

   Совсем простенькое устройство, а какое удобное. Учитывая постоянный рост популярности светоизлучающих диодов, в том числе в осветительных лампочках, где их тип чаще всего неизвестен - иметь такой тестер надо всем. С пожеланием успеха всем электронщикам, Babay.

   Форум по LED

   Обсудить статью ПРОВЕРКА СВЕТОДИОДОВ

radioskot.ru

Прибор для проверки светодиодной подсветки телевизоров и отдельных светодиодов

Задумался я как-то сделать прибор для проверки светодиодной подсветки в современных телевизорах. Прибор мне нужен, т.к. занимаюсь ремонтом. В самом начале моей практики ремонта подсветки использовался обычный мультиметр в режиме прозвонки. Исправные светодиоды слегка засвечивались. Но иногда эту засветку было плохо видно. Вторая попытка упростить поиск неисправности была реализация источника тока из старой зарядки от мобильника и LM311 в режиме стабилизатора напряжения на 3.3В и источника тока на 300мА. Зачем такие параметры? Потому что светодиоды подсветки питаются таким током. Очень часто в процессе проверки исправные светодиоды в прямом смысле слова ослепляли, т.к. светили в полную силу. Еще одним недостатком данной реализации было то, что нельзя было проверить больше 1 светодиода за один раз. И когда попадались светодиоды на 6В, то они тоже не засвечивались и их приходилось проверять мультиметром в режиме проверки диодов, орентируясь на показания прибора. Сколько раз я видел, что нерабочий светодиод отображается как «почти рабочий» по показаниям мультиметра это не сосчитать. Как-то на просторах Интернета наткнулся на специальный прибор для проверки светодиодной подсветки. Но его цена меня совсем не радовала даже если его заказывать в Китае. Долгие попытки найти на него схему не увенчались успехом. Еще удручало то, что я ведь понимал, что это просто обычный источник тока. И вот, как-то в очередной раз поиски схемы для этого прибора меня привели к этой схемеСхема Рассматривались схемы стабилизатора тока на биполярном транзисторе, на полевом транзисторе, на ОУ. В итоге был выбран биполярный транзистор, т.к. эта схема содержит абсолютный минимум деталей. Я поставил транзистор C2688. Тот, что был под рукой. Конденсаторы поставил 100мкфх100В, т.к. решил не заморачиваться и взять «с запасом» по напряжению.Транзистор Было лень разводить плату и травить, поэтому нашел в коробке кусок макетной платы подходящего размераПлата Общий вид прибораОбщий вид Вид сверхуСверху

В качестве тестовых проводов использованы щупы от мультиметра.

Прибор был успешно протестирован на разном количестве светодиодов. Также был тест «в полевых условиях», выявилась еще особенность — зажигать только исправные светодиоды в ленте, и сразу видны неисправные. Не знаю, глюк это был или нет, но так было.

Схема в формате SPlan прикреплена

В планах — подцепить к нему вольтметр чтобы можно было проверять стабилитроны. Сейчас тоже можно, но требуется подключение мультиметра.

Добавлен файл проекта в Протеусе. Симуляция подтверждает, что при напряжении на умножителе 125В напряжение на светодиоде равно его рабочему напряжению.

По результатам обсуждений и последующих экспериментов с новыми светодиодами выявлено, что

неверная полярность подключения прибора может вывести светодиод из строя
. Критическим для светодиода оказывается максимальный обратный ток, который для «обычных» (1,5 и 3мм) светодиодов находится в районе около 1мА и они достаточно часто выходят из строя. Для мощных светодиодов данный параметр может находится в районе 20-30мА и прибор может не испортить данные светодиоды.

we.easyelectronics.ru

СХЕМА ИСПЫТАТЕЛЯ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ

   Как и многие энтузиасты радиоэлектроники, я собрал немалую коллекцию различной формы и цветов LED элементов. Но каждый раз устанавливая один из них в ту или иную схему, приходится определять их точные параметры. А именно:

  • Какой светодиод имеет фактический цвет, когда горит?
  • Насколько велик уровень яркости?
  • Какой номинал ограничительного резистора нужен, чтобы добиться оптимального соотношения ток/яркость?
  • Где у данного светодиода анод и где катод?

