интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Способы подключения асинхронного электродвигателя. Схемы пуска асинхронного двигателя


Схема пуска асинхронного двигателя | Сайт электрика

skhema-puska-asinkhronnogo-elektrodvigatelya  Всем привет. Тема сегодняшней статьи это схема пуска асинхронного двигателя. Как по мне, то эта схема самая простоя, какая только может быть в электротехнике. В этой статье я вам приготовил две схемы. На первом рисунке будет схема с предохранителем для защиты цепей управления, а на втором будет без предохранителя. Отличие этих схем в том, что предохранитель служит как дополнительный элемент для защиты цепи от короткого замыкания и так же как защита от самопроизвольного включения. К примеру, если вам нужно выполнить какие-то работы на электроприводе, то вы разбираете электрическую схему путём выключения автомата и дополнительно ещё нужно вынуть предохранитель и после этого уже можно приступать к работе.

И так рассмотрим первую схему. Для увеличения картинки нажмите на неё.

skhema-puska-asinkhronnogo-dvigatelya Рисунок 1. Пуск асинхронного электродвигателя с короткозамкнутым ротором.

QF – любой автоматический выключатель.

KM – электромагнитный пускатель или контактор. Также этими буквами на картинке я обозначил катушку пускателя и блок-контакт пускателя.

SB1 – это кнопка стоп

SB2 – кнопка пуск

KK – любое тепловое реле, а также контакт теплового реле.

FU – предохранитель.

КК – тепловое реле, контакты теплового реле.

М – асинхронный двигатель.

Теперь опишем сам процесс запуска двигателя.

Всю эту схему можно условно разделить на силовую – это то что находится слева, и на схему управления – это то что находиться справа. Для начала на всю электрическую цепь нужно подать напряжение путём включения автомата QF. И напряжение подаются на неподвижные контакты пускателя и на цепь управления.  Далее нажимаем кнопку пуска SB2, при этом действии напряжение подается на катушку пускателя и он втягивается и подаётся также напряжение на обмотки статора и электродвигатель начинает вращаться. Одновременно с силовыми контактами на пускателе замыкаются и блок-контакты КМ через которые подаётся напряжение на катушку пускателя и кнопку SB2 можно отпустить. На этом процесс запуска уже окончен, как Вы сами видите всё очень легко и просто.

Skhema-puska-asinkhronnogo-dvigatelya-bez-predokhranitelya  Рисунок 2. Пуск асинхронного электродвигателя. В цепи управления нет предохранителя. Для увеличения картинки нажмите на неё.

Для того чтобы прекратить работу электродвигателя, достаточно всего лишь нажать на кнопку SB1. Этим действием мы разрываем цепь управления и прекращается подача напряжения на катушку пускателя, и силовые контакты размыкаются и как следствие пропадает напряжение на обмотках статора, и он останавливается. Останавливать так же легко, как и запускать.

Вот в принципе и вся схема пуска асинхронного двигателя. Если статья вам чем то помогла, то поделитесь нею в соц. сетях, а так же подпишитесь на обновления блога.

С уважением Семак Александр!

Читайте также статьи:

fazanet.ru

Способы запуска трехфазных асинхронных двигателей

Доброго времени суток, уважаемые читатели блога nasos-pump.ru

Двигатели трехфазные Двигатели трехфазные

Двигатели трехфазные

В рубрике «Общее» рассмотрим способы запуска трехфазных асинхронных двигателей с коротко замкнутым ротором. В настоящее время используются различные способы запуска асинхронных двигателей. При запуске двигателя должны удовлетворяться основные требования. Запуск должен происходить без применения сложных пусковых устройств. Пусковой момент должен быть достаточно большим, а пусковые токи как можно меньше. Современные электродвигатели являются энерго-эффективными двигателями и имеют более высокие пусковые токи, что заставляет уделять большее внимание их способам запуска. При подаче на двигатель напряжения питания возникает скачок тока, который называют пусковым током.

Пусковой ток обычно превышает номинальный в 5 – 7 раз, но действие его кратковременное. После того как двигатель вышел на номинальные обороты, ток падает до минимального. В соответствии с местными нормами и правилами, для снижения пусковых токов, и используются разные способы запуска асинхронных двигателей с коротко замкнутым ротором. Вместе с этим необходимо уделять внимание и стабилизации напряжения сетевого питания. Говоря о способах запуска, которые уменьшают пусковой ток, следует отметить, что период запуска не должен быть слишком долгим. Слишком продолжительные периоды запуска могут вызвать перегрев обмоток.

 Прямой запуск

 Самый простой и наиболее часто применяемый способ запуска асинхронных двигателей – это прямой пуск. Прямой пуск означает, что электродвигатель запускается прямым подключением к сетевому напряжению питания. Прямой пуск применяется при стабильном питании двигателя, жестко связанного с приводом, например насоса. На (Рис.1) приведена схема прямого пуска асинхронного двигателя. 

Прямой пускПрямой пуск

Прямой пуск

Подключение двигателя в электрическую сеть происходит при помощи контактора (пускателя). Реле перегрузки необходимо для защиты двигателя в процессе эксплуатации от перегрузки по току. Двигатели малой и средней мощности обычно проектируют так, чтобы при прямом подключении обмоток статора к сетевому питанию пусковые токи, возникающие при запуске, не создавали чрезмерных электродинамических усилий и превышений температуры на двигатель, с точки зрения механической и термической прочности. Переходной процесс в момент запуска характеризуется очень быстрым затуханием свободного тока, что позволяет пренебречь этим током и учитывать только установившееся значение тока переходного процесса. На графике (Рис. 1) приведена характеристика пускового тока при прямом запуске асинхронного двигателя с коротко замкнутым ротором.

Прямой запуск от сети питания является самым простым, дешёвым и наиболее часто применяемым способом запуска. При таком запуске происходит наименьшее повышение температуры в обмотках электродвигателя во время включения по сравнению со всеми остальными способами запуска. Если нет жестких ограничений по току, то такой метод запуска является наиболее предпочтительным. В разных странах действуют различные правила и нормы по ограничению максимального пускового тока. В таких случаях, необходимо использовать другие способы запуска.

Для небольших электродвигателей пусковой момент будет составлять от 150% до 300% от номинального момента, а пусковой ток будет составлять от 300% до 700% от номинального значения или даже выше.

