интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Однофазный асинхронный двигатель, схема подключения и запуска. Схемы электродвигателей


Справочник электрообмотчика. Схемы укладки.Схемы электродвигателей.

Схемы обмоток электродвигателей.

Укладка обмоток в пазы трехфазных односкоростных асинхронных электродвигателей

Обороты в минуту Число пазов
12 18 24 27 30 36 42 45 48 54 60 63 72 75 84 90
3000
1500
1000
750
600
500

vitkovoe.ru

ЭЛЕКТРОДВИГАТЕЛИ

   В этой статье мы поговорим об электродвигателях, какие типы существуют, где применяются. Двигатели подразделяются, по типу питания, на двигатели как переменного, так и постоянного тока. Из двигателей, рассчитанных на работу при переменном токе, наибольшее распространение получили двигатели с короткозамкнутым ротором.

Фото двигатель с короткзамкнутым ротором

Фото - двигатель с короткзамкнутым ротором

   Фото такого двигателя можно видеть на рисунке выше. Само название ротора, “короткозамкнутый”, появилось из-за того, что ротор такого двигателя, представляет собой подобие беличьего колеса.

Устройство ротора двигателя беличье колесо

Устройство ротора двигателя беличье колесо

   На следующем рисунке изображен такой двигатель в разрезе:

Двигатель с короткозамкнутым ротором в разрезе

Двигатель с короткозамкнутым ротором в разрезе

   Существуют также двигатели для работы при переменном токе с фазным ротором, но такие двигатели получили меньшее распространение. Один из таких двигателей в разрезе можно видеть на рисунке ниже:

Двигатель с фазным ротором в разрезе

Двигатель с фазным ротором в разрезе

   В двигателях с фазным ротором для подведения питания к ротору пользуются контактными кольцами. Подключаются фазные обмотки через специальный пусковой реостат. Фото реостата небольшой мощности изображено на рисунке:

Фото пускового реостата

Фото пускового реостата

   Пусковые токи асинхронных электродвигателей в 5-7 раз превышают номинальные. Для охлаждения двигателей при работе служит крыльчатка, чем-то напоминающая с виду лопасти вентилятора. Она насаживается на вал двигателя с противоположной стороны (с заднего торца) и вращается вместе с валом двигателя. Создаваемый при вращении вала с крыльчаткой воздушный поток, по специальным горизонтально расположенным пазам, охлаждает двигатель во время работы.

Фото кожух и крыльчатка двигателя

Фото кожух и крыльчатка двигателя

   Крыльчатка, в целях безопасности, обычно закрывается металлическим кожухом, не препятствующим потокам воздуха. Обмотки трехфазного электродвигателя, (как впрочем трансформатора, генератора и любого другого трехфазного устройства имеющего обмотки) нельзя подключать непосредственно к трехфазной сети, напрямую. Обмотки между собой должны быть соединены в звезду либо треугольник.

Схемы подключения электродвигателей

Соединение обмоток звезда и треугольник - схемы

Соединение обмоток звезда и треугольник

   На рисунке 1 соединение обмоток в звезду, на рисунке 2 в треугольник. Наверное, многие, кому доводилось видеть клеммную колодку двигателя, запомнили, что там выходит шесть концов к шести зажимам. У неподготовленного человека сразу возникает вопрос, почему шесть, ведь у нас только 3 фазы и с питания идет 3 провода? Дело в том, что к этим 6-ти зажимам подводятся начала и концы всех трех обмоток.

Клеммная колодка электродвигателя

Клеммная колодка электродвигателя

   К каким выводам на клеммнике подходят начала и концы обмоток, знать в принципе необязательно, если у вас такой клеммник в коробке у двигателя, как на рисунке выше. Достаточно подать питание на выводы обозначенные как L1, L2, L3. Если же кому то будет интересно, то можно снять металлические перемычки и вызвонить тестером схему соединения обмоток. переключив его в режим омметра.

Подключение к 220 вольт треугольник - схема

Подключение к 220 вольт треугольник

   Существуют схемы для подключения двигателей рассчитанных на напряжение 380 вольт, треугольник, к сети 220 вольт. В таком случае заместо подключения 2 фазных проводов мы подключаем фазу и нуль. А как быть с третьим проводом? Для этого берется неполярный конденсатор для сдвига фаз, рассчитанный на работу в сети 220 вольт, и соединяется одним выводом, с одним из сетевых проводов, подключенных к контактам двигателя. А вторым выводом конденсатор подключается к оставшемуся неподключенным третьему контакту электродвигателя, что и можно видеть на схеме выше.

Конденсатор неполярный пусковой на 600 вольт

Конденсатор неполярный пусковой на 600 вольт

   Если такой конденсатор будет подбираться самостоятельно, по справочнику, необходимо помнить о том, что конденсатор должен быть рассчитан на амплитудное напряжение в сети. Управление двигателями осуществляется с помощью магнитных пускателей.

