интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Электротехнический завод / 6.6 расчет потерь двухобмоточных трансформаторов. Реактивная мощность холостого хода трансформатора формула


Определение тока холостого хода трансформатора

Ток первичной обмотки трансформатора, возникающий при холостом ходе при номинальном синусоидальном напряжении и номинальной частоте, называется током холостого хода.

При расчет тока холостого хода трансформатора отдельно определяют его активную и реактивную составляющие.

Активная составляющая тока холостого хода вызывается наличием потерь холостого хода. Активная составляющая тока, А,

Iх.а = Рх / (mUф),

где Рх – потери холостого хода, Вт; Uф – фазное напряжение первичной обмотки, В.

Обычно определяют не абсолютное значение тока холостого хода и его составляющих, а их относительное значение по отношению к номинальному току трансформатора iоа, i0р, iо, выражая их в процентах номинального тока.

Тогда активная составляющая, %,

,

или

iоа = Рх /(10S),

где S – мощность трансформатора, кВ· А; Рх – потери холостого хода, Вт.

Расчет реактивной составляющей тока холостого хода усложняется наличием в магнитной цепи трансформатора немагнитных зазоров. При этом расчете магнитная система трансформатора разбивается на четыре участка – стержни, ярма, за исключением углов магнитной системы, углы и зазоры. Для каждого из этих участков подсчитывается требуемая намагничивающая мощность, суммируемая затем по всей магнитной системе. Также как и потери, реактивная составляющая тока холостого хода зависит от основных магнитных свойств стали магнитной системы и ряда конструктивных и технологических факторов, оказывающих на эту составляющую существенно большое влияние, чем на потери.

Немагнитные зазоры в шихтованной магнитной системе имеют особую форму – в месте зазора стыки пластин чередуются со сквозными пластинами. Магнитный поток вместе стыка проходит частично через зазор между пластинами и частично – через соседнюю сквозную пластину. Индукция в сквозных пластинах в зоне, лежащей против стыков, увеличивается. Вместе с этим происходит местное увеличение потерь и реактивной составляющей тока холостого хода, однако общая намагничивающая мощность для зазора оказывается существенно меньшей, чем при стыке частей стыковой магнитной системы.

В практике расчета намагничивающая мощность для зазоров шихтованных магнитных систем, собираемых из пластин горячекатаной или холоднокатаной стали, определяется для условного немагнитного зазора, по площади сечения стали в данном стыке, т.е. по активному сечению стержня или ярма, и по удельной намагничивающей мощности, отнесенной к единице площади активного сечения, qз, В∙А/м2, и определяемой экспериментально для каждой марки стали.

Удельные намагничивающие мощности для стали марок 3404 и 3405 приведены в табл.26.

Таблица 26. Полная удельная намагничивающая мощность в стали q и в зоне шихтованного стыка q3 для холоднокатаной стали марок 3404 и 3405 толщиной 0,35 и 0,30 мм при различных индукциях и f = 50 Гц

В, Тл

Марка стали и ее толщина

qз, В∙А/м2

3404,

0,35 мм

3404,

0,30 мм

3405,

0,35 мм

3405,

0,30 мм

3404

3405

1,30

1,32

1,34

1,36

1,38

1,40

1,42

1,44

1,46

1,48

1,50

1,52

1,54

1,56

1,58

1,60

1,62

1,64

1,66

1,68

1,70

1,72

1,74

1,76

1,78

1,80

1,82

1,84

1,86

1,88

0,900

0,932

0,964

0,996

1,028

1,060

1,114

1,168

1,222

1,276

1,330

1,408

1,486

1,575

1,675

1,775

1,958

2,131

2,556

3,028

3,400

4,480

5,560

7,180

9,340

11,500

20,240

28,980

37,720

46,460

0,870

0,904

0,938

0,972

1,006

1,040

1,089

1,139

1,188

1,238

1,289

1,360

1,431

1,511

1,600

1,688

1,850

2,012

2,289

2,681

3,073

4,013

4,953

6,364

8,247

10,130

17,670

25,210

32,750

40,290

0,860

0,892

0,924

0,956

0,988

1,020

1,065

1,110

1,156

1,210

1,246

1,311

1,376

1,447

1,524

1,602

1,748

1,894

2,123

2,435

2,747

3,547

4,347

5,551

7,161

8,770

15,110

21,450

27,790

34,130

0,850

0,880

0,910

0,940

0,970

1,000

1,041

1,082

1,123

1,161

1,205

1,263

1,321

1,383

1,449

1,526

1,645

1,775

1,956

2,188

2,420

3,080

3,740

4,736

6,068

7,400

12,540

17,680

22,820

27,960

7400

8200

9000

9800

10600

11400

12440

13480

14520

15560

16600

17960

19320

20700

22100

23500

25100

26700

28600

30800

33000

35400

37800

40800

44400

48000

52000

56000

60000

64000

6000

6640

7280

7920

8560

9200

10120

11040

11960

12880

13800

14760

15720

16800

18000

19200

20480

21760

23160

24680

27000

28520

30840

33000

35000

37000

39800

43600

47400

51200

При экспериментальных исследованиях стали удельная намагничивающая мощность, отнесенная к 1 кг стали или к 1 м2 площади зазора q, может определяться как полная мощность или как ее реактивная составляющая. В табл. 26 приведены значения полной удельной намагничивающей мощности.

