интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Что характеризует электрическое напряжение? Напряжение что характеризует


Что характеризует электрическое напряжение? - Рой Пчел

тэги:

наука,

физика,

электротехника

категория:

наука и техника

ответить

комментировать

в избранное

бонус

4 ответа:

старые вышеновые вышепо рейтингу

3

габба­с[97.6K]

5 дней назад

Электрическое напряжение показывает "силу" или "энергию" электрического поля, которое совершает работу. По сути эта величина равна разности потенциальной энергии единичного заряда в двух точках электрического поля. по другому говоря электрическое напряжение равно отношению работы электрического поля по перемещению заряда от одной точки к другой к величине этого заряда. то есть, чем сильнее отличаются потенциальные энергии (потенциалы) между двумя точками, тем больше электрическое напряжение между точками. чем больше напряженность поля и чем больше расстояние между точками, тем больше напряжение.

Эта величина похожа на разность высот, которое тело пролетает под действием силы тяжести, умноженное на ускорение свободного падения.

комментировать

в избранное

ссылка

отблагодарить

3

Груст­ный Родже­р[184K]

5 дней назад

Как удивительно ловко и ничтоже сумняшеся народ сливает в одну посуду напряжение и напряжённость поля, характеристики совершенно разные!

Значицца, так: по определению, напряжение есть работа, совершаемая электрическим полем по перемещению единичного заряда из одной точки в другую. Напряжённость есть сила, действующая на единичный заряд в данной точке поля.

Напряжённость поля — характеристика локальная (действует в точке) и силовая, а напряжение — между двумя точками и энергетическая.

Заявление же, что чем больше напряжение, тем больше и напряжённость, в общем случае неверно.

комментировать

в избранное

ссылка

отблагодарить

2

Alfre­d Teplo­v[3K]

4 дня назад

Электрическое напряжение, прежде всего, характеризует то, что оно может у человека, попавшего под напряжение, создать смертельный для него ток. Смертельным для человека считается, точнее, является ток в 0,1 ампера. Так как ток равен величине напряжения деленное на сопротивление, т.е. I=U/R, то все зависит от вашего организма, а сопротивление его зависит от многих факторов, и даже от вашего настроения.

А под напряжением могут оказаться все, что угодно (краны, морозилки, мокрые стены, предметы…), и даже вода в ванной. Для безопасности она (вода в ванной) должна быть"заземлена", чтобы не быть под напряжением. К сожалению, еще нет микроустройств, которые бы пищали, если бы все, к чему мы касаемся, оказавшись под напряжением, подавало какой-то звуковой сигнал.

А еще напряжение может создать такой ток, от которого происходят пожары и взрывы. Взорваться могут даже зарядные устройства мобилок.

Поэтому, уходя из дома, не оставляйте включенными в розетки не только утюги и прочие работающие устройства, но и зарядные устройства мобилок. Вас не убъет, но квартира может сгореть…

Конечно, мой ответ может не удовлетворить автора вопроса, но он уж очень не конкретный. Однако мой ответ может пригодиться людям.

комментировать

в избранное

ссылка

отблагодарить

2

Серге­йНико­лаев[8.8K]

5 дней назад

В электротехнике электрическое напряжение характеризует величину разности потенциалов между двумя точками электрической цепи.

В физике под напряжением подразумевают отношение работы электрического поля по перемещению заряда к величине перемещаемого заряда. Характеризует электрическое поле, создаваемое электрическим током (то есть работу, затраченную на перемещение заряда из одной точки в другую).

В цепях переменного тока измеряется действующее значение напряжения (меньше максимального значения напряжения данной цепи в корень квадратный из двух раз).

Единицей измерения электрического напряжения является 1 Вольт.

комментировать

в избранное

ссылка

отблагодарить

roypchel.com

Нормальное напряжение характеризует сопротивление сечения растяжению или сжатию.

Касательное напряжение характеризует сопротивление сечения сдвигу.

 

Сила N (продольная) вызывает появление нормального напря­жения σ. Силы Qx и Qy вызывают появление касательных напря­жений τ. Моменты изгибающие Мх и Му вызывают появление нор­мальных напряжений σ, переменных по сечению.

Крутящий момент МZ вызывает сдвиг сечения вокруг продоль­ной оси, поэтому появляются касательные напряжения τ.

Примеры решения задач

 

Последовательность построения эпюр продольных сил

 

  1. Изобразить расчетную схему бруса и приложить заданные силы. При необ­ходимости определить опор­ную реакцию из уравнения равновесия.
  2. Брус разбить на участ­ки соответственно точкам приложения сил.
  3. Определить по методу сечений продольную силу для каждого участка.
  4. Найденные величины продольных сил отложить в масштабе в виде ординат, перпендикулярных оси стерж­ня. Через концы ординат провести линии; проставить знаки и заштриховать эпю­ру параллельно ординатам

Пример 1. Определить величину продольной силы в сечении 1-1 (рис. 19.4).