Магнитный пускатель для электродвигателя

Магнитный пускатель для электродвигателя

   Существуют схемы как не реверсивного, (с вращением в одну сторону), так и реверсивного (с вращением в обе стороны) пуска двигателей. При питании двигателя от трехфазного тока, для того чтобы заставить двигатель вращаться в другую сторону, достаточно поменять местами любые две фазы. В схеме реверсивного пуска это осуществляется с помощью двух магнитных пускателей.

Схема реверсивного пуска двигателей

   Эту схему мы сейчас подробно рассматривать не будем, скажу только вкратце, что управление осуществляется кнопками пуск вперед, пуск назад и стоп, защита схемы выполнена на предохранителях и тепловых реле. На пускателях реализован самоподхват питания и блокировка от одновременного включения пускателей с помощью блок контактов.

Двигатели постоянного тока

Устройство электродвигателя постоянного тока

Устройство электродвигателя постоянного тока

   Как видно на рисунке, простейший двигатель постоянного тока состоит из постоянных магнитов, сердечника, обмоток, коллектора и прижимающих токоподводящих контактов (графитовых щеток). На фото ниже изображены эти щетки, наверняка знакомые каждому кто работает с электроинструментом. Щетки со временем изнашиваются и их необходимо менять. Если, к примеру, ваш электроинструмент вдруг стал сильно искрить, одной из причин может быть износ щеток.

Щетки для электроинструмента

Щетки для электроинструмента

   Двигатели постоянного тока выпускаются на различную мощность, начиная знакомых всем моторчиков для детских игрушек, до более крупных двигателей, используемых в дремелях радиолюбителями и значительно более крупных используемых в промышленности. У двигателей постоянного тока можно легко регулировать скорость вращения.

Электрический двигатель от детской игрушки

Электрический двигатель от детской игрушки

   В промышленности используются и громадные двигатели постоянного тока длиной в несколько метров, один из таких в разрезе изображен на рисунке ниже:

Мощный электродвигатель постоянного тока

Мощный электродвигатель постоянного тока

   Электродвигатели постоянного тока находят применение и в общественном электрическом транспорте, это и трамваи, троллейбусы и разнообразный железнодорожный электротранспорт, электрички и метро.

   Двигатели постоянного тока различают по типу возбуждения, которое в свою очередь может быть как последовательным, параллельным, так и смешанным. Также двигатели постоянного тока являются обратимыми. Это означает, что они могут работать и как генераторы, и как двигатели.

el-shema.ru

типы моторов, их особенности и инструкция по работе

Вначале рассмотрим разницу между устройствами 380 и 220 вольт. Настолько очевидна, насколько непонятна непосвященным. Привыкли, каждый домашний прибор подключается двумя проводами, один является фазой, второй – схемной землей. Большая часть техники заземляется. Если речь касается однофазных двигателей, делается на случай пробоя обмотки-корпус. Фаза появится на кожухе — хорошего мало. Рассмотрим способы подключения электродвигателей согласно типу, начнем количеством фаз – одна или три.

Трехфазные и однофазные двигатели

Схема подключения двигателя звезда и треугольник

Схемы подключения двигателя звезда, треугольник

Предваряя обсуждение подключения двигателя звезда/треугольник, начитаем теорию. Трехфазный и однофазный двигатели снабжены иногда тремя проводами подключения. Бросьте далеко ходить. Возьмем следующие два случая:

  1. Трехфазный двигатель имеет внутреннюю коммутацию обмоток схемой звезда. Полюсы  снабжены одной общей точкой. Три фазы подключаются к противоположным концам обмоток. Катушки абсолютно идентичные, одинаковые. Внутри создается вращающееся движущееся поле, за счет которого движется вал. Ротор представлен барабаном силумина с медными прожилками. Ток не подводится, магнитные полюсы образуют путем наведенных токов. Захватываются вращающим полем ротора, начинается движение. Особенностью конструкции назовем невозможность (без специальных мер) подключения сети 230 вольт. Потребовалось бы соединить обмотки схемой треугольника, сделать невозможно. Разумеется, статор можно вскрыть, найти общую точку, сделать три отвода, разорвав контакты меж катушками. Второй особенностью двигателя является отсутствие нулевого провода. Многих положение дел ставит в тупик – куда девается ток? Заряды двигаются по проводам меж фазами. Закон электротехники гласит: для подключения трех фаз нагрузке необязательно иметь общий провод, если потребление трех ветвей одинаковое. В противном случае понадобится нейтраль предоставить. Жизненный пример: допустим, нужно подключить на 380 вольт электрочайник. Маразм? Каждая фаза амплитудой 230 вольт, рабочие хотят кипятку — невозможно отказать. Берем одну из фаз, другой вывод вилки вешаем на нейтраль. Учтите, фазы в пределах одного потребителя нужно нагружать поровну (грубо говоря, по чайнику каждой линии дайте), иначе негативные последствия коснутся питающего трансформатора подстанции. Однофазный двигатель

