интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Подключение трехфазного двигателя к однофазной сети. Мощность трехфазного двигателя


Подключение трехфазного двигателя к однофазной сети

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

Здравствуйте,  дорогие читатели и гости сайта «Заметки электрика».

Частенько у каждого из нас возникает необходимость в гараже или на даче подключить трехфазный асинхронный двигатель, например, для наждачного или сверлильного станка, бетономешалки и т.п.

А в наличии имеется только источник однофазного напряжения.

Как быть в данной ситуации?

Все просто. Необходимо трехфазный асинхронный двигатель включить как конденсаторный по следующим классическим схемам.

Еще раз напоминаю, что это самые распространенные схемы подключения трехфазного двигателя к однофазной сети. Существует еще несколько способов включения, но о них в данной статье мы говорить не будем.

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

Как видно из схем, это осуществляется с помощью рабочего и пускового конденсаторов. Их еще называют фазосдвигающими.

Кстати, со схемой соединения звездой и треугольником обмоток асинхронного двигателя я Вас знакомил в прошлой статье. 

 

Выбор емкости конденсаторов

1. Выбор емкости рабочего конденсатора

Величина емкости рабочего конденсатора (Сраб.) рассчитывается по формуле:

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

Полученное значение емкости рабочего конденсатора получается в (мкФ).

Вышеприведенная формула может показаться Вам сложной, поэтому Вашему вниманию предлагаю более легкий вариант расчета емкости рабочего конденсатора для подключения трехфазного двигателя к однофазной сети. Для этого Вам необходимо лишь знать мощность (кВт) асинхронного двигателя.

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

Если сказать еще более проще, то на каждые 100 (Вт) мощности трехфазного двигателя необходимо порядка 7 (мкФ) емкости рабочего конденсатора.

При выборе емкости рабочего конденсатора необходимо контролировать ток в фазных обмотках статора в установившемся режиме. Этот ток не должен превышать номинального значения.

2. Выбор емкости пускового конденсатора

Если же у Вас пуск электродвигателя происходит при значительной нагрузке на валу, то параллельно рабочему конденсатору необходимо включать пусковой конденсатор. Включается он только на время пуска двигателя (примерно 2-3 секунды) с помощью ключа SA до набора номинальной частоты вращения ротора, а затем отключается.

Что случится, если забыть отключить пусковые конденсаторы?

Если забыть отключить пусковые конденсаторы, то возникнет сильный перекос по токам в фазах и двигатель может перегреться.

Величина емкости пускового конденсатора выбирается в 2,5-3 раза больше емкости рабочего конденсатора.

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

В таком случае пусковой момент двигателя становится номинальным и двигатель запустится без проблем.

Необходимая емкость набирается с помощью параллельного и последовательного соединения конденсаторов. Об этом я напишу отдельную статью в разделе «Электротехника«. Следите за обновлениями на сайте. Подписывайтесь на новые статьи.

Трехфазные двигатели мощностью до 1 (кВт) можно включать в однофазную сеть только с рабочим конденсатором. Пусковой конденсатор можно не применять.

Выбор типа конденсаторов

Как выбрать емкость рабочих и пусковых конденсаторов Вы уже знаете. Теперь необходимо разобраться, какой тип конденсаторов можно применять в представленных схемах.

Желательно использовать один и тот же тип конденсаторов, как для рабочих, так и для пусковых конденсаторов.

Чаще всего, для подключения трехфазного двигателя в однофазную сеть, применяют бумажные конденсаторы в металлическом герметичном корпусе типа МПГО, МБГП, КБП или МБГО.

Кое-что я нашел у себя в запасе.

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

Практически все они имеют прямоугольную форму.

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

На самом корпусе можно увидеть их параметры:

  • емкость (мкФ)
  • рабочее напряжение (В)

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

Но у бумажных конденсаторов есть один недостаток — они выпускаются слишком громоздкие и при этом имеют небольшую емкость. Поэтому при включении трехфазного двигателя небольшой мощности в однофазную сеть, батарея набранных конденсаторов получается «солидная».

Также вместо бумажных конденсаторов  можно применять и электролитические, но схема их подключения совершенно другая и содержит в себе дополнительные элементы в виде диодов и резисторов.

Применять Вам электролитические конденсаторы я Вам настоятельно не рекомендую!!!

У них есть недостаток в виде того, что при пробое диода через конденсатор пойдет переменный ток, что вызовет его нагрев и взрыв (выход его из строя).

Тем более, что в современной электронике вышли в свет новые металлизированные полипропиленовые конденсаторы переменного тока типа СВВ.

Вот например, СВВ60 в круглом корпусе.

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети_39

Или СВВ61 в прямоугольном корпусе.

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети_40

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети_41

В основном, они выпускаются на напряжение 400-450 (В). Вот на них то и стоит обратить внимание — очень хорошо себя зарекомендовали. Нареканий к ним нет. Кстати, такой же конденсатор у меня стоит на сверлильном станке в мастерской.