Решение

Используем уравнение равновесия

Рассматривая левую часть бруса, определяем

Рассматривая правую часть бруса, определяем Nz1 = 23 — 14 = 9кН.

Величина продольной силы в сечении не зависит от того, какая часть бруса рассматривается.

Пример 2. Определить внутренний силовой фактор в сечении 1-1 (рис. 19.5а).

Решение

Рассматриваем правую часть бруса. На отсеченную часть бруса принято смотреть со стороны отброшенной части (рис. 19.5, б). Полу­чаем Mz = 246 – 40 – 16 = 190 кН • м.

Пример 3. Для бруса, изображенного на рис. 2.4, а, построить эпюру продольных сил.

Решение

Заданный брус имеет три участка 1, II, III (рис. 2.4, а). Границами участков при построении эпюры N являются сечения, в которых приложены внешние силы.

1. Проведем произвольное сечение аb на участке 1 и, отбросив левую часть бруса, рассмотрим равновесие пра­вой части, изображенной отдельно на рис. 2.4, б.

2. На оставленную часть действуют сила Р1 и искомое усилие N1. Проектируя на ось z силы, действующие на оставленную часть, получаем:

Значение получилось со знаком плюс, что указы­вает на совпадение ее предположительного (см. рис. 2.4, 6) направления с действительным. Сила направлена от сечения, т. е. участок I испытывает растяжение.

3. Проведем произвольное сечение cd на участке II, от­бросим левую часть бруса и рассмотрим равновесие оставленной (правой) части, изображенной отдельно на рис. 2.4, в. На оставленную часть действуют силы Р1, Р2и искомое усилие NII.. Проектируя эти силы на ось г, получаем

Сила NII направлена от сечения, т. е. участок II испытывает растяжение.

4. Проведем произвольное сечение еf на участке III, от­бросим левую часть бруса и рассмотрим равновесие оставлен­ной (правой) части, изображенной отдель­но на рис. 2.4, г. На оставленную часть действуют силы Р1, Р2, Р3 и искомое уси­лие NIII. Проекти­руя эти силы на ось z, получаем

Сила NIII направ­лена к сечению, т. е. участок III испыты­вает сжатие.

Напомним, что продольные силы, соответствующие растяжению, принято считать положительными, а соот­ветствующие сжатию — отрицательными.

Эпюра продольных сил показана на рис. 2.4, д.

Контрольные вопросы и задания

 

1. Какие силы в сопротивлении материалов считают внешними? Какие силы являются внутренними?

2. Какими методами определяют внешние силы? Как называют метод для определения внутренних сил?

3. Сформулируйте метод сечений.

4. Как в сопротивлении материалов располагают систему коор­динат?

5. Что в сопротивлении материалов называют внутренними си­ловыми факторами? Сколько в общем случае может возникнуть внутренних силовых факторов?

6. Запишите систему уравнений, используемую при определении внутренних силовых факторов в сечении?

7. Как обозначается и как определяется продольная сила в се­чении?

8. Как обозначаются и как определяются поперечные силы?

9. Как обозначаются и определяются изгибающие и крутящий моменты?

10. Какие деформации вызываются каждым из внутренних си­ловых факторов?

11. Что называют механическим напряжением?

12. Как по отношению к площадке направлены нормальное и касательные напряжения? Как они обозначаются?

13. Какие напряжения возникают в поперечном сечении при дей­ствии продольных сил?

14. Какие напряжения возникают при действии поперечных сил?

15. С помощью метода сечений определите величину внутренне­го силового фактора в сечении 1-1 и вид нагружения (рис. 19.6).

 

16. С помощью метода сечений определите величину момента m4, величину внутреннего силового фактора в сечении 2-2 и вид нагружения (рис. 19.7).

17. Ответьте на вопросы тестового задания.

Тема 2.1. Основные положения, метод сечений, напряжения

 

cyberpedia.su

Нормальные напряжения

Отсутствие поперечных сил при растяжении (сжатии) дает основание предположить, что в каждой точке поперечного сечения касательные напряжения равны нулю.

Продольная сила в сечении бруса является равнодействующей нормальных напряжений, действующих в плоскости поперечного сечения.

Закон распределения напряжений может быть определен из эксперимента. Установлено, что если на стержень нанести прямоугольную сетку, то после приложения продольной нагрузки вид сетки не изменится, она по-прежнему останется прямоугольной, а все линии прямыми. Поэтому можно сделать вывод о равномерном по сечению распределении продольных деформаций и перейти к гипотезе плоских сечений.

Гипотеза плоских сечений:поперечные сечения стержня, плоские и нормальные к его оси до деформации остаются плоскими и нормальными к оси и при деформации.

Так как одинаковым удлинениям соответствуют одинаковые напряжения, то напряжения всех волокон в поперечном сечении будут одинаковы. Тогда

,

откуда

Отметим, что полученное выражение справедливо для сечений достаточно удаленных от мест приложения сосредоточенных нагрузок. Вблизи приложения нагрузок распределение напряжений носит сложный характер.