    Электрические коммутации двигателя

  2. Однофазный двигатель может иметь три вывода. Заземление ни при чем, идет отдельно ушком на корпус. Что касается трех выводов, питают пусковую (либо конденсаторную), рабочую обмотку. Одни провод общий, будет схемная земля. Без сего двигатель работать откажется. Правда, трехфазный двигатель проще? Потому используют производства. Что касается подключения однофазного двигателя, одна катушка обычно имеет большее сопротивление. Разница значительнее, двукратной показывает пусковую обмотку. Сопротивление большего номинала. Нужно параллельно повесить конденсатор (емкость определяется, например, минимальным потребляемым током), когда вал раскрутится, цепь обрывается. Иначе, спустя промежуток времени, пусковая обмотка выйдет из строя вследствие чрезмерного перегрева. Если двигатель конденсаторный (бифилярный), цепь с конденсатором работает постоянно. Нормальный режим, благодаря сдвигу фаз, созданному реактивным элементом, образуется вращающееся поле статора нужной формы.

Итак, лежит два двигателя, видом похожие, подключать нужно разным образом. Важной частью корпуса выступает схема подключения электродвигателя. Расположена на шильдике, выбита на кожухе. Становится понятно, на сколько фаз рассчитан мотор, как врубить в цепь. Информация отсутствует — попробуем доработать недочет своими руками. Понадобится китайский тестер.

У трехфазного двигателя три контакта попарно будут давать одинаковое сопротивление, равное удвоенному значению номинала обмотки. Мотор 230 вольт результаты измерений даст неодинаковые:

  • Самый большой показатель тестера меж фазными концами. Напряжение 220 вольт подается напрямую одному, другому через конденсатор. Емкость сильно зависит от мощности, скорости вращения вала. Параметр определяет средняя нагрузка вала в рабочем режиме.
  • Наименьшее значение образуется меж концами рабочей обмотки.
  • Третий номинал занимает промежуточное положение. Сумма с сопротивлением рабочей обмотки равняется первому пункту списка.

Нейтраль присоединяем меж обмотками, отводит ток дисбаланса. Толщина проводки вдвое меньше, нежели фаз. Методика отключения в нужный момент пусковой обмотки использует пускозащитные реле. Вручную не контролируют.

Вопрос приобретения узла тесно касается использования специальных справочников. Чужеродное пускозащитное реле с данным типом электродвигателя использовать категорически нельзя. Велика вероятность некорректной работы, выхода прибора из строя. Практически умельцы вручную обрывают цепь. Способ неправильный, имеет право существовать.

Добавим, что пропадание одной фазы может негативно сказаться на некоторых типах моторов. Экспериментируя с агрегатом, реализуя подключение двигателя звезда-треугольник, старайтесь избегать ситуаций. Принято осуществлять пуск специальными защитными автоматами, вырубающими питание при возникновении опасности.

Синхронные, асинхронные, коллекторные двигатели

Помимо количества фаз видим конструктивный признак. С точки зрения потребителя момент является главным. Коллекторные двигатели используются бытовой техникой преимущественно. Поставить на замену асинхронные с аналогичными параметрами, нерентабельно. Коллекторный двигатель получается намного меньшего размера (зато перегревается сильнее). Важно определить тип. Хотя по большому счету трехфазные электродвигатели асинхронного типа являются доминирующим звеном сельскохозяйственных, гаражных, других применений. Вопрос питания обсуждается отдельно.

Обсудим три типа двигателей:

Коллекторный электродвигатель

Электродвигатель

  1. Коллекторные снабжают двумя-четырьмя выводами. Последнее делает возможным реверс. Поменяем полярность включения статора, ротора. Коллекторные двигатели отличаются возможность работы от переменного и постоянного тока. В последнем случае характеристики получаются оптимальными. Становится возможным благодаря постоянно переключающимся рабочим обмоткам ротора (секции коллектора). Поле статора постоянное. Главное, чтобы присутствовала нужная полярность. Схема подключения электродвигателя постоянного тока напоминает переменный. Скорость вращения вала регулируется амплитудой питающего напряжения. Либо берется делитель, сформированный силовым ключом, либо отсекается часть цикла синусоиды. Эффект получается схожий: падает действующее значение напряжения.
  2. Асинхронные двигатели по факту доминирующими в промышленности. Реверс образуется изменением полярности включения пусковой обмотки однофазных двигателей, коммутацией последовательности фаз трехфазных. Изменение скорости реализуется аналогичным путем. Варьирование амплитуды питающего напряжения. Асинхронные двигатели обладают плохой приспособленностью к смене скоростей. Очередная причина редкого применения в бытовой технике. Пришла пора сказать: коллекторные двигатели обычно рассчитаны на одну фазу, асинхронные питаются напряжением 380 вольт. Расстановка сил образуется, благодаря соответствующей коммутации обмоток. На практике реализуется подключением электродвигателя треугольником, звездой. Удается воспроизвести вращающееся поля внутри статора. Почему схема подключения асинхронного двигателя звездой непригодна напряжению 230 вольт. Приходится создать сдвиги фаз, становится возможным для схемы треугольника. На одну обмотку подается сетевое напряжение 230 вольт, на вторую – сдвинутое конденсатором на 90 градусов, на третьей образуется разница, изменяемая по нужному закону. Далеко от идеала: подключения электродвигателя звездой и треугольником неравноценны. Синхронный двигатель