Полная намагничивающая мощность трансформатора, В∙А, для магнитной системы может быть определена из следующего выражения:

Qx = Qx.c + Qx.я+ Qx.з = qcGc + qяGя + ∑nзqзПз,

Где qcи qя – удельные намагничивающие мощности для стержня и ярма, определяемые по табл.26 для холоднокатаной стали в зависимости от соответствующих индукций, В∙А/кг; Gcи Gя – масса стали в стержнях и ярмах, кг; nз – число немагнитных зазоров (стыков) в магнитной системе; qз – удельная намагничивающая мощность, В∙А/м2, для немагнитных зазоров, определяемая для индукции в стержне по табл.26; Пз площадь зазора, т.е. активное сечение стержня или ярма, м2.

При расчете тока холостого хода для плоской стержневой шихтованной магнитной системы, собранной из пластин холоднокатаной анизотропной стали, также как и при расчете потерь холостого хода, приходиться считаться с факторами конструктивными – форма стыков стержней и ярм, форма сечения ярма, способ прессовки стержней и ярм – и технологическими – резка рулонов стали на пластины, удаление заусенцев, отжиг пластин, покрытие их лаком, прессовка магнитной системы при сборке и перешихтовка верхнего ярма при установке обмоток.

От воздействия этих факторов реактивная составляющая тока холостого хода увеличивается при несовпадении линий магнитной индукции и прокатки стали, а также в результате механических воздействий при заготовке пластин и сборке остова. Отжиг пластин ведет к уменьшению реактивной составляющей тока холостого хода. На токе холостого хода влияние этих факторов сказывается более резко, чем на потерях.

Полный фазный ток холостого хода, А,

Ix = Qx/(mUф).

Относительное значение тока холостого в процентах номинального тока

i0 = Qx/10S.

Активная составляющая тока холостого хода, фазное значение, А,

Ix.а = Рх/(mUф)

и в процентах номинального тока

iоа = Рх/(10S).

Реактивная составляющая тока холостого хода, А,

Ix.р =

и в процентах номинального тока

iop =

Полученное значение тока холостого хода должно быть сверено с предельно допустимым значением по ГОСТ, техническим условиям или заданию на расчет трансформатора. Отклонение расчетного значения тока холостого хода от заданного гарантийного не следует допускать более чем на половину допуска разрешенного ГОСТ (по ГОСТ 11677-85 разрешенный допуск +30%).

При расчете тока холостого хода по намагничивающей мощности определяется среднее значение, тока холостого хода для всех стержней трансформатора. В симметричных магнитных системах, например однофазных, или пространственных, это среднее значение будет совпадать с действительным значением тока холостого хода для каждого стержня.

В несимметричной магнитной системе ток холостого хода в обмотке среднего стержня меньше, чем в обмотках крайних стержней. Током холостого хода трансформатора в этом случае считается среднее значение токов трех фаз.

studfiles.net

что такое и как рассчитать?

Трансформаторы представляют собой сложное оборудование, которое предназначено для изменения параметров тока в цепи. Они могут повышать или понижать мощность, напряжение электричества в соответствии с требованиями потребителей.

В оборудовании при работе определяются некоторые потери мощности. Поэтому не вся электроэнергия, которая поступила на первичную обмотку, доходит к потребителю. При этом греется трансформатор (магнитопривод, обмотки и прочие детали). В различных конструкциях этот показатель неодинаков.

Режим холостого хода трансформатора

Холостой ход трансформатора позволяет определить токовые потери. Эта методика применяется в сочетании с определением напряжения в режиме короткого замыкания трансформатора. Этот процесс называется опытом агрегата. Он выполняется по определенной схеме.

Общее устройство и виды

Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.

Основные типы

Трансформаторами называются машины неподвижного типа, которые работают благодаря  электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:

  1. Силовые.
  2. Измерительные.
  3. Разделительные.
  4. Согласующие.

Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).

Особенности установок

Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.

В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.

Методология проведения опыта

Потери холостого хода трансформатора определяются при создании определенного режима. Для этого прекращается снабжение током всех обмоток. Они остаются разомкнутыми. После этого производится снабжение цепей электричеством. Оно определяется только на первом контуре. Аппаратура должна работать под напряжением, которое устанавливается при его производстве производителем.

