интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

6.3. Схемы соединения трансформаторов напряжения. Схемы соединения трансформаторов напряжения


6.3. Схемы соединения трансформаторов напряжения

Схема соединения трансформаторов напряжения в звезду,приведенная на рис. 6.5,а, предназначена для получения напряжений фаз относительно земли и междуфазных (линейных) напряжений. Три первичные обмотки ТV1 соединяются в звезду. Начала каждой обмотки (А, В, С) присоединяются к соответствующим фазам ЛЭП, а концыX,Y,Zобъединяются в общую точку (нейтраль 1) и заземляются. При таком включении к каждой первичной обмотке ТV1 подводится напряжение фазы ЛЭП относительно земли. Концы вторичных обмоток ТV1 (х,y,zна рис. 6.5, а) также соединяются в звезду, нейтраль которойN2 связывается с нулевой точкой нагрузкиN3 (сопротивления 1, 2, 3). В приведенной схеме нейтраль первичной обмотки (точкаN1) жестко связана с землей и имеет потенциал, равный нулю, такой же потенциал будет иметь нейтральN2 и связанная с ней нейтраль нагрузкиN3. При такой схеме фазные напряжения на вторичной стороне соответствуют фазным напряжениям относительно земли первичной стороны. Заземление нейтрали первичной обмотки ТН и наличие нулевого провода во вторичной цепи являются обязательным условием для получения фазных напряжений относительно земли.

Соединение обмоток ТН по схеме Y/Yобычно выполняется по 12-й группе. Эта схема может быть осуществлена посредством трех однофазных ТН или одного трехфазного пятистержневого ТН. Трехфазные трехстержневые ТН для данной схемы применяться не могут, так как в их магнитопроводе отсутствуют пути для замыкания магнитных потоковHП Ф0, создаваемых токомI0в первичных обмотках при замыканиях на землю в сети. В этом случае поток Ф0 замыкается через воздух по пути с большим магнитным сопротивлением. Это приводит к уменьшению сопротивления НП трансформатора и резкому увеличениюIHAM. ПовышенныйIHAMвызывает недопустимый нагрев трансформатора, в связи с чем применение трехстержневых ТН недопустимо. В пятистержневых трансформаторах для замыкания потоков служат четвертый и пятый стержни магнитопровода (рис. 6.6).

Схема соединений обмоток ТН в открытый треугольникизображена на рис. 6.7. Она выполняется при помощи двух однофазных ТН, включенных на два междуфазных напряжения, напримерUABиUBC. Напряжение на зажимах вторичных обмоток ТН всегда пропорционально междуфазным напряжениям, подведенным с первичной стороны. Между проводами вторичной цепи включаются реле. Схема позволяет получать все три междуфазных напряженияUAB,UBCиUCA.

Схема соединений обмоток однофазных ТН в фильтр напряжения НПвыполняется посредством трех однофазных ТН, как показано на рис. 6.8. Первичные обмотки соединены в звезду с заземленной нейтралью, а вторичные – последовательно, образуя незамкнутый треугольник. К зажимам разомкнутых вершин треугольника подсоединяются реле. НапряжениеUPна зажимах разомкнутого треугольника равно геометрической сумме напряжений вторичных обмоток:

UP = Ua + Ub + Uc

Так как сумма трех фазных напряжений равна утроенному напряжению НП, выражая вторичные напряжения через первичные, получаем

. (6.4)

В нормальных условиях напряжения фаз симметричны, UP= 0. При КЗ без земли также UP= 3U0= 0 (см. гл. 1). При КЗ на землю (одно- и двухфазных) на зажимах разомкнутого треугольника ТН появляется напряжениеUP= 3U0/KU.

Напряжения прямой и обратной последовательностей образуют симметричные звезды и поэтому при суммировании в цепи разомкнутого треугольника всегда дают нуль на его зажимах.