    Синхронный двигатель

  3. Синхронные двигатели называются за вращение вала по закону изменения питающего напряжения. В бытовой технике, промышленности используется редко, исключая область сервоприводов. Асинхронные двигатели названы за скорость вращения вала, отличающуюся от частоты питающего напряжения. Вал проскальзывает, эффект используется регулировать обороты. Синхронные двигатели стоят особняком, сфера использования ограничена. Чем отличаются таким особенным. Хороший КПД. Ротор выполняется по схеме с токосъемником, лишен щеток, отсутствует необходимость разделения поверхности сегментами (ток поступает постоянно). Вроде делает возможным применение, где коллекторные моторы пасуют. Замечены некоторые проблемы. Трехфазный синхронный двигатель невозможно запустить вращением фаз статора. Вал за счет инерционности не поддается полю. Приходится применять изыски раскрутки. Тема интересная. Ротор синхронного двигателя питается постоянным током, обмотки — одной-тремя фазами, определяется типом мотора.

Давайте пойме отличие синхронных двигателей от асинхронных. Литература вопрос тщательно обходит. Ответ лежит на поверхности: поле статора синхронного двигателя намного сильнее, ротор намагничен (либо фазный) поэтому вращение  не проскальзывает. Обеспечивается синхронность вращения вала питающему напряжению. Частота определена количества полюсов. Чтобы решить проблемы со стартом (см. выше), используются, например, такие методики:

  1. Вал синхронного двигателя с барабаном, снабженным беличьей клеткой, врубается при пуске через реостат. Образуется поле, как в асинхронном двигателе, захватывающее вал, служит стартовым рычагом. Обороты набраны — цепь разрывается. Реостат нужен погасить токи индукции. Выбирайте сопротивление в 7-8 больше, нежели номинал «беличьей клетки».
  2. Иногда заметите на роторе синхронного двигателя – не поверите – коллектор. Старт выполняется за счет щеток, в дальнейшем из работы выключаются.

И если подключение асинхронного двигателя звезда-треугольник изъедено сполна, синхронные двигатели обсуждаются мало. Встречаются нечасто.

vashtehnik.ru

Работа и схемы электродвигателей постоянного тока

Моторы, работающие на постоянном токе редко встречаются в домашнем хозяйстве. Но они всегда стоят во всех детских игрушках, работающих от батареек, которые ходят, бегают, ездят, летают и т. п. Двигатели постоянного тока (ДПТ) устанавливаются в автомобилях: в вентиляторах и различных приводах. Они почти всегда используются на электротранспорте и реже в производстве.

Преимущества ДПТ по сравнению с асинхронными моторами:

  • Хорошо поддаются регулировке.
  • Отличные пусковые свойства.
  • Частоты вращения могут быть более 3000 об/мин.

Недостатки ДПТ:

  1. Низкая надежность.
  2. Сложность изготовления.
  3. Высокая стоимость.
  4. Большие затраты на обслуживание и ремонт.

Далее Я постараюсь кратко и доступно в одной статье изложить схемы, принципы работы, регулировки и реверса двигателей постоянного тока.

Принцип действия электродвигателя постоянного тока

Устройство двигателя аналогично синхронным двигателям переменного тока. Повторяться не буду, если не знаете, тогда смотрите в этой нашей статье.

Любой современный электромотор  работает на основе закона магнитной индукции Фарадея и «Правила левой руки». правило левой руки для электродвигателя Если к нижней части обмотки якоря подключить электрический ток в одном направлении, а к верхней- в обратном- он начнет вращаться. Согласно правилу левой руки, проводники, уложенные в пазах якоря, будут выталкиваться магнитным полем обмоток корпуса ДПТ или статора.

Нижняя часть будет выталкиваться вправо, а верхняя – влево, поэтому якорь начнет вращаться до момента пока части якоря не поменяются местами. Для создания непрерывного вращения необходимо постоянно менять местами полярность обмотки якоря. Чем и занимается коллектор, который при вращении коммутирует обмотки якоря. принцип работы электродвигателя постоянного тока Напряжение от источника тока подается на коллектор при помощи пары прижимных графитовых щеток.

Принципиальные схемы электродвигателя постоянного тока

Если двигатели переменного тока довольно просто подключаются, то с ДПТ все сложнее. Вам необходимо знать марку мотора, и затем в интернете узнавайте про его схему включения.