 Запуск «звезда – треугольник»

 Запуск переключением «звезда – треугольник» используется для трёхфазных индукционных электродвигателей и применяется для снижения пускового тока. Следует отметить, что запуск переключением «звезда – треугольник» возможен только в тех двигателей, у которых  выведены начала и концы всех трех обмоток. Пульт для запуска «звезда – треугольник» состоит и следующих комплектующих, трех контакторов (пускателей), реле перегрузки по току и реле времени, управляющего переключением пускателей. Чтобы можно было использовать этот способ запуска, обмотки статора электродвигателя, соединенные по схеме «треугольник», должны быть рассчитаны на работу в номинальном режиме. Обычно электродвигатели рассчитаны на напряжение 400 В при соединении по схеме «треугольник» (∆) или на 690 В при соединении по схеме «звезда» (Y). Такая унифицированная схема соединения может быть также использована для пуска электродвигателя при более низком напряжении. Схема запуска переключением «звезда – треугольник» показана на (Рис. 2)

Пуск двигателя звезда треугольникПуск двигателя звезда треугольник

Пуск звезда треугольник

В момент пуска электропитание к обмоткам статора подключено по схеме «звезда» (Y) Замкнуты контакторы К1 и К3. По истечении определённого периода времени, зависящего от мощности двигателя и времени разгона, происходит переключение на режим запуска «треугольник» (∆). При этом контакты пускателя K3 размыкаются, а контакты пускателя K2 замыкаются. Управляет переключением контактов пускателей K3 и K2 реле времени. На реле выставляется время, в течение которого происходит разгон двигателя. В режиме запуска «звезда – треугольник» напряжение, подаваемое на фазы обмотки статора, уменьшается в корень из трех раз, что приводит к уменьшению фазных токов тоже в корень из трех раз, а линейных токов в 3 раза. Соединение по схеме «звезда – треугольник» дает более низкий пусковой ток, составляющий всего одну треть тока при прямом запуске. Запуск «звезда – треугольник» особенно хорошо подходят для инерционных систем, когда происходит «подхватывание» нагрузки после того, как произошел разгон двигателя.

Запуск «звезда – треугольник» также понижает и пусковой момент, приблизительно на треть. Данный метод можно использовать только для индукционных электродвигателей, которые имеют подключение к напряжению питания по схеме «треугольник». Если переключение «звезда – треугольник» происходит при недостаточном разгоне, то это может вызвать сверхток, который достигает почти такого же значения, что и ток при «прямом» запуске. За время переключения из режима «звезда» в «треугольник» двигатель очень быстро теряет скорость вращения, для ее восстановления необходим мощный импульс тока. Скачок тока может стать ещё больше, так как на время переключения двигатель остается без сетевого напряжения.

 Запуск через автотрансформатор

Данный способ запуска осуществляется при помощи автотрансформатора, последовательно соединённого с электродвигателем во время запуска. Автотрансформатор понижает подаваемое на электродвигатель напряжение (приблизительно на 50–80% от номинального напряжения), чтобы произвести запуск при более низком напряжении. В зависимости от заданных параметров напряжение снижается в один или два этапа. Понижение напряжения, подаваемого на электродвигатель одновременно, приведёт к уменьшению пускового тока и вращающего пускового момента. Если в определённый момент времени к электродвигателю не подаётся питание, он не потеряет скорость вращения, как в случае с запуском «звезда – треугольник». Время переключения от пониженного напряжения к полному напряжению можно корректировать. На (Рис. 3) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором при помощи автотрансформатора.

Диаграмма пуска через автотрансформатор токаДиаграмма пуска через автотрансформатор тока

Пуск через автотрансформатор тока

Помимо уменьшения пускового момента, способ запуска через автотрансформатор имеет и недостаток. Как только электродвигатель начинает работать, он переключается на сетевое напряжение, что вызывает скачок тока. Вращающий момент зависит от напряжения подаваемого на двигатель. Значение пускового момента пропорциональны квадрату напряжения.

Плавный пуск 

В устройстве «плавный пуск» используются те же IGBT транзисторы, что и в частотных преобразователях. Данные транзисторы через цепи управления, понижают начальное напряжение, поступающее на электродвигатель, что приводит к уменьшению пускового момента в электродвигателе. В процессе запуска «плавный пуск» постепенно повышает напряжение электродвигателя, что позволяет электродвигателю разогнаться до номинальной скорости вращения, не образуя большого момента и пиков тока. На (Рис. 4) приведена характеристика пускового тока при запуске асинхронного двигателя с коротко замкнутым ротором с помощью устройства «плавный пуск». Плавный запуск может использоваться также для управления торможением электродвигателя. Устройство «плавный пуск» дешевле преобразователя частоты. Использование устройства «плавного пуска» для асинхронных двигателей значительно увеличивают срок службы электродвигателя, а с ним и насоса находящегося на валу этого двигателя.

Диаграмма для плавного пуска двигателяДиаграмма для плавного пуска двигателя

Диаграмма для плавного пуска двигателя

У «плавного пуска» существуют те же проблемы, что и у частотных преобразователей: они создают наводки (помехи) в систему электроснабжения. Данный способ также обеспечивает подачу пониженного напряжения к электродвигателю во время запуска. При плавном запуске электродвигатель включается при пониженном напряжении, которое затем увеличивается до напряжения сетевого питания. Напряжение в плавном пускателе уменьшается за счет фазового сдвига. Данный способ пуска не вызывает образования скачков тока. Время запуска и пусковой ток можно задавать.

 Запуск при помощи частотного преобразователя

Частотные преобразователи предназначены не только для запуска, но и управления электродвигателем. Инвертор позволяет снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом. На (Рис. 5) приведена характеристика пускового тока при запуске асинхронного двигателя с помощью частотного преобразователя.

Диаграмма пуска двигаеля с инверторомДиаграмма пуска двигаеля с инвертором

Пуск двигателя с преобразователем частоты

Преобразователи частоты остаются все еще дорогими устройствами, и также как и плавный пуск, создают дополнительные помехи в сеть электропитания.

 Заключение

 Задача любого из способов запуска электродвигателя заключается в том, чтобы согласовать характеристики вращающего момента электродвигателя с характеристиками механической нагрузки, при этом необходимо, чтобы пиковые токи не превышали допустимых значений. Существуют различные способы запуска асинхронных двигателей, каждый их которых имеет свои плюсы и минусы. И в заключении приведена небольшая таблица, где в краткой форме указаны преимущества и недостатки наиболее распространённых способов запуска асинхронных электродвигателей.

Таблица 1

 

Способы запуска

Преимущества

Недостатки

Прямой запуск

Простой и экономичный. Безопасный запуск Самый большой пусковой момент Высокий пусковой ток

Запуск «звезда – треугольник»

Уменьшение пускового тока в три раза. Скачки тока при переключении «звезда – треугольник». Не подходит, если нагрузка без инерционная. Пониженный пусковой момент.