Рассмотренная схема является фильтром НП. Необходимым условием работы схемы в качестве фильтра НП является заземление нейтрали первичной обмотки ТН. Применяя однофазные ТН с двумя вторичными обмотками, можно соединить одну из них по схеме звезды, а вторую – по схеме разомкнутого треугольника (рис. 6.9). Номинальное вторичное напряжение у обмотки, предназначенной для соединения в разомкнутый треугольник, принимается равным для сетей с заземленной нейтралью 100 В, а для сетей с изолированной нейтралью 100/3 В.

Схема соединения обмоток трехфазных ТН в фильтр напряжения НП.Для получения ЗУ, от трехфазного пятистержневого ТН (см. рис. 6.6) на каждом из его основных стержней 1, 2 и 3 выполняется дополнительная (третья) обмотка, соединяемая по схеме разомкнутого треугольника. Напряжение на выводах этой обмотки появляется только при КЗ на землю, когда возникают магнитные потоки НП, замыкающиеся по четвертому и пятому стержням магнитопровода. Схемы с пятистержневым ТН позволяют получать одновременно с напряжением НП фазные и междуфазные напряжения.

studfiles.net

6.3. Схемы соединений трансформаторов напряжения

6.3.1. Схема соединения трансформаторов напряжения в звезду

Схема предназначена для получения напряжения фаз относительно земли и линейных напряжений.

Заземление нейтрали первичной обмотки ТН и наличие нулевого провода во вторичной цепи является обязательным условием для получения фазных напряжений относительно земли.

Обмотки реле 1,2,3 включены на фазные напряжения; 4,5,6 – на линейные напряжения.

Соединение ТН по схемеY/Y может выполняться по 6 и 12 группам. Типовым является соединение по 12 группе.

На рис. 6.3.1: F – плавкий предохранитель; FA – плавкий предохранитель в цепях релейной защиты

Рассмотренная схема соединений может быть выполнена посредством трех однофазных ТН или одного трехфазного пятистержневого ТН (рис.6.3.2) Трехфазные трехстержневые ТН не применяются, так как в их магнитопроводе нет пути для замыкания магнитных потоков нулевой последовательности Ф0, создаваемых током I0 в первичных обмотках при замыкании на землю в сети. Поток Ф0 замыкается через воздух, это резко увеличивает IНАМ, вызывая недопустимый нагрев трансформатора.

Возможна дополнительная обмотка на основных или дополнительных стержнях для получения напряжения нулевой последовательности (рис. 6.3.2).

Рис. 6.3.1

Рис. 6.3.2

6.3.2. Схема соединения обмоток трансформаторов напряжения в открытый треугольник

Два однофазных ТН включены на два междуфазных напряжения. Между проводами вторичной цепи включаются реле. Схема позволяет получить 3 междуфазных напряжения.

Рис. 6.3.3

6.3.3. Схема соединения трансформаторов напряжения в разомкнутый треугольник

Схема соединения, показанная на рис. 6.3.4, позволяет получить напряжение нулевой последовательности:

(6.4)

В нормальном режиме UP=0.

Необходимым условием работы схемы является заземление нейтрали первичной обмотки ТН. При отсутствии заземления напряжение на реле будет отсутствовать. Для вторичной обмотки принимается UНОМ=100 В – для сетей с заземленной нейтралью и 100/3 В –для изолированной. Практически в нормальных условиях напряжение на реле составляет Uнб = 0,5...2 В.

При однофазном КЗ в сети с заземленной нейтралью (рис. 6.3.5):

UA=0; UB+UC=UФ=UP.

В сети с изолированной нейтралью (рис. 6.3.6): UP=3UФ, поэтому у ТН, предназначенных для таких сетей, вторичные обмотки имеют увеличенный в 3 раза коэффициент трансформации (например: 6000/100/3).