Чаще всего у средних и мощных моторов постоянного тока есть в клеммной коробке отдельные выводы от якоря и от обмотки возбуждения (ОВ). Как правило, на якорь подаётся полное напряжение электропитания, а на обмотку возбуждения -регулируемый ток реостатом или переменным напряжением. От величины тока ОВ и будут зависеть обороты ДПТ. Чем он выше, тем быстрее скорость вращения.

В зависимости от того как подключен якорь и ОВ, электродвигатели бывают с независимым возбуждением от отдельного источника тока и с самовозбуждением, которое может быть параллельным, последовательным и смешанным.

На производстве применяются двигатели с независимым возбуждением ОВ, которая подключается к отдельному от якоря источнику питания. схема с независимым возбуждением Между обмотками возбуждения и якоря нет электрической связи.

Схема подключения с параллельным возбуждением по своей сущности аналогична схеме с независимым возбуждением ОВ. С той лишь разницей, что отпадает необходимость в использовании отдельного источника питания. схема с параллельным возбуждением Двигатели при включении по обоим этим схема обладают одинаковыми жесткими характеристиками, поэтому применяются в станках, вентиляторах и т. п.

Моторы с последовательным возбуждением применяются, когда необходим большой пусковой ток, мягкая характеристика. Они применяются а трамваях, троллейбусах и электровозах. По этой схеме обмотки возбуждения и якоря подключаются между собой последовательно. схема с последовательным возбуждением При подаче напряжения токи в обоих обмотках будут одинаковы. Главный недостаток заключается в том, что при уменьшении нагрузки на вал меньше 25% от номинала, происходит резкое увеличение частоты вращения, достигающее опасных для ДПТ значений. Поэтому для безотказной работы необходима постоянная нагрузка на вал.

Иногда применяются ДПТ со смешанным возбуждением, при котором одна обмотка ОВ соединяется последовательно якорной цепи, а другая параллельно. схема со смешанным подключением В жизни редко встречается.

Реверсирование двигателей постоянного тока

Что бы изменить направление вращение ДПТ с последовательным возбуждением необходимо поменять направления тока в ОВ или обмотке якоря. Практически, это делается изменением полярности: меняем плюс с минусом местами. Если же поменять одновременно полярность в цепях возбуждения и якоря, тогда направление вращения не изменится. Аналогично делается реверс и для моторов, работающих на переменном токе.

Реверсирование ДПТ с параллельным или смешанным возбуждением лучше производить изменением направления электрического тока в обмотке якоря. При разрыве обмотки возбуждения, ЭДС достигает опасных величин и возможен пробой изоляции проводов.

Регулирование оборотов двигателей постоянного тока

ДПТ с последовательным возбуждением проще всего регулировать переменным сопротивлением в цепи якоря. Регулировать можно только на уменьшение числа оборотов в соотношении 2:1 или 3:1. При этом происходят большие потери в регулировочном реостате (R рег). Данный метод используется в кранах и электрических тележках, у которых бывают частые перерывы в работе. схемы регулирования оборотов двигателей постоянного токаВ других случаях используется регулировка оборотов вверх от номинала при помощи реостата в цепи обмотки возбуждения, как показано на правом рисунке.

ДПТ с параллельным возбуждением так же можно регулировать частоту оборотов вниз при помощи сопротивления в цепи якоря, но не более 50 процентов от номинала. Опять же будет нагрев сопротивления из-за потерь электрической энергии в нем.

Увеличить же обороты максимум в 4 раза позволяет реостат в цепи ОВ. Самый простой и распространенный метод регулировки частоты вращения.

На практике в современных электромоторах данные методы регулировки из-за своих недостатков и ограниченности диапазона регулирования редко применяются. Используются различные электронные схемы управления.

jelektro.ru

Схема подключения электродвигателя, подключение трехфазного двигателя в однофазную сеть

Схема подключения электродвигателя во многом определяется условиями его эксплуатации. Например, подключение "звездой" обеспечивает большую плавность работы, но дает потерю мощности по сравнению с подключением "треугольником". Иногда бывает нужно подключить трехфазный двигатель в однофазную сеть. В любом случае рассматривать этот вопрос надо по порядку. (Здесь и далее разговор пойдет про асинхронный электродвигатель как наиболее часто встречающийся).

На рисунке 1 представлены две схемы соединения обмоток двигателя.

Соединения обмоток звездой и треугольником
  1. Схема соединения "звездой". Начала (или концы) всех обмоток соединяются в одной точке, оставшиеся концы (или начала) подключаются каждый к своей фазе (L1, L2, L3).

    Эта схема не позволяет использовать электрический двигатель на полную мощность, но имеет меньший пусковой ток.

  2. Соединение обмоток электродвигателя "треугольником". При этом начало одной обмотки соединяется с концом другой. Вершины получившегося треугольника подключаются к цепи трехфазного тока.