Через первичный контур силовой, сварочной или прочей установки протекают токи, которые носят название ХХ. Их величина равняется не более 3-9% от заданного производителем показателя. При этом на обмотке вторичного контура электричество отсутствует. На первичном контуре ток производит магнитный поток. Он пересекает витки обеих обмоток. При этом возникает ЭДС самоиндукции на контуре первичном и взаимоиндукции – на обмотке вторичного типа.

Например, напряжение холостого хода сварочного трансформатора небольшой и средней мощности представляет собой ЭДС взаимоиндукции.

Подход к проведению измерений

Замер потерь холостого хода может производиться в двух аспектах. Их называют потерями в стали и меди. Второй показатель говорит о рассеивании тепла в обмотках (они начинают греться). В процессе проведения опыта этот показатель очень мал. Поэтому им пренебрегают.

Данные о потере тока холостого хода трансформатора представляются в виде таблицы. В ней рассчитаны параметры для стали определенных сортов и толщины. Ток холостого хода трансформатора рассматривается в аспекте мощности, которая создается в магнитом потоке и именуется потерей в стали. Она затрачивается на нагрев листов из специального сплава. Они изолируются друг от друга лаковым покрытием. При создании таких магнитоприводов не используется метод сварки.

Таблица значений холостого хода

Суть измерения

Если по какой-то причине нарушается изоляционный слой между пластинами магнитопривода, между ними возрастают вихревые токи. При этом система начинает нагреваться. Лаковый слой постепенно разрушается. Потери при работе установки возрастают, его эксплуатационные характеристики ухудшаются.

В таком случае потери мощности в стали увеличиваются. При проведении расчетов этих характеристик в режиме холостого хода можно выявить возникшие нарушения в работе агрегата. Именно по этой причине производится соответствующий расчет.

Коэффициент трансформации

При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:

К = Е1/Е2 = W1/W2

Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.

Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.

Однофазные приборы

Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.

Схема трансформатора при холостом ходе

Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.

Трехфазные приборы

Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.

Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым  классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.

Применение коэффициента

В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.

Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.

Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.

Измерение тока

При опытном измерении тока холостого хода мастер применяет амперметры. Их необходимо подсоединять к первичной обмотке последовательно. Напряжение в контуре должно равняться номинальному значению.

Если проводится исследование работы трехфазного промышленного агрегата, замер выполняет для всех фаз одновременно или последовательно. При этом испытания производятся только для установок от 1000 кВА.

Измерение потерь

Потери в магнитоприводе замеряют исключительно при использовании мощной установки. При этом можно брать для расчетов пониженное напряжение, которое подключено к первичному контуру через ваттметр. Это прямой метод измерения.

При учете показателей вольтметра или амперметра потребуется умножить их мощности друг на друга. Это косвенный метод. При этом результат имеет определенную погрешность. Искажение происходит из-за невозможности учесть при таком расчете коэффициент мощности. Это конус угла, который образуется в векторной схеме между напряжением и током. В режиме холостого хода между ними появляется угол 90º.

Применение ваттметра

Ваттметр позволяет произвести замер с учетом коэффициента мощности. Это дает возможность получить более точный результат. Расчет выполняется по следующей формуле:

Cos φ = P1/U1*L0

Далее необходимо создать на основе полученного результата векторную диаграмму. По каждой фазе учитываются установленные потери. Для этого чаще всего строится таблица. При этом используется схема, которая изначально применялась производителем при создании оборудования.

Полученный результат не подлежит сравнению с нормативами. Показатели сравнивают только с характеристиками предыдущих проверок. Если потери с течением времени только возрастают, это говорит о нарушении изоляции пластин магнитопривода или появлении иных нарушений. Обратить этот процесс невозможно.

Проведение замеров холостого хода позволяет оценить состояние аппаратуры, а также определить потребность в необходимости планового или аварийного ремонта. Поэтому регулярные испытания позволяют правильно спланировать работу установки, предотвратить ее непредвиденное отключение.

Интересное видео: Описание основ работы трансформатора.

protransformatory.ru

Компенсация реактивной мощности, поглощаемой трансформатором

Индуктивные реактивные сопротивления трансформатора

При измерении на стороне высокого напряжения трансформатора потери реактивной мощности в трансформаторе могут (в зависимости от тарифа) требовать компенсации.

До сих пор в роли потребителей реактивной мощности рассматривались устройства с параллельным подключением к сети. Они потребляют наибольшее количество реактивной мощности. Однако, реактивные сопротивления с последовательным соединением, такие как индуктивные реактивные сопротивления силовых линий и реактивные сопротивления рассеяния обмоток трансформатора, также поглощают реактивную мощность.

При учете на стороне высокого напряжения трансформатора потери реактивной энергии в трансформаторе могут (в зависимости от тарифа) требовать компенсации. Поскольку рассматриваются только потери реактивной мощности, трансформатор может быть представлен с помощью элементарной схемы (рис. L19). Все значения реактивных сопротивлений приведены к вторичной обмотке трансформатора, на которой параллельное ответвление представляет путь намагничивающего тока. Намагничивающий ток остается практически постоянным (около 1,8% номинального тока) при изменении нагрузки от нуля до номинальной в нормальном режиме, т.е. при постоянном напряжении на первичной обмотке. Поэтому на стороне высокого или низкого напряжения может устанавливаться постоянный (нерегулируемый) шунтирующий конденсатор для компенсации потерь реактивной мощности намагничивания.