   Каждый раз экспериментально вычислять значение резистора не так просто, поскольку у светоизлучающих диодов падение напряжения зависит от тока. А такие таблицы найти трудно. Обычно просто подключают блок питания примерно на 5 В и прикрепляют к нему светодиод последовательно с переменным резистором. Потенциометр плавно вращается до тех пор, пока не достигается нужная яркость. Затем измеряется его сопротивление с помощью мультиметра. Все это может быть очень хлопотно, особенно если мультиметр и источник питания отсутствуют. Кроме того, уменьшая потенциометр ниже определенного сопротивления, можно повредить светодиод (а это происходит в моменте). В общем будет не лишним создать автономный LED тестер. Похожие проекты уже публиковались на этом и других сайтах, но данная схема гораздо универсальнее, безопаснее и удобнее.

Схема испытателя напряжения и тока светодиодов

Схема испытателя напряжения и тока светодиодов

   Светодиодный тестер использует батарею Крона в качестве источника питания, что обеспечивает мобильность и не требует отдельного сетевого адаптера.

СХЕМА ИСПЫТАТЕЛЯ СВЕТОИЗЛУЧАЮЩИХ ДИОДОВ

   Печатная плата прикреплена к аккумулятору с помощью двухсторонней клейкой ленты. Это так - на скорую руку. Позже будет всё вставлено в приличный пластиковый корпус.

Самодельный ИСПЫТАТЕЛЬ СВЕТО ДИОДОВ

   Схема совсем не потребляет ток в режиме ожидания, и использует 2 - 20 мА при свечении LED. Таким образом, батарея должна работать в течение многих лет.

Микросхема и другие детали

   Многие привыкли использовать стандартные микросхемы 7805 как регуляторы напряжения. Но большинство их могут регулировать и ток. Другие элементы схемы:

  • D1 - диод Шоттки 1N5817 предотвращает протекание тока в обратном направлении, если аккумулятор подключен наоборот. Это защищает микросхему LM317L от повреждений.
  • R1 - потенциометр, который может менять сопротивление от 0 до 500 ом. Это приводит к изменению выходного напряжения LM317L, что позволит регулировать и ток.
  • R2 - постоянный резистор, что обеспечивает максимальный предел тока примерно в 30 мА, рассчитывается по приведённой на схеме формуле. Если этот резистор не будет установлен вообще, то когда потенциометр скрутят до 0 ом, тестируемый LED элемент получит значительно больше тока из LM317L (почти 300 мА), что конечно приведёт к повреждению светодиода. Таким образом, этот резистор существует для того, чтобы защитить LED.

тестер работоспособности, и определения электрических параметров LED диодов

   Формула для расчета тока применительно к LM317

   (1.2 V / (R1 + R2)) * 1000 = ток в миллиамперах   Максимум: (1.2 V / (0 ом + 47 ом)) * 1000 = 25.5 мА   Минимум: (1.2 V / (500 ом + 47 ом)) * 1000 = 2,2 мА

Определение напряжения и тока светодиода

   Даже светодиоды для поверхностного монтажа легко можно проверить прижав к контактным площадкам на плате. Если подключен элемент неправильной полярности, светодиод не будет светить совсем. Просто переверните его наоборот.

Испытатель смд светодиодов

   Поскольку светодиодный тестер подключен к 9 В батарее, он может обеспечить почти столько же напряжения для испытания (минус некоторое напряжение для схемы). А поскольку светодиодный тестер имеет низкий предел тестового тока (менее 30 мА), вероятность повреждения представляется маловероятной в любом случае.