Для обеспечения прочности стержня должно выполняться условие прочности-конструкция будет прочной, если максимальное напряжение ни в одной точке нагруженной конструкции не превышает допускаемой величины, определяемой свойствами данного материала и условиями работы конструкции, то есть

.

Допускаемое напряжение

,

где - опасное напряжение;

- коэффициент запаса прочности. Величина коэффициента запаса прочности назначается в пределах, а иногда и более, с учетом многих факторов, в частности, точности принятых расчетных соотношений, условий эксплуатации конструкции, особых требований по безопасности работы, норм, принятых в отрасли промышленности. В машинах и аппаратах химических производств.

Испытания механических свойств материалов

Для определения опасных напряжений необходимо провести испытания образцов материала на растяжение и сжатие (более подробно эта тема рассмотрена в методических указаниях к лабораторным работам по сопротивлению материалов (1 часть)»

Испытания материалов на растяжение (сжатие) заключается в построении кривых зависимостей между величиной удлинения (укорочения) и величиной силы, которая вызвала данное удлинение (укорочение). От диаграммы растяжения в координатахиможно, разделив все ординаты на площадь поперечного сечения образца, а абсциссы на первоначальную длину образца, перейти к диаграмме в координатахи, где:

- нормальное напряжение в поперечном сечении образца;

- относительное удлинение

Диаграмма - более удобна и лучше отражает физические свойства материала, так как она не зависит от геометрических размеров испытываемого образца.

Рассмотрим характерные точки диаграммы - растяжения малоуглеродистой стали (рис. 12, кривая 1), которые характеризуют прочность исследуемого материала. Данная диаграмма называется диаграммой условных напряжений, так как напряжения определяются отношением силы на первоначальную площадь поперечного сечения.

Диаграмма истинных напряжений (рис. 12, кривая 2) в диапазоне напряжений, соответствующих характеристикам прочности, мало отличается от диаграммы условных напряжений, поэтому на практике используют диаграммы условных напряжений.

Рис. 12 Диаграммы растяжения в координатах -.

До определенного значения напряжения имеет место линейная зависимость между величинами относительного удлинения и напряжения. Материал в данном случае подчиняется закону Гука – закону пропорциональности нагрузки и деформации.

,

где коэффициент пропорциональности -модуль продольной упругости(модуль Юнга), величина которого постоянна для каждого материала. Он характеризует жесткость материала, т.е. способность сопротивляться деформированию под действием внешней нагрузки.[4].

Максимальное напряжение , до которого материал подчиняется закону Гука, называется пределом пропорциональности.

Выше предела пропорциональности наблюдается нелинейная зависимость напряжения от относительной деформации.

До какого то значения напряжения после снятия нагрузки материал все еще не имеет остаточных деформаций.

Наибольшее напряжение , до которого остаточная деформация при разгрузке не обнаруживается, называется пределом упругости.

Предел упругости является характеристикой, не связанной с законом Гука. Предел упругости может иметь значение как выше, так и ниже значения предела пропорциональности. Эти напряжения близки друг к другу и обычно различием между ними пренебрегают.

При каком то значении напряжения удлинение образца растет при практически постоянном значении растягивающей силы. Такой процесс деформации называется текучестью материала.

Наименьшее напряжение , при котором деформация образца происходит при постоянном растягивающем усилии, называется пределом текучести.

Для металлов, не имеющих площадки текучести, предел текучести определяют условно как напряжение, при котором остаточная деформация составляет 0,2 %.

После стадии текучести материал вновь приобретает способность увеличивать сопротивление дальнейшей деформации.

Напряжение, соответствующее максимальной нагрузке , которую может воспринимать образец, называется пределом прочности или временным сопротивлением.

После достижения максимального усилия при дальнейшем растяжении образца деформация происходит, главным образом, на небольшой длине образца. Это ведет к образованию местного сужения в виде шейки и к падению силы (рис. 12. кривая 1), несмотря на то, что истинное напряжение в сечении шейки непрерывно растет (рис. 12. кривая 2).

Полное удлинение, полученное образцом перед разрушением, уменьшится после разрыва, так как в частях образца исчезнут упругие деформации.

Отношение в процентах приращения расчетной длины образца после разрыва к его первоначальной длине , называется относительным остаточным удлинением :

Отношение в процентах абсолютного уменьшения площади поперечного сечения в шейке к первоначальной площади, называется относительным остаточным сужением.:

Относительное остаточное удлинение и относительное остаточное сужение являются характеристиками пластичности материала.

Испытание на сжатие, несмотря на простоту, проводят реже, так как модуль упругости , предел упругости и предел текучести при сжатии примерно те же, что и при растяжении.

Испытанию на сжатие подвергают главным образом хрупкие материалы, которые, как правило, лучше сопротивляются сжатию, чем растяжению, и применяются для изготовления элементов, работающих на сжатие.

Подробное описание испытания на сжатие описано в методических указаниях к лабораторным работам по дисциплине «Сопротивление материалов» (первая часть).

studfiles.net


Каталог товаров
    .