Рис. L19 : Реактивные сопротивления трансформатора на фазу

Потери реактивной мощности в последовательно включенном реактивном сопротивлении XL, обусловленном магнитным потоком рассеяния

Простая иллюстрация этого явления приводится на векторной диаграмме (рис. L20).

Реактивная составляющая тока через нагрузку = I sin φ, так что, QL = VI sin φ.

Реактивная составляющая тока от источника = I sin φ’ так что, QE = EI sin φ’

где V и E выражены в кВ.

Можно видеть, что E > V и sin φ’ > sin φ.

Разница между EI sin φ’ и VI sin φ XL дает значение квар на фазу (поглощение XL).

Можно показать, что такое значение квар равно I2XL (аналог потерь активной мощности (кВт) I2R - потери в последовательно соединенных элементах).

Из формулы I2XL легко вывести поглощаемое значение квар при любом значении нагрузки для заданного трансформатора.

Если используются значения в относительных единицах (вместо значений в процентах), можно выполнить прямое умножение I на XL.

Рис. L20 : Поглощение реактивной энергии последовательным индуктивным сопротивлением

Реактивная мощность, поглощаемая трансформатором, не может не приниматься во внимание и может составлять около 5% от номинальной мощности трансформатора при его номинальной нагрузке. В трансформаторах реактивная мощность поглощается обоими реактивными сопротивлениями с параллельным (намагничивающие) и последовательным соединением(магнитный поток рассеивания). Полная компенсация может обеспечиваться параллельно подключенной КБ низкого напряжения.

Пример:

Трансформатор 630 кВА с реактивной составляющей напряжения короткого замыкания 4% работает при полной нагрузке.

Каковы его нагрузочные потери реактивной мощности (квар)?

4% = 0,04 о.е., Iо.е. = 1

Потери = I2XL = 12 x 0,04 о.е.,

единица мощности = 630 кВА

Трехфазные нагрузочные потери реактивной мощности (квар) = 630 х 0,04 = 25,2 квар (или 4% от 630 кВА).

При половине нагрузки, т.е. I = 0,5 о.е. потери составят: 0,52 x 0,04 = 0,01 о.е. или в квар: 630 x 0,01 = 6,3 квар.

Данный пример и векторная диаграмма (рис. L22) показывают, что:

  • Коэффициент мощности на стороне первичной обмотки нагруженного трансформатора отличается (нормально ниже) от коэффициента на вторичной обмотке (из-за потерь реактивной мощности (квар).
  • Нагрузочные потери реактивной мощности (квар) при полной нагрузке равны реактивному сопротивлению трансформатора в о.е. умноженному на Sном. (нагрузочные потери реактивной мощности (квар), равные 4% номинальной мощности кВА трансформатора).
  • Нагрузочные потери реактивной мощности (квар) изменяются согласно квадрату тока (или мощности кВА).

Для определения общих потерь реактивной мощности (квар) трансформатора необходимо добавить постоянные потери в цепи намагничивающего тока (приблизительно 1,8% номинального значения кВА трансформатора) к указанным нагрузочным потерям. Рис. L21 показывает потери реактивной мощности (квар) при холостом ходе и при полной нагрузке для типового распределительного трансформатора. В принципе, последовательно включенные индуктивные сопротивления могут компенсироваться последовательно включенными нерегулируемыми конденсаторами (как в общем случае протяженных высоковольтных линий передачи). Однако, такая схема сложна для выполнения, тем более, что при уровнях напряжения, рассматриваемых в данном руководстве, всегда применима параллельная компенсация.

В случае учета на стороне высокого напряжения достаточно повысить коэффициент мощности до значения, при котором потери реактивной мощности в трансформаторе плюс потребление реактивной мощности нагрузки ниже уровня, при котором взимается дополнительная плата за электроэнергию. Этот уровень зависит от тарифа, но часто соответствует значению tg φ = 0,31 (cos φ = 0,955).

Номинальная мощность (кВА) Реактивная мощность (квар), подлежащая компенсации Без нагрузки Полная нагрузка 630 11,3 35,7
100 2,5 6,1
160 3,7 9,6
250 5,3 14,7
315 6,3 18,4
400 7,6 22,9
500 9,5 28,7
800 20 54,5
1000 23,9 72,4
1250 27,4 94,5
1600 31,9 126
2000 37,8 176

Рис. L21 : Потери реактивной мощности для распределительных трансформаторов с первичными обмотками 20 кВ

Теоретически, потери реактивной мощности (квар) в трансформаторе могут быть полностью компенсированы путем регулирования блока конденсаторов таким образом, чтобы создать небольшой избыток реактивной мощности конденсаторов (QC) по сравнению с реактивной мощностью нагрузки (QL) (QC - QL > 0). При этом коэффициент мощности на стороне НН (cos φ) увеличится и будет опережающим. В таком случае вся реактивная мощность потерь трансформатора поступает от КБ, а на стороне высокого напряжения трансформатора коэффициент мощности 1, как показано на рис. L22.