Рис. 6.3.4

Рис. 6.3.5

Напряжение нулевой последовательности может быть получено и от специальных обмоток трехфазных ТН (см. рис. 6.3.2). Чаще всего применяются ТН с двумя вторичными обмотками. Одна соединяется по схеме звезды, а вторая – разомкнутым треугольником (см. рис. 4.3.1 б).

Вторичные обмотки ТН подлежат обязательному заземлению. Оно является защитным, обеспечивая безопасность персонала при попадании высокого напряжения во вторичные цепи. Обычно заземляется нулевая точка звезды или один из фазных проводов. В проводах, соединяющих точку заземления с обмотками ТН, не должно быть коммутационных и защитных аппаратов.

Рис. 6.3.6

6.4. Контроль за исправностью цепей напряжения

Повреждения во вторичных цепях ТН (КЗ и обрывы) могут вывести из строя оборудование релейной защиты или привести к неправильным её действиям.

При КЗ опасно увеличивается ток, для защиты оборудования устанавливают предохранители или автоматы.

Повреждения вторичных цепей искажают величину и фазу вторичного напряжения, что приводит к неправильной работе защиты.

При обрыве фазы напряжение, подводимое к обмоткам реле, исчезает, что воспринимается защитой как КЗ в сети. Для предотвращения ложных действий предусматриваются специальные устройства (блокировки).

Одна из простейших схем сигнализации обрыва в цепях ТН приведена на рис. 6.4.1.

Рис. 6.4.1

На рис. 6.4.2 изображена принципиальная схема блокировки защиты при повреждении в цепях ТН типов КРБ–11 и КРБ–12.

Рис. 6.4.2

В нормальном режиме напряжение на реле KV0 отсутствует. При обрыве одной или двух фаз возникает U0, под влиянием которого в реле KV0 появляется ток и оно срабатывает, давая сигнал и выводя защиту из работы.

Реле KV0 действует не только при обрывах, но и при КЗ на землю в первичной сети; чтобы предотвратить блокирование защиты при этом, ставится реле KVА, реагирующее на появление тока I0 в первичной сети.

Рассмотренные блокировки, не реагирующие на одновременный обрыв всех трех фаз цепи напряжения, на трехфазное КЗ во вторичных цепях и обрыв нулевого провода, выпускаются Чебоксарским электроаппаратным заводом.

Контроль цепей разомкнутого треугольника

Контроль производится путем периодического измерения напряжения небаланса. При исправной цепи UНБ=1...3 В. При нарушении цепи показания пропадают.

Для контроля применяются и более сложные устройства. Для трансформаторов напряжения с двумя вторичными обмотками: Y/Y/ – Схема с семиобмоточным трансформатором или схема с тремя однофазными трансформаторами.

Сложные схемы применяются для блокировки защит на ЛЭП 220 кВ и выше.

studfiles.net

Погрешности трансформаторов тока

Коэффициент трансформации ТТ так же, как у ТН, не является строго постоянной величиной и из-за погрешностей может отличаться от номинального значения. Погрешности ТТ зависят главным образом от кратности первичного тока по отношению к номинальному току первичной обмотки и от нагрузки, подключенной к вторичной обмотке. При увеличении сопротивления нагрузки или тока выше определенных значений погрешность возрастает и ТТ переходит в другой класс точности.

Для измерительных приборов погрешность относится к зоне нагрузочных токов . Эта погрешность именуется классом точности и может быть равна 0,2; 0,5; 1,0; 3,0%.

Требования к работе ТТ, питающих защиту, существенно отличаются от требований к ТТ, питающим измерительные приборы. Если ТТ, питающие измерительные приборы, должны работать точно в пределах своего класса при токах нагрузки, близких к их номинальному току, то ТТ, питающие релейную защиту, должны работать с достаточной точностью при прохождении токов КЗ, значительно превышающих номинальный ток ТТ. Для целей защиты выпускаются трансформаторы тока класса Р или Д (для дифференциальных защит) в которых не нормируется погрешность при малых (нагрузочных) токах. В настоящее время выпускаются трансформаторы тока классов 10Р и 5Р, погрешность которых нормируется во всем диапазоне токов.