измерять ток, проходящий через LED

   Два контакта с замыканием их перемычкой позволяют измерять ток, проходящий через LED с помощью любого мультиметра. Вращая потенциометр значение тока может быть скорректировано в диапазоне от 2 до 30 мА независимо от напряжения, необходимого для светодиода. Например, если установлено значение 10 мА, светодиод красного цвета, нуждающийся для работы в 1,7 В, будет питаться током ровно 10 мА. Затем, без внесения каких-либо корректировок, проверяем синий LED элемент, нуждающийся в  3,2 В - на него тоже будет поступать ровно 10 мА. Напряжение меняется автоматически, но ток остается всегда постоянным.

точки для измерения напряжения светодиода

   Светодиодный тестер включает в себя и две тестовые точки для измерения напряжения светодиода. Проводные петли - это простой способ обеспечить надежное соединение с мультиметром имеющим на щупах крючки. Такими сейчас оснащаются очень многие цифровые измерительные приборы.

Пример расчёта параметров

   Переходим к практическим расчётам. Допустим, у вас есть синий светодиод, и надо чтоб он светил при токе 15 мА от источника питания 5 В. На светодиодном тестере вышло напряжение 3,2 на токе 15 мА. Считаем: 5 В - 3.2 В = 1.8 В. А какой будет использоваться резистор? 1.8 В / 0.015 A = 120 Ом - вот его значение. Значит с помощью 120-омного резистора синий светодиод при 5 В источнике питания будет потреблять 15 мА и работать как надо.

 

Поделитесь полезной информацией с друзьями:

elwo.ru

Как проверить светодиод мультиметром - все возможные способы

В современной осветительной технике достаточно часто применяются светодиоды (led). Как известно, они гораздо надежнее обычных лампочек, но все же иногда могут выходить из строя. Для того, чтобы проверить светодиод на работоспособность применяется несколько методов. Рассмотрим подробнее каждый из них.

[contents]

Способы проверки

Светодиод, имеет свои электрические параметры, это максимальный рабочий ток, а так же  прямое падение напряжения. Значение первого параметра производители указывают для каждого изделия индивидуально, а второго составляет 1.8 – 2.2 вольта для оранжевых, желтых и красных диодов. Для белых, зеленых и синих 3 – 3.6 вольта.  Проверить эти значения параметров при наличии мультиметра, не составит труда.

Еще один способ проверить led диод на работоспособность, это подать на него питание от нескольких параллельно подключенных пальчиковых батареек или одной батарейки крона. На основе этого способа можно самостоятельно изготовить универсальный тестер для светодиодов, при помощи подручных элементов. Подробный процесс определения работоспособности показан в видео.

Определить неисправный светодиод, можно используя в качестве источника тока для проверки, старые зарядные устройства от мобильных телефонов. Для этого необходимо отрезать штекер подключения к телефону, и зачистить провода. Красный провод, это плюс, его нужно прижать к аноду, черный — минус, его подключают на катод. Если напряжения источника питания достаточно, то он должен загореться.

Для проверки некоторых диодов, напряжения от зарядки телефона может быть недостаточно, тогда можно попробовать проверить с помощью более мощного устройства, например зарядки от фонарика. Таким способом вполне можно проверить на работоспособность диоды в led лампе. Как это сделать, смотрите видео.

Проверка мультиметром

Мультиметр — это универсальный измерительный прибор. С его помощью можно измерить основные параметры практически любого электронного изделия и не только. Для проверки светодиода, потребуется мультиметр в котором есть режим «прозвонки», или его еще называют режимом проверки диодов. Обозначение режима проверки диодов на мультиметре показано на изображении ниже.

мультиметр с описанием

Для того чтобы проверить светодиод при помощи мультиметра, нужно установить переключатель прибора в положение соответствующее режиму «прозвонки» и подключить его контакты к щупам тестера.