Рис. L22 : Перекомпенсация нагрузки до полной компенсации потерь реактивной мощности в трансформаторе

С практической точки зрения, компенсация реактивной энергии в трансформаторе осуществляется конденсаторами, главным образом предназначенными для повышения коэффициента мощности нагрузки (централизовано, по группам или индивидуально). В отличие от большинства других элементов, потребляющих реактивную мощность, потребление трансформатором (из-за реактивного сопротивления рассеяния) значительно изменяется при изменении уровня нагрузки, так что, если для трансформатора применяется индивидуальная компенсация, то средний уровень нагрузки должен приниматься в качестве гарантированного.

Однако, такое потребление реактивной мощности составляет, как правило, относительно небольшую часть общей реактивной мощности установки, и поэтому рассогласование компенсации с временным изменением нагрузки не представляет проблемы.

Рис. L21 показывает типовые значения потерь реактивной энергии для намагничивающей цепи (строка «Без нагрузки»), а также общие потери при полной нагрузке для стандартных распределительных трансформаторов с первичным напряжением 20 кВ (с учетом нагрузочных потерь).

ru.electrical-installation.org

Потери мощности в трансформаторах

5.2. Потери мощности в трансформаторах

          Передача мощности через трансформаторы также сопровождаются потерями мощности. При этом потери мощности в активной  и реактивной   проводимостях трансформатора определяются уровнем подведенного к нему напряжения

                                                                                                             (5.8)

                                                                                                            (5.9)

В таком виде потери мощности учитываются при расчете трансформаторов высоких классов напряжения.

          Как видно, они не зависят от передаваемой  через трансформатор мощности и могут находиться по паспортным данным  и  ().

          Заметим, что определение потерь мощности холостого хода не зависит от типа трансформатора.

          Потери мощности в сопротивлениях обмоток разных трансформаторов находятся по разному, так как они характеризуются различными схемами замещения.

          В двухобмоточном трансформаторе, где обе обмотки представляются одним сопротивлением, потери активной мощности в активном сопротивлении  определяют по выражению

                                   ,                                       (5.10)

а реактивной мощности в реактивном сопротивлении

                                                                        (5.11)

В эти формулы значения тока и напряжения подставляется для той обмотки трансформатора, к которой были приведены сопротивления  и  (см. формулы (4.15) и (4.16)). Данные потери главным образом зависят от передаваемой через трансформатор мощности от уровня подведенного к нему напряжения.

          Отметим, что потери мощности в обмотках и потери холостого хода по разному зависят от напряжения.

          Суммарные активные и реактивные потери в двухобмоточных трансформаторах с учетом потерь в проводимостях составят

                                                                        (5.12)

                                                                      (5.13)

Потери мощности в трансформаторе могут быть определены по его паспортным данным и мощности нагрузки

                                     ;                                                    (5.14)

                                                                                             (5.15)

Здесь отношение  называется коэффициентом загрузки трансформатора. Видно, что при  потери мощности в трансформаторе

          Отметим, что расчет потерь мощности по формулам (5.14) и (5.15) возможно и более простой, но менее точный, так как не учитывает влияния уровня напряжения на результат расчета.

          Если на подстанции с суммарной нагрузкой S работают параллельно n одинаковых трансформаторов, то их эквивалентные сопротивления в n раз меньше, а проводимости в n раз больше. С учетом этого формулы (5.14) и (5.15) можно записать так:

                                                                                        (5.16)

                                                                                          (5.17)

          В трансформаторах с расщепленной обмоткой при раздельной работе обмоток низшего напряжения  на свою нагрузку (рис.5.2) потери мощности находят по формулам

                                                                                   (5.18)

                                                                                (5.19)

          В трехобмоточном трансформаторе в схеме замещения каждая обмотка представляется своим сопротивлением, и по каждой из них передается разная мощность (рис.5.3). Поэтому формулы (5.12-5.15) для них примут следующий вид

                                                 (5.20)

                                ,                 (5.21)

где 1, 2, 3 - обозначения параметров соответственно обмоток высшего, среднего и низшего напряжения.

vunivere.ru

Измерение холостого хода трансформаторов: параметры, периодичность, схемы

hol hod 4 Мощность потерь силового трансформатора состоит из так называемых потерь в меди и потерь в стали. Первые связаны с протеканием тока нагрузки через проводники обмоток, имеющие определенное электрическое сопротивление. Потери же в стали обусловлены вихревыми токами, токами намагничивания, возникающими в магнитопроводе.