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

 

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

 

Выбор напряжения конденсаторов

Также при выборе конденсаторов для трехфазного двигателя в однофазной сети важно правильно учитывать их рабочее напряжение.

Если выбрать конденсатор с большим запасом по напряжению, то это будет не целесообразно и приведет к дополнительным затратам и увеличению габаритных размеров нашей установки.

Если же выбрать конденсатор с рабочим напряжением меньше, чем напряжение сети, то это приведет к преждевременному выходу из строя конденсаторов (даже возможен взрыв).

Принято выбирать рабочее напряжение конденсаторов  для схем, указанных в данной статье, равное 1,15 напряжению сети, а еще лучше не менее 300 (В).

Вроде бы все ясно и понятно. Но не стоит забывать, что при использовании бумажных конденсаторов в сети переменного напряжения следует разделить их рабочее напряжение примерно в 1,5-2 раза.

Например, если на бумажном конденсаторе указано напряжение 180 (В), то его рабочее напряжение при переменном токе следует принять 90-120 (В).

 

Пример подключения трехфазного двигателя к однофазной сети

Чтобы закрепить теорию на практике, рассмотрим пример выбора конденсаторов для подключения трехфазного двигателя АОЛ 22-4 мощностью 400 (Вт) в однофазную сеть. Кстати я уже описывал устройство этого двигателя в предыдущих статьях. Прочитать про него можете здесь.

Цель нашего эксперимента — запустить этот двигатель от однофазной сети 220 (В).

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

Данные двигателя АОЛ 22-4:

Т.к. мощность этого двигателя небольшая (до 1 кВт), то для его запуска в однофазной сети достаточно будет применить только рабочий конденсатор.

Определим емкость рабочего конденсатора:

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

Исходя из формул, принимаем среднее значение емкости рабочего конденсатора равной 25 (мкФ).

Для эксперимента я буду использовать емкость 10 (мкФ). Заодно и посмотрим, можно ли использовать емкость чуть ниже расчетной.

Далее идем в кладовку и ищем подходящие конденсаторы. Нашлись конденсаторы типа МБГО.

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

Теперь нам необходимо, применив навыки электротехники

, собрать из этих конденсаторов необходимую нам емкость.

Емкость одного конденсатора составляет 10 (мкФ).

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

При параллельном соединении 2 конденсаторов мы получим емкость, равную 20 (мкФ). Но рабочее напряжение у них составляет всего 160 (В). Поэтому для увеличения рабочего напряжения до 320 (В), эти 2 конденсатора соединим последовательно с 2 такими же конденсаторами, соединенных параллельно. Общая их емкость получится 10 (мкФ). Вот как это получилось.

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

Подключаем полученную батарею рабочих конденсаторов согласно схемы, представленной в начале данной статьи и пробуем запустить трехфазный двигатель в однофазной сети.

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

podklyuchenie_trexfaznogo_dvigatelya_k_odnofaznoj_seti_подключение_трехфазного_двигателя_к_однофазной_сети

Дальнейшие итоги нашего эксперимента смотрите на видео.

Эксперимент завершился УДАЧНО!!!

И вообще мне показалось, что запуск двигателя от однофазной сети с помощью конденсаторов произошел легче и быстрее, чем от трехфазной сети…Выслушаю и Ваше мнение по этому поводу!!!

При включении трехфазного асинхронного двигателя в однофазную сеть его полезная мощность не превысит 70-80% номинальной мощности, а частота вращения ротора  практически равна номинальной.

Примечание 1: если у Вас двигатель 380/220 (В), то подключать его в сеть 220 (В) необходимо только треугольником.

Примечание 2: если на бирке указана только схема звезды с напряжением 380 (В), то подключить такой двигатель в однофазную сеть 220 (В) получится только при одном условии. Нужно «распотрошить» общую точку звезды и вывести в клеммник 6 концов. Общая точка чаще всего находится в лобовой части двигателя.

Я думаю Вам будет интересно продолжение этой статьи о том, как осуществить реверс трехфазного двигателя, подключенного к однофазной сети.

P.S. Задавайте вопросы по данной теме в комментариях, я с удовольствием отвечу Вам. А также подписывайтесь на новые статьи. Дальше будет интереснее.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

zametkielectrika.ru

Как увеличить мощность трехфазного асинхронного двигателя в однофазной сети

двигатель и конденсатор у тепловой пушки

При обычном подключении трехфазного асинхронного двигателя на одну фазу мощность двигателя и его крутящий момент значительно снижается, удается получить около 30% от номинальной мощности. Ниже мы рассмотрим причины снижения мощности и схемы включения двигателя, повышающие мощность и крутящий момент.