проверка светодиода мультиметром

В процессе подключения необходимо учитывать полярность диода. Анод, следует подключить к красному щупу, а катод к черному. В случаях, когда нет информации какой электрод анод, а какой катод, можно перепутать полярность – это ничего страшного, со светодиодом ничего не произойдет. При неправильном подключении, мультиметр не изменит своих изначальных показаний. При правильном подключении, светодиод должен загореться.

проверка светодиода тестером

Есть один нюанс, ток «прозвонки» достаточно низкий для нормальной работы светодиода, и стоит приглушить освещение, для того чтобы увидеть как он светится. Если нет возможности этого сделать, можно ориентироваться на показания измерительного прибора. Как правило, если светодиод рабочий, то мультиметр покажет значение отличное от единицы.

Второй вариант — проверить светодиод тестером, это воспользоваться блоком PNP. Данный разъем предназначенный для проверки диодов, позволяет включить светодиод на мощность, достаточную для визуального определения его работоспособности. Анод подключается в разъем, обозначенный буквой Е (эмиттер), а катод диода в разъем колодки, обозначенный буквой С (коллектор).

разъем в мультиметре для проверки светодиода

Светодиод должен гореть при включении мультиметра в не зависимости от режима выбранного регулятором.

Данный способ позволяет проверить даже достаточно мощные светодиоды. Его неудобство в том, что, диоды обязательно нужно выпаивать. Для проверки мультиметром не выпаивая, необходимо изготовить переходники для щупов.

Существует вариант проверки светодиода методом измерения сопротивления, но для этого необходимо знать его характеристики, что достаточно не практично.

Как проверить не выпаивая

Для того чтобы подключить щупы мультиметра к разъемам в колодке PNP, нужно припаять на них небольшие фрагменты, обычной канцелярской скрепки. Между проводами, на которые припаяны скрепки, для изоляции можно установить небольшую текстолитовую прокладку и замотать изолентой. Таким образом, получим простой по конструкции и надежный переходник, для подключения щупов.

приспособление для проверки светодиода мультиметром

Далее необходимо подключить щупы к ножкам светодиода, не выпаивая его из схемы изделия. Вместо тестера, для проверки led диода можно использовать одну батарейку крона, или несколько пальчиковых батареек. Подключение проводится аналогично, просто вместо переходника, для подключения к выходам батарейки щупов, можно использовать небольшие зажимы «крокодильчики».

крокодильчики

Рассмотрим на конкретном примере, как проверить led, не выпаивая из схемы.

Как проверить светодиоды в фонарике

Для проверки необходимо разобрать фонарик и вынуть плату, на которой они установлены. Проверка происходит с помощью тестера со щупами, подключенными на PNP разъем. Светодиоды можно не выпаивать, а подключать контакты щупа на них прямо на плате, при этом необходимо помнить о соблюдении полярности.

Определить пробитый светодиод, можно и при помощи измерения сопротивления в схеме подключения. Например, если светодиоды в фонарике подключены параллельно, измерив сопротивление и получив результат близкий к нулю на любом из них, можно быть уверенным, что, по крайней мере, один из них точно неисправен. После этого можно приступать к проверке каждого из светодиодов методами описанными выше.

Проверка светодиодов не сложный процесс, и любой, кто имеет несколько рабочих батареек и пару проводов, может проверить и определить его неисправность в том или ином приборе.

 

ledno.ru

Проверка светодиода мультиметром (тестером) на исправность

Проверка светодиода мультиметром является наиболее простым и правильным способом определения его работоспособности. Цифровой мультиметр (тестер) – это многофункциональный измерительный прибор, возможности которого отражены в позициях переключателя на передней панели. На работоспособность светодиоды проверяются при помощи функций, присутствующих в любом тестере. Методы проверки рассмотрим на примере цифрового мультиметра DT9208A. Но сначала немного затронем тему причин неисправности новых и выхода из строя старых светоизлучающих диодов.