Запуск через автотрансформатор

Уменьшение пускового тока на U2. Скачки тока при переходе от пониженного напряжения к номинальному напряжению. Пониженный пусковой момент.

Плавный запуск

Отсутствуют скачки тока. Небольшой гидравлический удар при запуске насоса. Уменьшение пускового тока на требуемую величину, обычно в 2-3 раза. Пониженный пусковой момент.

Запуск при помощи частотного преобразователя

Отсутствуют скачки тока. Небольшой гидравлический удар при запуске насоса. Уменьшение пускового тока, обычно, до номинального. Напряжение питания на двигатель можно подавать постоянно. Пониженный пусковой момент. Высокая стоимость.

Спасибо за оказанное внимание.

P.S. Понравился пост?  Порекомендуйте его в социальных сетях своим друзьям и знакомым.

Еще похожие посты по данной теме:

nasos-pump.ru

Схема пуска асинхронного двигателя | white-santa.ru

shema puska ad

Представленная выше схема является самой простой и распространенной, которая обладает простейшей пускозащитной аппаратурой, которая без проблем позволяет управлять работой асинхронного электродвигателя, а так же защищает от недопустимых режимов работы, таких как короткое замыкание и перегрузки.На данной схеме имеются две части: силовая цепь, посредством которой осуществляется питание электродвигателя  и цепь управления непосредственно участвующую в управлении электродвигателя (пуск, остановка). Необходимо уточнить, что по силовой цепи протекает рабочий ток электродвигателя, другими словами эта цепь должна выдерживать пусковые токи. Цепь управления в свою очередь, в зависимости от используемой пусковой и регулирующей аппаратуры может получать питание от одного источника вместе с силовой цепью или от независимого источника, причем цепь управления может питаться постоянным током. В зависимости от катушки магнитного пускателя цепь управления может питаться фазным или линейным напряжениями.

Схема состоит из следующих составных частей: 

Два автоматических выключателя АВ1 и АВ2. Первый АВ1 устанавливается в силовой цепи, им осуществляется подача напряжения на контакты магнитного пускателя. Также от этого автоматического выключателя получает питание второй выключатель АВ2 расположенный в цепи управления. Автомат АВ1 является не только коммутирующим устройством, но и аппаратом защиты от коротких замыканий и перегрузки. Автоматический выключатель АВ2 подает напряжение на цепь управления и защищает ее от короткого замыкания.

Магнитного пускателя КМ, силовые контакты которого включены в силовую цепь, блок контакт КМ1 осуществляет шунтирование кнопки Пуск. Также в цепь управления включается катушка КМ данного магнитного пускателя. Магнитный пускатель осуществляет подачу напряжения на электродвигатель, а также препятствует повторного пуска  электродвигателя при кратковременном исчезновении напряжения.

Тепловое реле КК, биметаллические пластины, которого включены последовательно в силовую цепь питания статора асинхронного электродвигателя. Отключающий контакт КК этого реле включен в цепь управления. Реле КК осуществляет защиту электродвигателя от перегрузки.

Сам асинхронный двигатель  Д, которым осуществляется управление.

Кнопочная станция (кнопка управления), состоящая из двух кнопок Стоп — нормально замкнутый контакт, и кнопка Пуск – нормально разомкнутый контакт.

Все вышеперечисленные устройства изображены на схеме.

Работа схемы

shema puska ad1

shema puska ad1

В текущем состоянии, напряжение подается только на верхние контакты (губки) автоматического выключателя АВ1, это можно заметить  по окраске линий в синий цвет.

При включенном автоматическом выключателе АВ1, напряжение поступает на силовые контакты магнитного пускателя КМ и автоматического выключателя АВ2. При замыкании Автомата АВ2, напряжение поступит через замкнутый контакт кнопки Стоп на контакт кнопки Пуск, и блок контакт магнитного пускателя КМ1.

shema puska ad2

shema puska ad2

 

Все выше перечисленные манипуляции являются подготовительными.  В текущем состоянии все готово к пуску электродвигателя.

shema puska ad3

shema puska ad3

 

При замыкании контакта кнопки Пуск, питание получит катушка магнитного пускателя КМ, при этом через нее начнет протекать ток, так как образовалась замкнутая цепь: фаза С, автоматический выключатель АВ2, кнопка Стоп, кнопка Пуск, катушка КМ, контакт реле КК, фаза В.

При протекании тока по катушке магнитного пускателя, замкнутся его контакты в силовой цепи, кроме этого срабатывает блок контакт КМ1, который шунтирует катушку магнитного пускателя КМ, он срабатывает, то есть замыкает свои контакты в с кнопку Пуск. После размыкания контакта кнопки Пуск, катушка не потеряет питание.

При срабатывании, магнитный пускатель замыкает свои силовые контакты КМ и подает напряжение на статор двигателя через тепловое реле.  Асинхронный двигатель, получив питание, запустится, его ротор начнет вращаться.

shema puska ad4

shema puska ad4

Для выполнения остановки электродвигателя, необходимо отключить катушку магнитного пускателя  КМ, для этого нажимают кнопку Стоп, размыкая его контакт. При этом цепь, по которой питалась катушка КМ, размыкается, вследствие чего размыкаются силовые контакты магнитного пускателя КМ, электродвигатель теряет питание и останавливается, при этом размыкается шунтирующий блок контакт КМ1. При возврате кнопки Стоп в замкнутое положение, состояние схемы возвращается в исходное положение и готова для очередному пуска.

Стоит отметить, что данная схема не приспособлена для обеспечения плавного пуска асинхронного электродвигателя, выполнения регулировки частоты вращения и реверса. Все эти операции требуют усложнения схемы путем включения дополнительных устройств.

Асинхронные двигатели — самый распространенный вид электрических машин. Выше представленную схему пуска электродвигателей так же называют самой простой и распространенной.

 

white-santa.ru

Устройства и способы пуска асинхронного электродвигателя — прямой, звезда-треугольник, плавный и через частотный преобразователь

ПРЯМОЙ - ПЛАВНЫЙ - ЗВЕЗДА-ТРЕУГОЛЬНИК - ЧЕРЕЗ ПРЕОБРАЗОВАТЕЛЬ

Асинхронные электрические двигатели с короткозамкнутым ротором благодаря своей крайней простоте получили широкое распространение, особенно в трехфазных сетях, где им не требуются дополнительные пусковые или смещенные по фазе обмотки. При правильной эксплуатации асинхронный электродвигатель становится практически вечным – единственное, что в нем может потребовать замены, это подшипники ротора.