Правила устройства электроустановок требуют, чтобы ТТ, предназначенные для питания релейной защиты, имели погрешность, как правило, не более 10%. Большая погрешность допускается в отдельных случаях, когда это не приводит к неправильным действиям релейной защиты. Погрешности возникают вследствие того, что действительный процесс трансформации в ТТ происходит с затратой мощности, которая расходуется на создание в сердечнике магнитного потока, перемагничивание стали сердечника (гистерезис), потери от вихревых токов, нагрев обмоток.

Рис. 2.3. Схема замещения ТТ

Рис. 2.4. Упрощенная векторная диаграмма ТТ

Процесс трансформации тока хорошо иллюстрируется схемой замещения ТТ, приведенной на рис. 2.3. На этой схеме Z1иZ2– сопротивления первичной и вторичной обмоток, a– сопротивление ветви намагничивания, которое характеризует указанные выше потери мощности.

Из схемы замещения видно, что первичный ток I1входящий в начало первичной обмотки Н, проходит по её сопротивлениюZ1и в точкеразветвляется по двум параллельным ветвям. Основная часть тока, являющаяся вторичным токомI2, замыкается через сопротивление вторичной обмоткиZ2и сопротивление нагрузки, состоящее из сопротивлений реле, приборов и соединительных проводов. Другая часть первичного токазамыкается через сопротивление ветви намагничивания и, следовательно, в реле, подключенное к вторичной обмотке ТТ, не попадает. Поскольку из всех затрат мощности наибольшая часть приходится на создание магнитного потока в сердечнике, то ветвь между точками а и б схемы замещения ТТ называется ветвью намагничивания и весь ток, проходящий по этой ветви, – током намагничивания.

Таким образом, схема замещения показывает, что во вторичную обмотку ТТ поступает не весь трансформированный первичный ток, равный , а его часть, и что, следовательно, процесс трансформации происходит с погрешностями.

При размыкании цепи вторичной обмотки ТТ, он превращается в повышающий трансформатор, резко возрастает ток намагничивания: (рис 2.3) и, при достаточном уровне тока, индукция в сердечнике достигает насыщения. Вследствие насыщения сердечника ТТ, при синусоидальном первичном токе, магнитный поток в сердечнике будет иметь не синусоидальную, а трапециоидальную форму. Поэтому, ЭДС во вторичной обмотке, пропорциональная скорости изменения магнитного потока, в моменты перехода его через нулевые значения будет очень велика, и может превышать 1000 В, что опасно не только для обслуживающего персонала, но и для межвитковой изоляции трансформаторов тока (возможно межвитковое замыкание). Кроме появления опасного напряжения на разомкнутой вторичной обмотке, может иметь место повышенный нагрев стального сердечника из-за больших потерь в стали (так называемый «пожар стали»). Это не только может привести к повреждению изоляции, но и к увеличению погрешностей трансформаторов тока вследствие остаточного намагничивания сердечника. При межвитковом замыкании вторичной обмотки ТТ резко возрастает ток намагничивания, а ток на его выходе резко уменьшается (или полностью отсутствует). Диагностировать витковое замыкание ТТ можно сравнив его характеристику намагничивания (зависимость напряжения на вторичной обмотке от проходящего по ней тока) с характеристикой исправного ТТ (характеристика значительно понижается).

На рис. 2.4 приведена упрощенная векторная диаграмма ТТ из которой видно, что вектор вторичного тока I2меньше значения первичного тока, деленного на коэффициент трансформации на величинуи сдвинут относительно него на угол δ. Таким образом, соотношение значений первичного и вторичного токов в действительности имеет вид:

(2.7)

Различают следующие виды погрешностей ТТ. Токовая погрешность, или погрешность в коэффициенте трансформации, определяется как арифметическая разность первичного тока, поделённого на номинальный коэффициент трансформации , и измеренного (действительного) вторичного тока(отрезокна диаграмме рис. 4.4):

(2.8)

Токовая погрешность, %,

(2.9)

Угловая погрешность определяется как угол δ сдвига вектора вторичного тока I2относительно вектора первичного токаI1(см. рис. 2.4) и считается положительной, когдаI2опережаетI1.