    В отличие от соединения "звездой" эта схема позволяет использовать всю паспортную мощность двигателя, но имеет больший пусковой ток.

  3. Подключение двигателя к сети одинаково, вне зависимости от способа соединения обмоток, поэтому, рассказывая про различные его подключения я буду использовать приведенное здесь обозначение электродвигателя, чтобы лишний раз не затруднять восприятие схемы.

Подключение двигателя к сети производится через электромагнитный пускатель. Схемы таких подключений приведены здесь.

Соединение обмоток двигателя в ту или иную схему производится соответствующей установкой перемычек в клеммной коробке. (См. на соответствующих рисунках под схемами соединений). Для тех, кто привык разбираться во всем досконально на нижней части рисунка 1.с приведена схема подключения обмоток электродвигателя к соответствующим клеммам.

Следует заметить, что сказанное относится к двигателям не подвергавшимся переделкам (ремонту) и имеющим штатную маркировку обмоток.

В противном случае нужно самостоятельно найти обмотки, их начала и концы. Как это сделать поясняет рисунок 2.

Как прозвонить обмотки
  1. Прозваниваем обмотки. Для этого один измерительный щуп мультиметра в режиме измерения сопротивления подсоединяем к любой клемме (выводу), другим последовательно проверяем остальные. Точки, сопротивление между которыми составляет единицы или доли ом (близко к нулю), являются выводами одной обмотки.
  2. Отмечаем найденную обмотку, аналогичным образом прозваниваем оставшиеся выводы, находим остальные.
  3. Определяем начала и концы обмоток электродвигателя. Для этого соединяем любые две последовательно, подаем на них переменное напряжение. Для безопасности лучше ограничиться его величиной 12-36 Вольт. К оставшейся подключаем мультиметр в режиме измерения переменного напряжения. Наличие напряжения свидетельствует, что обмотки соединены синфазно, то есть конец одной подключен к началу другой.

    Этот вариант как раз изображен на рисунке. Отсутствие напряжения говорит о том, что обмотки соединены концами (или началами). Маркируем их соответствующим образом. Повторяем указанные действия для оставшейся обмотки, соединенной с любой из первых двух.

ПОДКЛЮЧЕНИЕ ТРЕХФАЗНОГО ДВИГАТЕЛЯ В ОДНОФАЗНУЮ СЕТЬ

Такая необходимость возникает достаточно часто. Сразу замечу - мощность электродвигателя при этом теряется.

Схема подключения трехфазного электродвигателя в однофазную (220 В) сеть требует наличия фазосдвигающего конденсатора Ср. Значение его емкости в микрофарадах (мкФ) для двигателей мощностью до 2,5 кВт можно определить умножив мощность двигателя в кВт на 100. Конечно, для этого существует специальная формула, но описанным образом емкость можно получить с достаточной степенью приближения.

Схема подключения электродвигателя

Наиболее простая схема приведена на рисунке 3.

В зависимости от положения переключателя SB1 будет меняться направление вращения электродвигателя. Подключение двигателя к сети производится выключателем F, в качестве которого лучше использовать автоматический выключатель.

Сразу после его включения для старта (набора оборотов) нужно подключить дополнительный конденсатор Сдоп, емкостью в 2-3 раза большей, чем Сраб. Это достигается нажатием кнопки SB2, которая должна быть отпущена сразу после набора электродвигателем оборотов.

Резистор R служит для разряда конденсатора Сдоп после его отключения. Значение этого резистора некритично и может быть порядка 100 - 500 кОм.

По этой схеме можно подключать электродвигатели с по схеме как "треугольник" так и "звезда".

Следующая схема (рис.4) использует подключение электродвигателя через пускатель. Сделано это так, чтобы включение можно было производить одним нажатием. Давайте посмотрим как эта схема работает.

При нажатии кнопки "пуск" срабатывает пускатель КМ1. Одними своими контактами он подключает дополнительный конденсатор Сдоп, другими - включает пускатель КМ2, который подает на электродвигатель напряжение (контактная группа КМ2.1) и одновременно блокирует контакты КМ1.1 первого пускателя.

После набора оборотов кнопка пуск отпускается, пускатель КМ1 отключается, отключая Cдоп. Напряжение на пускатель КМ2 подается им самим, он находится в замкнутом состоянии до нажатия кнопки "стоп", размыкающей цепь питания.

Катушки пускателей должны быть рассчитана на напряжение 220В.

© 2012-2018 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

eltechbook.ru

Какие существуют схемы подключения электродвигателей постоянного тока

электродвигатель постоянного тока

В домашнем хозяйстве редко встретишь мотор, работающий на постоянном токе. Зато они всегда устанавливаются в детских игрушках, которые летают, ездят, шагают и т.д. Всегда они стоят в автомобилях: в различных приводах и вентиляторах. В электротранспорте чаще всего используют тоже их.