Пуск асинхронного двигателя

Однако ряд особенностей асинхронных двигателей определяет специфику их пускового режима: отсутствие обмотки якоря означает отсутствие противоЭДС индукции в момент включения обмоток статора, а следовательно – высокий пусковой ток.

Если для маломощных электрических двигателей это не критично, то в промышленных электродвигателях пусковые токи могут достигать очень высоких значений, что приводит к просадкам напряжения в сети, перегрузкам подстанций и электропроводки.

ПРЯМОЙ ПУСК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Как уже было сказано выше, прямое включение обмотки асинхронного двигателя может применяться только при низкой мощности. В этом случае пусковой ток превышает номинальный в 5-7 раз, что не является проблемой для коммутационного оборудования и электропроводки.

Основной проблемой прямого пуска становится подключение нескольких электродвигателей к маломощной подстанции или генератору: включение в сеть нового электродвигателя может вызвать настолько сильную просадку напряжения, что уже работающие двигатели остановятся, а новому мотору не хватит пускового момента, чтобы стронуться с места.

Пусковой ток асинхронного двигателя достигает максимального значения в момент включения и плавно снижается до номинального по мере раскрутки ротора. Следовательно, для уменьшения времени перегрузки сети асинхронный двигатель должен включаться с минимальной нагрузкой, если это возможно.

Мощные токарные станки, гильотины для рубки металла не имеют фрикционных муфт, и все их вращающиеся механизмы раскручиваются в момент включения электродвигателя. В этом случае длительные просадки напряжения приходится прямо закладывать в проектируемое для них электроснабжение.

В начало

ПЛАВНЫЙ ПУСК АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ

Логичным способом снижения пускового тока стало снижение напряжения, подаваемого на статор в момент запуска, с его постепенным увеличением при разгоне двигателя. Простейший и наиболее старый способ плавного пуска – реостатный пуск электродвигателя: в цепь статора последовательно включается несколько мощных резисторов, последовательно закорачиваемых контакторами. Также могут использоваться и дроссели высокой индуктивности (реакторы), а также автотрансформаторы.

Подобный способ плавного пуска имеет очевидные недостатки:

Проблематичность автоматизации.

Работа контакторов не привязывается к реальному значению тока, они либо переключаются вручную, либо перебираются с помощью реле времени автоматически.

Усложнение пуска под нагрузкой.

Так как крутящий момент асинхронного двигателя пропорционален квадрату напряжения питания, снижение напряжения в момент пуска в 2 раза приведет к снижению крутящего момента в 4 раза. Применение плавного пуска с электродвигателями, напрямую подключенными к нагрузке, значительно увеличивает время выхода на рабочие обороты.

Совершенствование силовой электроники позволило создать компактные автоматические устройства плавного пуска (также называемые софтстартерами от английского soft start – «мягкий пуск») для асинхронных электродвигателей, устанавливаемые на стандартную монтажную рейку электрощитов. Они обеспечивают не только плавный разгон, но и торможение двигателя, позволяя регулировать параметры токов пуска и остановки в различных режимах:

Постоянное токоограничение. В момент запуска ток ограничивается на заданном превышении номинального и удерживается на этой величине все время разгона двигателя. Обычно используется ограничение на уровне 200-300% номинального тока. Перегрузка становится малозначительной, хотя ее длительность возрастает. Формирование тока. В данном случае токовая кривая в момент включения двигателя имеет больший наклон, после чего софтстартер переходит в режим токоограничения.

Такой метод плавного пуска применяется при подключении к маломощным подстанциям или генераторам для снижения стартовой нагрузки, однако пусковой момент электродвигателя в данном случае минимален. Для устройств, лишенных холостого хода электродвигателя, использовать формирование тока с пологой стартовой кривой невозможно.

Ускоренный пуск (кик-старт). Применяется с двигателями, напрямую приводящими нагрузку, так как иначе их пусковой крутящий момент может оказаться недостаточным для страгивания ротора.

В этом случае устройство плавного пуска допускает кратковременное превышение пускового тока в несколько раз (фактически осуществляется прямая коммутация), по истечении заданного времени ток снижается до двух-трехкратного превышения номинала.

Останов на выбеге. При отключении двигателя напряжение с него снимается полностью, вращение якоря продолжается по инерции. Наиболее простой способ коммутации, применимый при небольших мощностях и малой инерции привода.

Однако в момент разрыва цепи происходит сильный индуктивный выброс, приводящий к сильному искрению в контакторах. На мощных электродвигателях, а также при высоких рабочих напряжениях данный способ отключения неприемлем.

Линейное снижение напряжения. Применяется для более плавной остановки двигателя. Нужно помнить, что крутящий момент двигателя при этом снижается нелинейно из-за квадратичной зависимости момента от напряжения, то есть снижение момента происходит наиболее резко в начале кривой.

Отключение питания происходит при минимальном токе в обмотке, соответственно коммутирующие выключатели практически не изнашиваются образованием искры между контактами.

Для снижения нагрузок при остановке применяется управляемое снижение напряжения:

  • вначале ток снижается минимально;
  • затем кривая начинает снижаться круче.

Снижение крутящего момента электродвигателя при этом близко к линейному. Этот способ управления остановом электродвигателя применяется в устройствах с высокой инерционностью привода.

При использовании такого рода устройств плавного пуска пусконаладочные работы заключаются в настройке нужного типа кривой пускового тока и, в случае использования режимов формирования тока или ускоренного старта, настройке длительности временного интервала начального участка кривой.

Применение устройств плавного пуска позволяет автоматизировать пусковой режим, но его главный минус остается – либо приходится закладывать в устройство возможность холостого хода электродвигателя, либо допускать кратковременные перегрузки сети, раскручивая мотор и нагрузку с кик-стартом.

В начало

ПУСК ПО СХЕМЕ ЗВЕЗДА-ТРЕУГОЛЬНИК

Другим способом запуска, использующимся на трехфазных двигателях, является перекоммутация обмоток: в момент пуска обмотки соединяются звездой, по мере разгона ротора обмотки переводятся в нормальное включение треугольником.

Пуск по схеме звезда-треугольник

Такой метод пуска фактически является частным случаем способа пуска асинхронного электродвигателя на пониженном напряжении, так как напряжение на обмотках при этом снижаетсяпримерно в 1,73 раза.