При проведении опыта холостого хода на одну обмотку подключается напряжение, другая остается разомкнутой. Мощность, потребляемая при этом трансформатором из сети, тратится в большей степени на намагничивание стали магнитопровода, в меньшей – на нагрев проводников обмотки, чем можно пренебречь. Поэтому этот опыт позволяет измерить мощность потерь в стали, называемыми потерями холостого хода.

Дополнительно, подключив вольтметр к оставшейся разомкнутой обмотке, можно измерить на ней напряжение, и по показаниям двух вольтметров рассчитать коэффициент трансформации. Но это измерение к самому опыту холостого хода не относится.

Опыту ХХ при вводе в эксплуатацию подвергаются:

-Все сухие трансформаторы, а также имеющие в качестве изолирующей и охлаждающей среды жидкий негорючий диэлектрик.

-Маслонаполненные трансформаторы, мощность которых более 1600 кВА.

-Трансформаторы собственных нужд электростанций, вне зависимости от их мощности.

В эксплуатации такие измерения проводятся только для трансформаторов с мощностью 1000 кВА и более, и только после капитального ремонта, связанного со сменой обмоток или ремонтом магнитопровода. По сетевым правилам возможно проведение измерений по распоряжению технического руководителя предприятия после того, как хроматографический анализ газов, растворенных в масле, дал настораживающие результаты. Но это касается только силовых трансформаторов с обмотками на напряжение 110 кВ и выше.

Порядок и схема измерения

Перед проведением опыта проводят процесс размагничивания магнитопровода испытуемого трансформатора. Для этого используется постоянный ток, пропускаемый через одну из обмоток стороны низкого напряжения. Подключение тока производится многократно, каждое последующее подключение происходит с изменением полярности и уменьшением величины. Начальное значение не должно быть меньше двойного значения ожидаемого тока холостого хода. При каждом последующем включении величина уменьшается на 30-40 %. Процесс заканчивается при токе, меньшим значения тока холостого хода.

hol hod 1

Для проведения непосредственно опыта холостого хода на вторичную обмотку трансформатора подается номинальное напряжение, с отклонением от нормы ±5%. Вывод нейтрали, если он есть, при этом не используется. Напряжение при этом – строго синусоидальное, с номинальной частотой сети.

Для проведения измерений потребуется три лабораторных прибора, с классом точности не менее 0,5. Это амперметры, вольтметры и ваттметры. амперметры подключаются в каждую фазу последовательно. вольтметры включаются на линейное напряжение всех трех фаз. Токовые обмотки ваттметров подключаются последовательно с амперметрами. Обмотки напряжения ваттметров подключаются согласно приведенным схемам. Подается напряжение, с приборов снимаются показания.

Строго говоря, измерение производится по тем же схемам, которые использовались на заводе изготовителе для проведения опыта. Ведь полученные данные нужно будет сравнить с заводскими. Но, если источник трехфазного напряжения недоступен, можно выполнить три измерения, подавая напряжение на две фазы обмотки трансформатора, закорачивая третью, остающуюся свободной.

При этом используется только линейное напряжение, так как искажение формы кривой из-за нелинейных нагрузок в сети на него имеет минимальное влияние. По этим же схемам проводится опыт холостого хода при пониженном (малом) напряжении.

hol hod 2

Анализ результатов измерения

При приемосдаточных испытаниях и капитальном ремонте полученные данные сравниваются с протоколом о соответствующих испытаниях, проведенных на заводе после изготовления трансформатора. Расхождение более 5 % не допускается.

Для однофазных трансформаторов в этих же случаях мощность потерь не должна отличаться от исходной величины более, чем на 10%.

В эксплуатации измеряется только ток холостого хода на основании опыта с номинальным напряжением или мощность потерь при пониженном. ПТЭЭП при этом не нормирует отклонения от нормы.

Однако, при подозрении на повреждение в трансформаторе метод измерения потерь с использованием трех последовательно проведенных опытов дает очень ценный результат. Поскольку обмотки фаз трансформатора находятся в неравных условиях, то можно не только вычислить, есть ли там дефект, но и определить дефектную фазу.

hol hod 3

Путь магнитного потока при возбуждении выводов АВ и ВС одинаков. Поэтому и мощности потерь для опытов на этих фазах не будут отличаться. При возбуждении фаз АС путь, пройденный магнитным потоком, длиннее, поэтому мощность потерь будет на 25-50% превышать предыдущие. Сравнивая эти показатели, можно выявить, на какой фазе есть дефект.

pue8.ru

6.6 расчет потерь двухобмоточных трансформаторов

*. Расчет потерь мощности и электроэнергии в силовом трансформаторе

Общую величину потерь активной мощности в трансформаторе определяют по формуле

, (*.1)

где – паспортные потери холостого хода трансформатора, кВт;

–паспортные потери короткого замыкания трансформатора, кВт;

–коэффициент загрузки силового трансформатора.