Основные причины неисправности и выхода из строя светодиодов

Особенность любого излучающего диода – низкий предел обратного напряжения, который лишь на несколько вольт превышает падение на нём в открытом состоянии. Любой электростатический разряд или неверное подключение в ходе наладки схемы может стать причиной выхода LED (аббревиатура от англ. Light-emitting diode) из строя. Сверхъяркие малоточные светодиоды, применяемые в роли индикаторов питания различных устройств, часто перегорают в результате скачков напряжения. Их планарные аналоги (SMD LED) широко используются в лампах на 12 В и 220 В, лентах и фонариках. В их исправности также можно убедиться с помощью тестера.

Стоит отметить, что небольшая доля бракованных (около 2%) светодиодов поставляется от производителя. Поэтому дополнительная проверка светодиода тестером перед монтажом на печатную плату не помешает.

Методы диагностики

Простейшим способом, которым чаще всего пользуют радиолюбители, является проверка светоизлучающих диодов мультиметром на работоспособность при помощи щупов. Способ удобен для всех типов светоизлучающих диодов, независимо от их исполнения и количества выводов. Установив переключатель в положение «прозвонка, проверка на обрыв», щупами касаются выводов и наблюдают за показаниями. Замыкая красный щуп на анод, а черный на катод исправный светодиод должен засветиться. При смене полярности щупов на экране тестера должна оставаться цифра 1. проверка в режиме прозвонки

Свечение излучающего диода во время проверки будет небольшой и на некоторых светодиодах при ярком освещении может быть незаметно.

Для точной проверки многоцветных LED с несколькими выводами необходимо знать их распиновку. В противном случае придется наугад перебирать выводы в поисках общего анода или катода. Не стоит бояться тестировать мощные светодиоды с металлической подложкой. Мультиметр не способен вывести их из строя, путём замера в режиме прозвонки.

Проверку светодиода мультиметром можно выполнить без щупов, используя гнёзда для тестирования транзисторов. Как правило, это восемь отверстий, расположенных в нижней части прибора: четыре слева для PNP транзисторов и четыре справа для NPN транзисторов. PNP транзистор открывается подачей положительного потенциала на эмиттер «Е». Поэтому анод нужно вставить в гнездо с надписью «Е», а катод – в гнездо с надписью «С». Исправный светодиод должен засветиться. Для тестирования в отверстиях под NPN транзисторы нужно сменить полярность: анод — «С», катод – «Е». Таким методом удобно проверять светодиоды с длинными и чистыми от припоя контактами. При этом неважно, в каком положении находится переключатель тестера. проверка светодиода мультиметромПроверка инфракрасного светодиода происходит также, но имеет свои нюансы из-за невидимого излучения. В момент касания щупами выводов рабочего ИК светодиода (анод – плюс, катод – минус) на экране прибора должно высветиться число около 1000 единиц. При смене полярности на экране должна быть единица.

Для проверки ИК диода в гнёздах тестирования транзисторов дополнительно придётся задействовать цифровую камеру (смартфон, телефон и пр.) Инфракрасный диод вставляют в соответствующие отверстия мультиметра и сверху на него направляют камеру. Если он в исправном состоянии, то ИК излучение будет отображаться на экране гаджета в виде светящегося размытого пятна.

Проверка мощных SMD светодиодов и светодиодных матриц на работоспособность кроме мультиметра требует наличия токового драйвера. Мультиметр включают последовательно в электрическую цепь на несколько минут и следят за изменением тока в нагрузке. Если светодиод низкого качества (или частично неисправный), то ток будет плавно нарастать, увеличивая температуру кристалла. Затем тестер подключают параллельно нагрузке и замеряют прямое падение напряжения. Сопоставив измеренные и паспортные данные из вольт-амперной характеристики можно сделать вывод о пригодности LED к эксплуатации.

Читайте так же

ledjournal.info


Каталог товаров
    .