Другими словами, применяются двигатели постоянного тока там, где требуется достаточно широкий диапазон регулирования скорости и точность ее поддержания.

Электродвигатели постоянного тока

Электродвигатели постоянного тока

Электрическая мощность в моторе преобразуется в механическую, заставляющую его вращаться, а часть этой мощности расходуется на нагревание проводника. Конструкция двигателя электрического постоянного тока включает якорь и индуктор, которые разделяют воздушные зазоры.  Индуктор, состоящий из добавочных и главных полюсов, и станины,  предназначен  для создания  магнитного поля. Якорь, собранный из отдельных листов, обмотка рабочая и коллектор, благодаря которому постоянный ток подводится к  рабочей обмотке, образуют магнитную систему.  Коллектор – это насаженный на вал двигателя цилиндр, собранный  из изолированных друг от друга медных пластин. К его выступам припаиваются  концы обмотки якоря. Ток с коллектора снимается при помощи щеток, закрепленных в определенном положении в щеткодержателях, благодаря чему  обеспечивается нужный прижим на поверхность коллектора. Щетки с корпусом двигателя соединяются с помощью траверса.

Щетки, в процессе работы, скользят по поверхности вращающегося коллектора, переходя от одной его пластины к другой. При этом, в параллельных секциях обмотки якоря  происходит  изменение тока (когда щетка накоротко замыкает виток). Процесс этот называют коммутацией.

Под влиянием своего магнитного поля, в замкнутой секции обмотки возникает ЭДС самоиндукции, вызывающая появление дополнительного тока, который на поверхности  щеток распределяет неравномерно ток, что приводит к искрению.

Электродвигатели постоянного тока

Частота вращения  – одна из важнейших его характеристик. Ее регулировать можно тремя способами:  изменяя поток возбуждения, изменяя величину подводимого напряжения к двигателю, изменяя сопротивление в якорной цепи.

Два первых способа встречаются намного чаще третьего, ввиду его неэкономичности. Ток возбуждения  регулируется при помощи любого устройства, у которого возможно изменять активное сопротивление (например, реостата). Регулирование при помощи изменения напряжения требует наличие источника постоянного тока: преобразователя или генератора. Такое регулирование применяют во всех промышленных электроприводах. 

Торможение электрического двигателя постоянного тока

Для торможения  электроприводов с ДПТ также есть три варианта: торможение противовключением, динамическое и рекуперативное. Первое происходит за счет изменения полярности тока в обмотке якоря и напряжения. Второе происходит благодаря замыканию накоротко (через резистор) обмотки якоря. Электрический двигатель при этом работает как генератор, преобразуя в электрическую, запасенную им  механическую энергию, которая выделяется в виде тепла. Это торможение сопровождается мгновенной остановкой двигателя.

Последнее происходит, если электрический мотор, включенный в сеть, вращается со скоростью, которая выше скорости холостого хода. ЭДС обмотки двигателя в этом случае, превышает значение напряжении я в сети, что приводит к изменению на противоположное направление тока в обмотке мотора, т.е. двигатель отдает в сеть энергию, переходя в режим генератора. Одновременно возникает тормозной  момент на валу.

Преимущества двигателей постоянного тока

Сравнивая их с асинхронными моторами, нужно отметить отличные пусковые качества, высокую (до 3000 об/мин) частоту вращения, а также хорошую регулировку. Из недостатков отметить можно? Сложность конструкции, низкую надежность, высокую стоимость и затраты на ремонт и обслуживание.

Принцип действия ДПТ

ДПТ, как и любой современный мотор, работает на основе «Правила левой руки», с которым все знакомы еще со школы и  закона Фарадея. При подключении тока к нижней обмотке якоря в одном направлении, а к обмотке верхней – в другом, якорь начинает вращаться, а уложенные в его пазах проводники – выталкиваться магнитным полем статора или обмоток корпуса двигателя постоянного тока. Вправо выталкивается нижняя часть, а влево – верхняя. В результате якорь вращается до тех пор, пока его части не поменяются местами. Чтобы добиться непрерывного вращения, необходимо полярность обмотки якоря регулярно менять местами. Как раз этим и занимается коллектор, коммутирующий при вращении обмотки якоря. На коллектор от источника  подается напряжение через пару прижимных щеток из графита.

Принципиальные схемы ДПТ

Двигатель переменного тока подключается просто, в отличие от ДПТ. Обычно у таких двигателей высокой и средней мощности имеются отдельные выводы в клеммной коробке (от обмотки и якоря). На  якорь обычно подается полное напряжение, а на обмотку -  ток, регулировать который можно реостатом или  напряжением переменным. От величины тока, имеющегося на обмотке возбуждения, прямопропорционально зависят обороты двигателя переменного тока.

В зависимости от того, какая используется схема подключения электродвигателя постоянного тока, двигатель электрический может быть постоянного тока, разделяют на самовозбуждающиеся  и с независимым возбуждением (от отдельного источника).