Полная погрешность (ε) определяется как выраженное в процентах отношение действующего значения разности мгновенных значений первичного и вторичного токов к действующему значению первичного тока.

При синусоидальных первичном и вторичном токах: . Из рассмотренного следует, что причиной возникновения погрешностей у трансформаторов тока является прохождение тока намагничивания, т.е. того самого тока, который создаёт в сердечнике ТТ рабочий магнитный поток, обеспечивающий трансформацию первичного тока во вторичную обмотку. Чем меньше ток намагничивания, тем меньше погрешности ТТ.

Как видно из схемы замещения (рис. 2.3), ток намагничивания зависит от ЭДС Е2и сопротивления ветви намагничивания.

Электродвижущая сила Е2может быть определена как падение напряжения от токаI2в сопротивлении вторичной обмоткиZ2и сопротивлении нагрузки, т. е.:

(2.10)

Сопротивление ветви намагничивания зависит от конструкции трансформаторов тока и качества стали, из которой выполнен сердечник. Это сопротивление не является постоянным, а зависит от характеристики намагничивания стали. При насыщении стали сердечника ТТ,резко уменьшается, что приводит к возрастаниюи как следствие этого к возрастанию погрешностей ТТ.

Таким образом, условиями, определяющими погрешности трансформаторов тока, являются: отношение, т.е. кратность, первичного тока, проходящего через ТТ, к его номинальному току и нагрузка, подключённая к его вторичной обмотке.

Для увеличения допустимой вторичной нагрузки применяют трансформаторы тока с номинальным током вторичной обмотки 1 А, вместо 5 А. Одноамперные трансформаторы тока могут нести нагрузку в 25 раз больше, чем пятиамперные, имеющие такие же конструктивные параметры и тот же номинальный ток первичной обмотки. Конечно, потребляемая мощность аппаратуры при этом остается прежней, и её сопротивление также увеличивается в 25 раз, однако получается существенный выигрыш за счёт возможности применять длинные кабели с жилами небольшого сечения. По этой причине, трансформаторы тока со вторичными токами 1 А нашли применение, в основном, на мощных подстанциях сверхвысокого напряжения, где требуется прокладывать длинные кабели. В сетях напряжением 6–35 кВ, как правило, применяются 5-ти амперные трансформаторы тока, которые упрощают конструкцию за счёт того что требуется наматывать в 5 раз меньшее количество витков. Одноамперные трансформаторы тока нашли применение также в ячейках фирмы «Таврида – Электрик», где переход на вторичный ток 1 А в сочетании с малым потреблением современных релейных защит позволил выполнить малогабаритные трансформаторы тока, которые только и можно разместить в выпускаемых ею малогабаритных ячейках.

studfiles.net

Трансформаторы напряжения в схемах РЗА. Схемы включения ТН и схемы соединения обмоток ТН

Ответ:Трансформаторы напряжения (ТН) выполняют две функции: служат для разделения (изоляции) первичных и вторичных цепей, а также для приведения величины напряжения к уровню, удобному для измерения (стандартное номинальное напряжение вторичной обмотки: 100/57 В). Трансформаторы напряжения работают в режиме, близком к холостому ходу.

Трансформатор напряжения по принципу действия и конструктивному выполнению аналогичен силовому трансформатору. Как показано на рис. 3.10, а, ТН состоит из стального сердечника (магнитопровода), собранного из пластин трансформаторной стали и двух обмоток – первичной и вторичной, изолированных друг от друга и от сердечника.