Подобный способ пуска может быть легко реализован с помощью набора контакторов с ручным управлением или с приводом от реле времени, поэтому достаточно дешев и распространен. Основные недостатки этого способа:

  1. При отказе одного из контакторов произойдет нарушение коммутации, в результате чего либо станет невозможным пуск, либо значительно снизится мощность двигателя.
  2. Снижение напряжения и тока является фиксированным.
  3. Крутящий момент двигателя при включении обмоток звездой уменьшается, поэтому запуск желательно также производить без нагрузки.

В начало

ПУСК ЭЛЕКТРОДВИГАТЕЛЯ ЧЕРЕЗ ЧАСТОТНЫЙ ПРЕОБРАЗОВАТЕЛЬ

Наиболее гибкий способ управления не только режимом пуска, но и рабочими характеристиками асинхронного электродвигателя – это применение частотного преобразователя. По своей сути частотный преобразователь представляет собой узкоспециализированный инвертор:

  • входное напряжение в нем выпрямляется;
  • затем заново преобразуется в переменное, но уже с заданной частотой и амплитудой.

Пуск через частотный преобразователь

Это происходит благодаря работе генератора широтно-импульсной модуляции (ШИМ), который создает серию прямоугольных импульсов заданной частоты и скважности (отношения длительности импульса к его периоду). Генерируемые импульсы управляют силовыми ключами, коммутирующими выпрямленное напряжение питания на обмотки выходного трансформатора.

Как осуществляется плавный пуск через частотный преобразователь?

В данном случае становится возможным плавное изменение не только напряжения, но и частоты питающего электродвигатель напряжения. Благодаря тому, что ШИМ-генератор частотного преобразователя легко может управляться с обратной связью по потребляемому току, становится возможным пусковой режим, в котором ток не превышает номинальный – таким образом перегрузка питающей сети фактически отсутствует.

Однако такой пусковой режим требует значительного усложнения частотного преобразователя, поэтому для управления асинхронными электродвигателями обычно используется комбинация с отдельным устройством плавного пуска (УПП).

В начало

© 2012-2018 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

eltechbook.ru

Как подключить асинхронный двигатель

С момента изобретения асинхронного двигателя появились различные вариации его исполнения. Но способы подключения остались прежними. Наиболее популярны две схемы: звезда и треугольник. Рассмотрим преимущества и недостатки каждой из них. Выясним, какой метод подключения оптимален.

Подключение звездой

При соединении обмоток статора асинхронного двигателя по схеме «звезда их концы объединяют в одной точке. При питании от трехфазной электролинии вольтаж подается на их начала.

Схема подключения звездой

3

Способ подходит для подключения трехфазных двигателей к трехфазной линии по большему напряжению. Например:

  • Двигатель 380 к сети 380 Вольт;
  • Двигатель 220В к сети под напряжением 220 единиц;
  • Двигатель 127 220В к сети 220 Вольт;
  • Двигатель 220 380 к сети 380 Вольт.

Преимущество метода заключается в плавном запуске мотора и его мягкой работе. Это благоприятно сказывается на его эксплуатационном сроке. Но в этом кроется недостаток: схема «звезда» несет потери по мощности в полтора раза по сравнению с подключением способом «треугольник».

Остается вопрос: можно ли, и если да, то, как подключить асинхронный двигатель на 220 или 127 Вольт (низшие значения вольтажа из двух номинальных) звездой? Да, можно. Но это будет невыгодно из-за высокой потери мощности, которая прямо пропорциональна подающемуся напряжению и зависит от способа включения. Поэтому потери мощности по специфике соединения будут сочетаться с потерями по вольтажу (вместо 380 Вольт будет 220В).

Подключение треугольником

Схема «треугольник» отличается от предыдущей тем, что обмотки соединяются последовательно. Тогда конец первой обмотки соединяется с началом второй, конец которой – с началом третьей, вывод которой – с началом первой.

Схема подключения треугольником

5

Преимущество способа заключается в том, что он обеспечивает достижение максимальной мощности. Но при запуске двигателя образуются высокие пусковые токи, которые могут привести к уничтожению изоляции. Поэтому не рекомендуется подавать высокое напряжение.

Треугольное соединение используется для подключения однофазного двигателя к однофазной сети 127 или 220 Вольт. Она же применяется для трехфазных электродвигателей с двумя номинальными напряжениями при включении в однофазную сеть (только на меньшее значение):

  • Мотор 220 380 к сети с напряжением 220 Вольт;
  • Мотор 127 220В к сети с вольтажом 127 единиц.

Внимание! Существуют трехфазные электросети: 600, 380, 220 и 127 Вольт. Но к бытовым из них относят только с напряжением в 380. А 220 в быту относится к однофазным линиям. Поэтому наибольшее распространение получили моторы 220/380В, которые можно подключить как в городе, так и в частном доме.

С технической точки зрения для высокого значения номинального напряжения схема «треугольник» тоже подходит. Но ввиду высоких пусковых токов это нецелесообразно и очень опасно: изоляция сгорит от тепла, выделяемого обмоткой.

Подключение методом «звезда-треугольник»

Для продолжительной эксплуатации электродвигателя важен мягкий запуск, а для высокой производительности – большая мощность. Для того чтобы сочетать преимущества описанных выше способов соединения обмоток, была разработана новая схема: треугольник-звезда. Она подходит для высокомощных моторов от 5 кВт.

Схема подключения Звезда-Треугольник

Для подключения электродвигателя таким способом понадобится реле времени. Технически управление выглядит следующим образом:

  1. Через реле времени К1 и контакт К2 на участке электроцепи контактора, обозначаемого К3, подается оперативное напряжение;
  2. Контактор К3 замыкается, но размыкается контакт К3 на части электроцепи контактора, условно обозначаемого К2 для блокировки ошибочного включения. Одновременно в электроцепи контактора К1, совмещенного с клеммами временного реле, включается контакт К3;
  3. При подключении контактора К1 замыкается контакт К1, расположенный на участке электроцепи с его катушкой. Тут же срабатывает реле времени, которое разъединяет контакт К1 на участке цепи с катушкой контактора К3, но соединяет его с катушкой контактора, обозначаемого на схеме К2;
  4. Контактор К3 выключается, а контакт К3, расположенный на части цепи, где находится катушка второго контактора К2, замыкается;
  5. Включается контактор К2, но контакт К2 на участке третьего контактора К3 размыкается в целях блокировки ошибочного включения.