 

Схема подключения двигателя с независимым возбуждением обмотки, подключенной к источнику питания, отдельному от якоря

Схема для  подключения двигателя с возбуждением параллельным

Она аналогична предыдущей, но не имеет отдельного источника питания. 

Схема с паралельным возбуждением

Когда требуется большой пусковой ток, применяют двигатели с возбуждением последовательным: в городском электротранспорте (троллейбусах, трамваях, электровозах). 

Схема с последовательным возбуждением

Токи обоих обмоток в этом случае одинаковы. Недостаток – требуется постоянная нагрузка на вал, поскольку при ее уменьшении на 25%, резко увеличивается частота вращения и происходит отказ двигателя.

Есть еще моторы, которые крайне редко используются - со смешанным возбуждением. Их схема представлена ниже. 

Схема со смешеным возбуждением

Электродвигатель постоянного тока с параллельным возбуждением

Под понятием «возбуждение» понимают создание в электрических машинах магнитного поля, которое необходимо, чтобы заработал двигатель. Схем возбуждения несколько:

  • С независимым возбуждением (питание обмотки происходит от постороннего источника).
  • Электродвигатель постоянного тока с параллельным возбуждением (источник питания  обмотки возбуждения и  якоря  включены параллельно) – шунтовые.
  • С последовательным возбуждением (обе обмотки включены последовательно) – сериесные.
  •  Со смешанным возбуждением – компаундные.

Бесщеточные моторы

Но, двигатель со щетками, которые быстро изнашиваются и приводят к искрению, не может использоваться там, где необходима высокая надежность, поэтому среди электротранспорта (электровелосипедов, скутеров, мотоциклов и электромобилей) наибольшее применение нашли  бесщеточные электродвигатели. Они отличаются высоким КПД, невысокой стоимостью, хорошей удельной емкостью, длительным сроком службы, малыми размерами, бесшумной работой.

Работа этого двигателя основывается на взаимодействии магнитных полей электромагнита и постоянного. Когда за окном 21 век, а вокруг полно мощных и недорогих проводников, логично заменить механический инвертор цифровым, добавить датчик положения ротора, решающий  в какой момент на конкретную катушку необходимо подать напряжение, и получить бесщеточный электродвигатель постоянного тока. В качестве датчика чаще используется датчик Холла.

Поскольку в этом двигателе удалены щетки, он не нуждается в регулярном обслуживании. Управляется двигатель постоянного тока при помощи блока управления, позволяющего изменять частоту вращения вала мотора, стабилизировать на определенном уровне обороты (независимо от имеющейся на валу нагрузки).

Состоит блок управления из нескольких узлов:

  • Системы импульсно-фазового управления  СИФУ.
  • Регулятора
  • Защиты.

 

Где купить электродвигатель

Многие компании с мировыми именами выпускают сегодня электродвигатель постоянного тока 220 В. Купить его можно в интернет - магазинах, менеджеры которых предоставят исчерпывающую онлайн информацию, касающуюся выбранной модели. Большой выбор моделей таких двигателей на сайте  http://ru.aliexpress.com/w/wholesale-brushless-dc-motor.html, в каталоге которого можно ознакомиться со стоимостью моделей, их описанием и пр. Если даже в каталоге нет интересующего двигателя, можно заказать его доставку.

Интересные материалы:

Фотосовет: Ремонт зеркала бокового с электроприводом своими руками Тяговый электродвигатель для электромобиля: как электрокары на нем работают

motocarrello.ru

Как подключить однофазный электродвигатель, схема запуска

Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.

Содержание:

  1. Отличие от трехфазных двигателей
  2. Как это работает
  3. Основные схемы подключения
  4. Другие способы
  • Подбор конденсатора
  • Однофазный асинхронный двигатель

    Отличие от трехфазных двигателей

    Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

    Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

    1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
    2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

    Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

    После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

    Схема подключения коллекторного электродвигателя в 220 В

    Схема подключения коллекторного электродвигателя в 220В

    Схема подключения однофазного асинхронного двигателя

    Схема подключения однофазного асинхронного двигателя (схема звезда)

    Как это работает

    Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

    Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

    Основные схемы подключения

    В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

    однофазный асинхронный двигатель и конденсатор

    однофазный асинхронный двигатель и конденсатор

    Различают три основные способа запуска однофазного асинхронного двигателя через:

    • рабочий;
    • пусковой;
    • рабочий и пусковой конденсатор.

    В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

    Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

    Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

    Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

    Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

    Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

    На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

    Другие способы

    При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

    С экранированными полюсами и расщепленной фазой

    В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

    После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

    Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

    С асимметричным магнитопроводом статора

    Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

    Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

    Подбор конденсатора

    Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя.

    Керамический и электролитический конденсатор

    Керамический и электролитический конденсатор

    Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.

    tokidet.ru


    Каталог товаров
      .