Первичная обмотка ,имеющая большое число витков тонкого провода, включается непосредственно в сеть высокого напряжения, а к вторичной обмотке , имеющей меньшее количество витков, подключаются параллельно обмотки реле и измерительные приборы. Под воздействием напряжения сети по первичной обмотке проходит ток, создающий в сердечнике переменный магнитный поток Ф, который, пересекая витки вторичной обмотки, индуктирует в ней ЭДС Е,которая при разомкнутой вторичной обмотке (холостой ход ТН) равна напряжению на ее зажимах .

а)

б) в)

Рис. 3.10. Схема включения (а), схема замещения (б)и векторная диаграмма (в) ТН

Напряжение во столько раз меньше первичного напряжения ,во сколько раз число витков вторичной обмотки меньше числа витков первичной обмотки . Отношение чисел витков обмоток называется коэффициентом трансформации и обозначается :

. (3.12)

Работа ТН с нагрузкой в виде реле и приборов сопровождается протеканием тока и увеличением тока (рис. 3.10, б). В данном случае напряжение на его зажимах будет меньше ЭДС навеличину падения напряжения в сопротивлении вторичной обмотки. Однако поскольку это падение напряжения невелико, оно не учитывается и пересчет первичного напряжения на вторичное производится по формулам:

; .

В зависимости от предельно допустимых погрешностей ТН подразделяются на классы точности. Один и тот же ТН в зависимости от нагрузки, подключенной к его вторичной обмотке, может работать с различным классом точности. Поэтому в каталогах и паспортах на ТН указываются два значения мощности: номинальная мощность в вольт-амперах, при которой ТН может работать в гарантированном классе точности, и предельная мощность, с которой ТН может работать с допустимым нагревом обмоток. Предельная мощность ТН в несколько раз превышает номинальную. Так, у ТН типа НОМ-10 с коэффициентом трансформации 10000/100 для класса точности 0,5 подключаемая мощность составляет 80 В × А; для класса точности 2,0 – 550 В × А, а предельная мощность – 720 В × А.

Погрешности трансформаторов напряжения. Токи и увеличение тока (рис. 3.10, б) создают падение напряжения (рис. 3.10, в), которое увеличивается с ростом вторичной нагрузки (током ). Вместе с этим возрастают и погрешности:

– погрешность в напряжении (или в коэффициенте трансформации) – это отклонение действительного коэффициента трансформации от номинального: или вследствие незначительного угла ;

– погрешность по углу, которая определяется углом между векторами и .

Кроме рассмотренных выше основных погрешностей, возникающих при трансформации первичного напряжения на вторичную сторону, на работу РЗ и точность измерений влияют также дополнительные погрешности от падения напряжения в кабелях от ТН до места установки панелей защиты или измерений. Поэтому согласно требованиям [1] сечение жил кабелей должно выбираться так, чтобы падение напряжения в указанных цепях не превышало: 2 % – для РЗ; 1,5 % – для щитовых измерительных приборов; 0,2 или 0,5 % – для счетчиков.

Для правильного соединения между собой вторичных обмоток ТН и подключения к ним реле мощности, ваттметров и счетчиков заводы-изготовители обозначают (маркируют) выводные зажимы обмоток определенным образом: начало первичной обмотки – А, конец – Х;начало основной вторичной обмотки – а, конец – х (рис. 3.10, а).