Описание принципа питания:

  1. После включения третьего контактора замыкается третий контакт. При этом на блоке расключения начал обмоток (БРНО) замыкаются концы обмоток по схеме «звезда»: U2, V2 и W2;
  2. После включения первого контактора замыкается первый контакт. При этом питание подается на концы обмоток: U1, V1 и W1;
  3. После срабатывания временного реле происходит переключение на соединение треугольником;
  4. Контактор третий отключается, но включается второй с замыканием второго контакта;
  5. Питание теперь подается на концы обмоток, расположенных на БРНО (U2, V2 и W2).

Описать можно простыми словами: включение в работу электродвигателя сначала происходит посредством соединения обмоточных выводов в звезду. Этим обеспечивается мягкий и плавный запуск без перегревания. Когда мотор наберет обороты, автоматические происходит переключение на треугольное соединение. Момент переведения сопровождается незначительным снижением скорости вращения. Однако она быстро восстанавливается.

Подключение многоскоростных моторов

Если работа асинхронного электродвигателя может иметь несколько режимов, отличающихся по скорости вращения ротора, то говорят, что он многоскоростной. Различают двухскоростной, трехскоростной и четырехскоростной вариант исполнения. Схемы их подключения сложные, но основываются на уже рассмотренных нами способах соединения: «звезда» и «треугольник».

Двухскоростной мотор может подключаться тремя способами:

  1. Треугольник/двойная звезда (на рисунках обозначен буквой «а»). Подходит для подключения электродвигателя, низшая частота вращения которого вдвое меньше высшей частоты (отношение 1 к 2). Схема «треугольник» активна при низких оборотах, а «двойная звезда» — при высоких;
  2. Треугольник/сдвоенная звезда с прибавочной обмоткой (на рисунках буква «б»). Схема хороша для двигателей со следующими отношениями частот: 2 к 3 и 3 к 4;
  3. Тройная звезда/тройная звезда без дополнительной обмотки (на рисунке буква «в»). Схема подходит в тех же случаях, что и треугольник/двойная звезда с использованием дополнительной обмотки.

 

 

 

 

77

88

99

Подключение трехскоростного асинхронного двигателя отличается лишь тем, что у такого мотора не одна, а две обмотки, которые не зависят друг от друга. Первая подключается так же, как двухскоростной мотор с одной обмоткой по схеме «а». Вторая соединяется звездой. Всего выводов – 9.

10

У четырехскоростного мотора тоже две независимые друг от друга обмотки. Но в отличие от трехскоростного двигателя подключение каждой обмотки производится по схеме треугольник/сдвоенная звезда.

Нахождение начал и концов обмоток

Для асинхронных электродвигателей, работающих на одной скорости, характерно наличие шести контактов для трех обмоток (по одному контакту на начало и конец для каждой из них). Если на моторе указано их предназначение, то можно сразу приступать к подсоединению. Но иногда следы меток стираются, или их нет совсем. Тогда перед подключением необходимо определить пары выводов, а также места, где намотка начинается, а где заканчивается.

Поиск парных клемм

Сначала нужно определить выводы, принадлежащие только одной обмотке. Всего получится три пары. Для этого используйте лампу и соединительные провода:

  1. Ко второму зажиму в сети подсоедините один из выводов. Свободных останется 5;
  2. Включите лампу в сеть через третий зажим;
  3. Второй конец провода соедините с одной из клемм статора;
  4. Если свечения нет, то разъедините их и подключите к другому выводу;
  5. Меняйте соединение лампы со свободными контактами до тех пор, пока не будет замечено накала в лампочке. Как только появился свет, подключенные к сети контакты статора пометьте. Это пара одной из намоток;
  6. Точно так же определите две оставшиеся пары;
  7. Пометьте каждую пару так, чтобы в последующем не приходилось вновь их искать.

11

Внимание! Во время работы следите, чтобы оголенные выводы намоток не касались друг друга. Иначе пары могут быть определены ошибочно.

Пометка начал обмоток и их концов

Есть два метода:

  • Трансформационный;
  • Подбор фаз.

Внимание! Для краткости: Н – начало, К – конец.

Описание метода трансформации:

  1. В одну пару включите лампу, а две оставшиеся соедините между собой последовательно, после чего подайте напряжение;
  2. Если свечения нет (рисунок б), то намотки были соединены К-Н-Н-К или Н-К-К-Н. Тогда нужно одну из намоток перевернуть, поменяв местами зажимы;
  3. Если появилось свечение (рисунок а), то на месте соединения двух пар можно смело пометить один из выводов концом, а другой – началом;
  4. Чтобы определить Н и К для обмотки, в которую включена лампа, нужно переставить ее на одну из намоток с уже определенными концами (рисунок в).

12

Описание способа поиска Н и К подбором фаз:

  1. Наугад попробуйте соединить двигатель звездой;
  2. Включите в сеть и следите за его работой. Если он гудит, то контакты одной из намоток поменяйте местами;
  3. Если мотор все равно гудит при работе, то верните контакты на место, но соедините с центром звезды противоположный вывод другой намотки;
  4. Если гудение пропало, то все выводы в центре – концы, а их противоположные стороны – начала. Если еще гудит, то поменяйте местами соединения третьей намотки.

13

Внимание! Метод подбора фаз подходит только для маломощных моторов до 5 кВт.

Однофазный мотор можно подключить только к однофазной линии. Трехфазный двигатель подходит как для однофазной, так и для трехфазной линии. Причем для однофазного подключения в сеть 127 или 220 Вольт выгодна схема «треугольник», а для линий 220 и 380 Вольт с тремя фазами – «звезда». В зависимости от технических характеристик мотора подключение может выполняться путем комбинаций этих методов.

 

 

electricdoma.ru

Способы пуска асинхронного трехфазного двигателя от однофазной сети ~ Электропривод

Как запускать трехфазный асинхронный двигатель от однофазной сети?

Самый простой способ запуска трехфазного двигателя в качестве однофазного, основывается на подключении его третьей обмотки через фазосдвигающее устройство. В качестве такого устройство может выступать активное сопротивление, индуктивность или конденсатор.

 

Прежде, чем подключать трехфазный двигатель в однофазную сеть, необходимо убедиться, что номинальное напряжение его обмоток соответствуют номинальному напряжению сети. Асинхронный трехфазный двигатель имеет три статорных обмотки. Соответственно в клемной коробке должно быть выведено 6 клемм для подключения питания. Если открыть клеммную коробку, то мы увидим борно двигателя. На борно, выведены 3 обмотки двигателя. Их концы подключены к клеммам. На эти клеммы и подключается питание двигателя.