По формуле (*.1)

кВт.

Общую величину потерь реактивной мощности в трансформаторе определяют по формуле

, (*.2)

где – паспортный ток холостого хода трансформатора, %;

–паспортное напряжение короткого замыкания трансформатора, %;

–номинальная мощность трансформатора, кВ∙А.

По формуле (*.2)

= кВт.

Полные потери мощности в трансформаторе определяются по формуле:

(*.3)

кВ∙А.

Потери активной энергии в трансформаторе определяются по формуле:

, (*.4)

где – число часов работы трансформатора в году, час;

–время максимальных потерь, условное число часов, в течение которых максимальный ток, протекающий непрерывно, создает потери энергии, равные действительным потерям энергии за год:

(*.5)

где ТМ – время использования максимума нагрузки, условное число часов, в течение которых работа с максимальной нагрузкой передает за год столько энергии, сколько при работе по действительному графику, час.

С учетом известного ТМ:

час.

По формуле (*.4):

кВт·час.

Потери реактивной энергии в трансформаторе определяются по формуле:

. (*.6)

квар·час.

Полные потери элеткроэнергии в трансформаторе определяются по формуле:

(*.7)

кВ∙А.

Стоимость потерь С активной электроэнергии в трансформаторе определяется по формуле:

, (*.8)

где C0 – средняя стоимость 1 кВт∙часа электроэнергии, руб/кВт∙час.

руб/год.

Результаты расчета сведены в табл. *.1.

Таблица *.1

Результаты расчета потерь мощности и электроэнергии в силовом трансформаторе

Параметр

Размерность

Значение

Номинальная мощность трансформатора (Sном)

кВА

250

Активные потери холостого хода трансформатора (Pхх)

кВт

0,55

Активные потери короткого замыкания трансформатора (Pкз)

кВт

3,7

Ток холостого хода трансформатора (Iхх)

%

0

Напряжение короткого замыкания (Uкз)

%

0

Коэффициент загрузки трансформатора (Kз)

-

0,65

Временя максимума нагрузки (Тм)

час

4500

Число часов работы трансформатора в году (Tг)

час

8760

Средний тариф на активную электроэнергию (Co)

руб/кВт·час

3,5

Значение потерь активной мощности в трансформаторе (Pт)

кВт

2,11

Значение потерь реактивной мощности в трансформаторе (Qт)

кВар

0,00

Значение полных потерь мощности в трансформаторе (Sт)

кВА

2,11

Значение времени максимальных потерь () - условное число часов, в течение которых максимальный ток, протекающий непрерывно, создает потери энергии, равные действительным потерям энергии за год.

час

2886,21

Годовое значение потерь активной энергии в трансформаторе (Waт)

кВт·час

9329,87

Годовое значение потерь реактивной энергии в трансформаторе (Wрт)

кВар·час

0,00

Годовое значение полных потерь энергии в трансформаторе (Wт)

кВ∙А·час

9329,87

Годовая стоимость потерь активной энергии в трансформаторе (С)

руб/год

32654,54

Расчет потерь мощности и электроэнергии в силовом трансформаторе

Общую величину потерь активной мощности в трансформаторе определяют по формуле

, (*.1)

где – паспортные потери холостого хода трансформатора, кВт;

–паспортные потери короткого замыкания трансформатора, кВт;

–коэффициент загрузки силового трансформатора.

По формуле (*.1)

кВт.

Общую величину потерь реактивной мощности в трансформаторе определяют по формуле

, (*.2)

где – паспортный ток холостого хода трансформатора, %;

–паспортное напряжение короткого замыкания трансформатора, %;

–номинальная мощность трансформатора, кВ∙А.

По формуле (*.2)

= кВт.

Полные потери мощности в трансформаторе определяются по формуле:

(*.3)

кВ∙А.

Потери активной энергии в трансформаторе определяются по формуле:

, (*.4)

где – число часов работы трансформатора в году, час;

–время максимальных потерь, условное число часов, в течение которых максимальный ток, протекающий непрерывно, создает потери энергии, равные действительным потерям энергии за год:

(*.5)

где ТМ – время использования максимума нагрузки, условное число часов, в течение которых работа с максимальной нагрузкой передает за год столько энергии, сколько при работе по действительному графику, час.

С учетом известного ТМ:

час.

По формуле (*.4):

кВт·час.

Потери реактивной энергии в трансформаторе определяются по формуле:

. (*.6)

квар·час.

Полные потери элеткроэнергии в трансформаторе определяются по формуле:

(*.7)

кВ∙А.

Стоимость потерь С активной электроэнергии в трансформаторе определяется по формуле:

, (*.8)

где C0 – средняя стоимость 1 кВт∙часа электроэнергии, руб/кВт∙час.

руб/год.

Результаты расчета сведены в табл. *.1.