Схемы соединения обмоток ТН. На рис. 3.11, а представлена схема включения одного однофазного ТН на междуфазное напряжение. Данная схема применяется в тех случаях, когда для защиты или измерений достаточно одного междуфазного напряжения. На рис. 3.11, б приведена схема соединения двух ТН в открытый треугольник. Данная схема применяется, когда для защиты или измерений нужно иметь два или три междуфазных напряжения. На рис. 3.11 в приведена схема соединения трех однофазных или одного трехфазного ТН в звезду. Данная схема получила широкое распространение для защиты или измерений фазных и междуфазных напряжений одновременно. На рис. 3.11, г изображена схема соединения трансформаторов напряжения в схему разомкнутого треугольника (на сумму фазных напряжений). Такое соединение применяется для получения напряжения нулевой последовательности ( ). Как известно, геометрическая сумма трех фазных напряжений в нормальном режиме, а также при двух- или трехфазных КЗ равна нулю. Поэтому в данных условиях напряжение между выводами разомкнутого треугольника равно нулю (практически между этими точками имеется небольшое напряжение: 0,5–2 В, которое называется напряжением небаланса). При однофазном КЗ на землю в сетях с заземленной нейтралью (сети 110 кВ и выше) фазное напряжение поврежденной фазы становится равным или близким к нулю, а геометрическая сумма фазных напряжений двух неповрежденных фаз становится равной фазному напряжению . Первичные и вторичные основные обмотки соединены в звезду, т. е. так же как в рассмотренной схеме (рис. 3.11, в). Дополнительные вторичныеобмотки соединены в схему разомкнутого треугольника, т. е. так же как в рассмотренной схеме (рис. 3.11, г). На рис. 3.11, д представлена схема соединения трансформаторов напряжения, имеющих две вторичные обмотки.

В сетях с изолированной нейтралью (сети напряжением 6–35 кВ) при однофазных замыканиях на землю напряжения неповрежденных фаз относительно земли становятся равными междуфазному напряжению, а их геометрическая сумма оказывается равной утроенному фазному напряжению. Для того чтобы в последнем случае напряжение на реле не превосходило номинального значения, равного 100 В, у ТН, предназначенных для сетей, работающих с изолированной нейтралью, вторичные дополнительные обмотки, соединяемые в схему разомкнутого треугольника, имеют увеличенные в 3 раза коэффициенты трансформации, например 6000/(100/3).

а)

б)

в)

г) д)

Рис. 3.11. Схемы соединения обмоток ТН

При включении первичных обмоток ТН на фазные напряжения они соединяются в звезду, нулевая точка которой обязательно соединяется с землей (рабочее заземление). Заземление первичных обмоток необходимо для того, чтобы при однофазных КЗ или замыканиях на землю в сети, где установлен ТН, реле и приборы, включенные на его вторичную обмотку, правильно измеряли напряжение фаз относительно земли. Вторичные обмотки ТН подлежат обязательному заземлению независимо от схемы их соединений. Это заземление является защитным, обеспечивающим безопасность персонала при попадании высокого напряжения во вторичные цепи. Заземляется нулевая точка звезды или один из фазных проводов (обычно фаза В). В проводах, соединяющих точку заземления с обмотками ТН, не должно быть коммутационных и защитных aппаратов (автоматических выключателей, предохранителей и т. д.). Сечение медного заземляющего провода должно быть не менее 2,5 мм2.

При обрыве провода в одной фазе отходящей линии (неполнофазный режим) емкость этой фазы оказывается включенной последовательно с индуктивностью ТН и возникает феррорезонанс. При феррорезонансе появляются опасные перенапряжения на обмотках ТН и происходит его перегрев и самопроизвольное смещение нейтрали. Для защиты ТН от этих явлений параллельно обмотке включают резистор сопротивлением 25 Ом. Резистор нагружает ТН и феррорезонанс не возникает. Однако включение такой нагрузки приводит к перегрузке дополнительной обмотки ТН при замыканиях на землю. Такой режим может существовать ограниченное время: 8 ч для ТН типа НТМИ.

ТН выбираются по предельной нагрузке вторичной обмотки

(3.13)

где Sпред − предельная величина присоединенной нагрузки для обеспечения нужного класса точности по приложению 7 (табл. 7.3), В ∙ А; Sприс − суммарная мощность, потребляемая присоединенными реле и измерительными приборами, В ∙ А.

megalektsii.ru


Каталог товаров
    .