Борно

Каждая обмотка имеет начало и конец. Начала обмоток маркируют как С1, С2, С3. Концы обмоток промаркированы соответственно С4, С5, С6. На крышке клемной коробки мы увидим схему включения двигателя в сеть при разных напряжениях питания. Согласно этой схемы мы и должны подключить обмотки. Т..е. если двигатель допускает использование напряжений 380/220, то для его подключения к однофазной сети 220В, необходимо переключить обмотки в схему «треугольник».

Соединение в треугольник

Если же его схема подключения допускает 220/127 В, то к однофазной сети 220 В, его необходимо подключать по схеме «звезда», как показано на рисунке.

Соединение в звездуСхема пуска

Схема с пусковым активным сопротивлением

На рисунке показана схемы однофазного включения трехфазного двигателя с пусковым активным сопротивлением. Такая схема используется только в двигателях малой мощности, так как в резисторе теряетя большое количество энергии в виде тепла.

Схемы конденсаторного пуска асинхронного двигателя

Наибольшее распространение получили схемы с конденсаторами. Для изменения направления вращения двигателя необходимо применять переключатель. В идеале для нормальной работы такого двигателя необходимо, чтобы емкость конденсатора изменялась в зависимости от числа оборотов. Но такое условие выполнить довольно трудно, поэтому обычно применяют схему двухступенчатого управления асинхронным электродвигателем. Для работы механизма, приводимого в движение таким двигателем, используют два конденсатора. Один подключается только при запуске, а после окончания пуска его отключают и оставляют только один конденсатор. При этом происходит заметное снижение его полезной мощности на валу до 50…60% от номинальной мощности при включении в трехфазную сеть. Такой пуск двигателя получил название конденсаторного пуска.

Конденсаторный пуск

При применении пусковых конденсаторов имеется возможность увеличить пусковой момент до величины Мп/Мн=1,6-2. Однако, при этом значительно увеличивается емкость пускового конденсатора, из за чего вырастают его размеры и стоимость всего фазосдвигающего устройства. Для достижения максимального пускового момента, величину емкости необходимо выбирать из соотношения, Xc=Zk, т. е. емкостное сопротивление равно сопротивлению короткого замыкания одной фазы статора. По причине высокой стоимости и габаритов всего фазосдвигающего устройства конденсаторный пуск применяется лишь при необходимости большого пускового момента. В конце пускового периода пусковой обмотки необходимо отключить, в противном случае пусковая обмотка перегреется и сгорит. В качестве пускового устройства можно применять индуктивность— дроссель.

Пуск трехфазного асинхронного двигателя от однофазной сети, через частотный преобразователь

Частотный преобразователь-асинхронный двигатель

Для пуска и управления трехфазным асинхронным двигателем от однофазной сети, можно применять преобразователь частоты с питанием от однофазной сети. Структурная схема такого преобразователя представлена на рисунке. Пуск трехфазного асинхронного двигателя от однофазной сети с помощью преобразователя частоты является одним из самых перспективных. Поэтому именно он наиболее часто используется в новых разработках систем управления регулируемыми электроприводами. Принцип его лежит в том, что, меняя частоту и напряжение питания двигателя, можно в соответствии с формулой, изменять его частоту вращения.

Сам преобразователь состоит состоят из двух модулей, которые обычно заключены в один корпус:— модуль управления, который управляет функционированием устройства;— силовой модуль, который питает двигатель электроэнергией.

Применение преобразователя частоты для пуска трехфазного асинхронного двигателя. позволяет значительно снизить пусковой ток, так как электродвигатель имеет жесткую зависимость между током и вращающим моментом. Причем значения пускового тока и момента можно регулировать в достаточно больших пределах. Кроме того с помощью частотного преобразователя можно регулировать обороты двигателя и самого механизма, уменьшая при этом значительную часть потерь в механизме.

Недостатки применения частотного преобразователя для пуска трехфазного асинхронного двигателя от однофазной сети: достаточно высокая стоимость самого преобразователя и периферийных устройств к нему. Появление несинусоидальных помех в сети и снижение показателей качества сети.

eprivod.com

Cпособы пуска асинхронного двигателя

Существуют требования, которым должен отвечать запуск асинхронного двигателя. Во-первых, это отсутствие необходимости в использовании специальных устройств. Во-вторых, это сведение пусковых токов до минимума и пускового момента (далее Мпуск) до максимума. Рассмотрим способы пуска асинхронного двигателя, удовлетворяющие выдвинутым требованиям.

Прямой пуск

Подразумевает подключение намоток статора к электросети без «посредников». Подходит моторам с короткозамкнутым ротором. Это двигатели небольшой мощности, у которых при подключении напрямую к электросети статорных обмоток, образующимися пусковыми токами не вызывается перегрев, способный вывести технику из строя.

В асинхронных двигателях соотношение индуктивности обмоток к их сопротивлению (L/R) небольшое. И оно тем меньше, чем меньше мощность устройства. Поэтому во время запуска образующийся свободный ток быстро затухает, и им можно пренебречь. Брать в учет будет только ту силу тока, которая установилась в результате переходного процесса.

Ниже на рисунке (а) представлена схема магнитного пускателя, обозначенного буковой К. Технически это электромагнитный выключатель, часто применяемый при запуске электродвигателей с короткозамкнутым ротором. Он необходим для автоматического разгона по естественной механической характеристике (обозначим М) от начала запуска (точка П) до момента, когда М станет равным моменту сопротивления (Мс).

22

На картинке (б) представлен график зависимости пускового тока от начального момента. Исходя из него, ускорение разгона равно разности абсцисс графиков М и М(с). В таком случае, если Мпуск будет меньше Мс, то разогнаться у электродвигателя не получится. Чтобы получить оптимальное для разгона значение Мпуск для мотора с короткозамкнутым ротором используйте формулу (коэффициент скольжения s равен единице):

3

Отношение Мпуск к номинальному (Мном) – это величина, определяемая как кратность начального момента. Обозначается kпм. Коэффициент для двигателей с короткозамкнутым ротором входит в диапазон от 1 до 1,8 и устанавливается ГОСТом.

Пример. Если kпм=1,4, а Мном=5000 Н*м, то прямой запуск должен начинаться с Мп = 7000 Н*м.

Внимание! Нельзя превышать установленные ГОСТом нормы. Это ведет к повышению активного сопротивления на вращающемся элементе мотора.

Прямой запуск двигателя обладает преимуществами:

  • Дешевизна;
  • Простота;
  • Минимальный нагрев обмоток при запуске.