Таблица *.1

Результаты расчета потерь мощности и электроэнергии в силовом трансформаторе

Параметр

Размерность

Значение

Номинальная мощность трансформатора (Sном)

кВА

40

Активные потери холостого хода трансформатора (Pхх)

кВт

0,15

Активные потери короткого замыкания трансформатора (Pкз)

кВт

0,88

Ток холостого хода трансформатора (Iхх)

%

0

Напряжение короткого замыкания (Uкз)

%

0

Коэффициент загрузки трансформатора (Kз)

-

0,66

Временя максимума нагрузки (Тм)

час

4500

Число часов работы трансформатора в году (Tг)

час

8760

Средний тариф на активную электроэнергию (Co)

руб/кВт·час

3,5

Значение потерь активной мощности в трансформаторе (Pт)

кВт

0,53

Значение потерь реактивной мощности в трансформаторе (Qт)

кВар

0,00

Значение полных потерь мощности в трансформаторе (Sт)

кВА

0,53

Значение времени максимальных потерь () - условное число часов, в течение которых максимальный ток, протекающий непрерывно, создает потери энергии, равные действительным потерям энергии за год.

час

2886,21

Годовое значение потерь активной энергии в трансформаторе (Waт)

кВт·час

2420,37

Годовое значение потерь реактивной энергии в трансформаторе (Wрт)

кВар·час

0,00

Годовое значение полных потерь энергии в трансформаторе (Wт)

кВ∙А·час

2420,37

Годовая стоимость потерь активной энергии в трансформаторе (С)

руб/год

8471,28

Отчет сформирован автоматически на сайте www.online-electric.ru

studfiles.net

Расчет потерь мощности в трансформаторах

Потери активной и реактивной мощности в трансформаторах и автотрансформаторах разделяются на потери в стали и потери в меди (нагрузочные потери). Потери в стали – это потери в проводимостях трансформаторов. Они зависят от приложенного напряжения. Нагрузочные потери – это потери в сопротивлениях трансформаторов. Они зависят от тока нагрузки.

Потери активной мощности в стали трансформаторов – это потери на перемагничивание и вихревые токи. Определяются потерями холостого хода трансформатора , которые приводятся в его паспортных данных.

Потери реактивной мощности в стали определяются по току холостого хода трансформатора, значение которого в процентах приводится в его паспортных данных:

Потери мощности в обмотках трансформатора можно определить двумя путями:

Потери мощности по параметрам схемы замещения определяются по тем же формулам, что и для ЛЕП:

,

где S – мощность нагрузки;

U– линейное напряжение на вторичной стороне трансформатора.

Для трехобмоточного трансформатора или автотрансформатора потери в меди определяются как сумма потерь мощности каждой из обмоток.

Получим выражения для определения потерь мощности по паспортным данным двухобмоточного трансформатора.

Потери короткого замыкания, приведенные в паспортных данных, определены при номинальном токе трансформатора

(7.1)

При любой другой нагрузке потери в меди трансформатора равны

(7.2)

Разделив выражение (7.1) на (7.2), получим

Откуда найдем :

Если в выражение для расчета , подставить выражение для определения реактивного сопротивления трансформатора, то получим:

Таким образом, полные потери мощности в двухобмоточном трансформаторе равны:

Если на подстанции с суммарной нагрузкой S работает параллельноnодинаковых трансформаторов, то их эквивалентные сопротивления вn раз меньше, а проводимости вn раз больше. Тогда,

Для n параллельно работающих одинаковых трехобмоточных трансформаторов (автотрансформаторов) потери мощности рассчитываются по формулам:

где Sв,Sс,Sн– соответственно мощности, проходящие через обмотки высшего, среднего и низшего напряжений трансформатора.

Приведенные и расчетные нагрузки потребителей

Расчетная схема замещения участка сети представляет собой довольно сложную конфигурацию, если учитывать полную схему замещения ЛЕП и трансформаторов. Для упрощения расчетных схем сетей с номинальным напряжением до 220 кВ включительно вводят понятие “приведенных”, “расчетных” нагрузок.

Приведенная к стороне высшего напряжения нагрузка потребительской ПС представляет собой сумму заданных мощностей нагрузок на шинах низшего и среднего напряжений и потерь мощности в сопротивлениях и проводимостях трансформаторов. Приведенная к стороне высшего напряжения нагрузка ЭС представляет собой сумму мощностей генераторов за вычетом нагрузки местного района и потерь мощности в сопротивлениях и проводимостях трансформаторов.

Расчетная нагрузкка ПС или ЭС определяется как алгебраическая сумма приведенной нагрузки и половин зарядных мощностей ЛЕП, присоединенных к шинам высшего напряжения ПС или ЭС.

Зарядные мощности определяются до расчета режима по номинальному, а не реальному напряжению, что вносит вполне допустимую погрешность в расчет.

Возможность упрощения расчетной схемы при использовании понятий “при-веденных” и “расчетных” нагрузок показано на рис. 7.3:

studfiles.net


Каталог товаров
    .