Недостатки метода:

  • Величина Мпуск составляет до 300% от Мном;
  • Пусковой ток составляет до 800% от номинального (смотрите графики снизу).

44

Даже с перечисленными недостатками прямой запуск остается наиболее предпочтительным для асинхронных электродвигателей с короткозамкнутым ротором, т.к. обеспечивает высокие энергетические показатели.

Пуск с понижением напряжения

Подходит для запуска электродвигателя высокой мощности, но так же оптимален для аналогов средней, если напряжение в рабочей сети не позволяем разогнать мотор с помощью прямого пуска.

Для понижения напряжения существует три способа:

  1. Переключение намоток статора с треугольника (нормальная схема) на звезду (пусковая схема). Запуск начинается со звезды, а при достижении номинальной частоты происходит переключение на треугольник. При этом напряжение, питающее фазы статорных обмоток, падает в 1,73 раз. Это позволяет уменьшиться во столько же раз фазным токам, а линейные сокращаются втрое.
  2. Запуск с добавочным сопротивлением, приводящим к падению вольтажа на статорной обмотке (рисунок а). На момент пуска в электроцепь включают реакторы или резисторы (реактивное и активное сопротивление соответственно).
  3. Пуск с подключением через трансформатор понижающего типа с несколькими автоматически переключаемыми ступенями (рисунок б).

55

Главное преимущество – возможность разгона двигателя почти при том же напряжении, которое необходимо для нормальной работы. К недостаткам относится лишь падение Мп и Ммакс (максимальный момент). Эти величины прямо пропорционально зависят от напряжения: чем меньше Вольт, тем меньше моменты. Поэтому с нагрузкой мотор не запустится.

Соединение ротора с реостатом во время включения

Метод подходит для включения в работы моторов с фазным ротором. Если роторная цепь включает в себя реостат, то активное сопротивление повышается. При этом точка К на рисунке а ниже перемещается ближе к О и обозначается К`. Это не приводит к уменьшению Ммакс, зато обеспечивает повышение Мпуск. Вместе с этим критическое скольжение увеличивается, и зависимость момента от s смещается к зоне больших скольжений. Число же оборотов смещается в зону меньших вращательных частот (рисунки б и в).

66

Обычно реостат, используемый для пуска мотора, имеет от 3 до 6 ступеней (смотрите рисунок а ниже). Пусковое сопротивление плавно уменьшается, что обеспечивается большой Мпуск. Изначально мотор приводится в ход по четвертой характеристике, проиллюстрированной на рисунке б. Она соответствует сопротивлению запускающего реостата и обеспечивает максимальную пусковую мощность.

77

Вращающий момент (Мвр) уменьшается с ростом оборотов. При некотором минимальном значении необходимо отключить часть реостата, чтобы Мвр возрос снова до максимального (смотрите третью характеристику). Но обороты растут, поэтому Мвр снова уменьшается. Тогда отключается еще одна часть реостата, и начинается работа по второй характеристике. Когда реостат двигателя с фазным ротором отключают вовсе, пусковой процесс завершается. Мотор продолжает работу по характеристике 1.

Запуск в ход таким методом характеризуется изменением Мвр от максимального до минимального значения. Сопротивление в данном случае уменьшается ступенчато по ломаной кривой линии (выделена жирным на графике). Выключение частей реостата осуществляется автоматически или вручную.

Преимущество запуска электродвигателя с фазным ротором с использованием реостата заключается в возможности включать его при Мпуск, близком к Ммакс. Пусковые токи при этом минимальны. Изменение силы тока проиллюстрировано на рисунке в.

Недостатков хватает. Во-первых, это сложность включения. Во-вторых, это необходимость использования совсем не дешевых моторов с фазным ротором. Характер работы хуже, чем у аналогов с короткозамкнутым ротором при мощности одинакового значения – это третий минус. Это объясняет, почему электродвигатели с фазным ротором используют преимущественно в случае возникновения сложностей с запуском других двигателей.

Запуск в ход однофазного мотора

Для включения в работу асинхронного двигателя с питанием от однофазной сети используют вспомогательную намотку. Она должна лежать перпендикулярно относительно рабочей статорной намотки. Но для создания вращающегося магнитного поля необходимо соблюдение еще одного условия. Это сдвиг по фазе тока, протекающего по вспомогательной намотке, относительного тока, возникающего в рабочей обмотке.

Для обеспечения сдвига фаз в момент подключения к однофазной сети в электроцепь вспомогательной обмотки включают специальный элемент. Это может быть резистор, конденсатор или дроссель. Но распространенными элементами являются только первые два.

После разгона мотора до значения частоты, равной установившейся, дополнительную намотку выключают. Это можно сделать вручную или автоматически. В начале двигатель работает по двухфазной, а после установления частоты – по однофазной характеристике.

Применение сопротивления при пуске

Метод применим для асинхронных двигателей, подключаемых к однофазной сети, и имеющих первичную дополнительную обмотку с короткозамкнутым ротором. Так называют мотор с расщепленной фазой, электроцепь которого имеет высокое активное сопротивление.

Чтобы пустить в ход двигатель, питаемый от однофазной сети, необходим пусковой резистор, соединяемый последовательно с дополнительной намоткой. Тогда сдвиг фаз составляет 30 градусов. Этого хватает для разгона. Ниже представлена схема, согласно которой достигается омический сдвиг фаз.

88

Вместо резистора можно применить дополнительную обмотку высокого сопротивления, но низкой индуктивности. В этом случае намотка имеет мало витков, которые выполняются из провода меньшего сечения в отличие от того, что используется для рабочей намотки.

99

В России с конвейера выходят моторы, подключаемые к однофазной сети, оснащенные резистором для сдвига фаз. Их мощность варьируется в диапазоне 18-600 Вт. Двигатели рассчитаны для сетей с напряжением 127, 220 или 380 Вольт и переменным током с частотой 50 Гц.

Использование конденсатора

Метод отличается от предыдущего тем, что мотор с расщепленной фазой при подключении к однофазной линии, имеет высокое сопротивление только в момент запуска.

100

Для обеспечения наибольшего значения Мпуск необходимо круговое и вращающееся магнитное поле. Для этого токи в рабочей и дополнительной обмотках смещают на 90 градусов. Такое смещение может обеспечить только конденсатор. Его использование помогает достичь хорошей пусковой характеристики асинхронного двигателя, питающегося от однофазной электросети.

Выбор способа пуска асинхронного электродвигателя зависит от того, к какой сети он включается: к однофазной или трехфазной. Влияет также мощность мотора и его конструкция.

electricdoma.ru


Каталог товаров
    .