Для нормальной работы асинхронного трехфазного двигателя требуется подавать на каждую обмотку напряжение, сдвинутое по фазе относительно напряжения на других обмотках, так как фазы три то оно сдвигается на 1200. При обычном подключении трехфазного двигателя к однофазной сети , на одну обмотку подается фаза, на другую фаза сдвигается конденсатором, а третья обмотка подключается без сдвига фаз. Так вот третья обмотка создает момент вращения в противоположном направлении. Поэтому лучших результатов можно  добиться, отключив одну обмотку. Так двигатель будет работать аналогично однофазному двигателю. Кстати у трехфазных двигателей часто сгорает одна обмотка, а две остаются целыми, такой двигатель можно здесь применить.

Подключаем только две обмотки

схема подключения двигателя на две обмотки

Меняем местами выводы одной обмотки

подключение трехфазного двигателя с повышением мощности меняя обмотку

Подключаем эту обмотку через конденсатор

повышение мощности асинхронного двигателя меняя местами выводы обмотки

Еще лучших результатов можно добиться, если выводы третье обмотки поменять местами, так третья обмотка будет помогать создавая момент вращения в правильном направлении. Так можно получить больше 50% мощности от номинала. Эту обмотку двигателя желательно также подключить через конденсатор. Конденсаторы должны быть одинаковой емкости. Для того чтобы узнать правильно ли подобраны конденсаторы мерим напряжение на каждой обмотке, оно должно быть приблизительно равно. Подробнее о подборе конденсатора для подключения трехфазного асинхронного двигателя.

Еще одна схема

3-phase-1phase

Здесь две обмотки подключены в противофазно  на напряжение 220В

Ну, а 100% мощности от асинхронного двигателя можно получить используя частотный преобразователь, частотный преобразователь может работать на одной фазе выдавая три.

www.elektroceh.ru

Подключение трехфазного двигателя к однофазной сети без потери мощности

Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: "треугольник", или "звезда", мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).

Кроме того, затруднён запуск двигателя под нагрузкой.

В предлагаемой статье описан метод подключения двигателя без потери мощности.

В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные "фазосдвигающие" устройства еще в большей степени снижают мощность на валу двигателей.

Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.

Трехфазный двигатель в однофазной сетиОбмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору "помогает" дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.

На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.Векторная диаграмма токов и напряжений в 3-фазном двигателе

К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.

Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.

При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.

Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.

Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.

Таблица 1
P, Вт IC1=IL1, A C1, мкФ L1, Гн
100 0.26 3.8 2.66
200 0.53 7.6 1.33
300 0.79 11.4 0.89
400 1.05 15.2 0.67
500 1.32 19.0 0.53
600 1.58 22.9 0.44
700 1.84 26.7 0.38
800 2.11 30.5 0.33
900 2.37 34.3 0.30
1000 2.63 38.1 0.27
1100 2.89 41.9 0.24
1200 3.16 45.7 0.22
1300 3.42 49.5 0.20
1400 3.68 53.3 0.19
1500 3.95 57.1 0.18

В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.

Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20...40°.

Индуктивная составляющая токовНа шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.

Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.

Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить

Баланс фазВекторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.

Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.

В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:

IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° - IL1cos30° = Iлsinφ, Зависимости отношений токов

получаем следующие значения этих токов:

IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).

При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.

На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.

Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85...0,9.

Таблица 2
P, Вт IC1, A IL1, A C1, мкФ L1, Гн
100 0.35 0.18 5.1 3.99
200 0.70 0.35 10.2 2.00
300 1.05 0.53 15.2 1.33
400 1.40 0.70 20.3 1.00
500 1.75 0.88 25.4 0.80
600 2.11 1.05 30.5 0.67
700 2.46 1.23 35.6 0.57
800 2.81 1.40 40.6 0.50
900 3.16 1.58 45.7 0.44
1000 3.51 1.75 50.8 0.40
1100 3.86 1.93 55.9 0.36
1200 4.21 2.11 61.0 0.33
1300 4.56 2.28 66.0 0.31
1400 4.91 2.46 71.1 0.29
1500 5.26 2.63 76.2 0.27

В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.

Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.

Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.

Если же в магнитопровод ввести зазор порядка 0,2...1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.

Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2'), 237 В (перемычка между выводами 2 и 3') или 254 В (перемычка между выводами 3 и 3'). Сетевое напряжение чаще всего подают на выводы 1 и 1'. В зависимости от вида соединения меняются индуктивность и ток обмотки.

В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.

Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.

Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.

Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.

Таблица 3
Зазор вмагнитопроводе, мм Ток в сетевой обмотке, A,при соединении выводов на напряжение, В 220 237 254
0.2 0.63 0.54 0.46
0.5 1.26 1.06 0.93
1 - 2.05 1.75

В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.

Таблица 4
Трансформатор Номинальныйток, A Мощностьдвигателя, Вт
ТС-360М 1.8 600...1500
ТС-330К-1 1.6 500...1350
СТ-320 1.6 500...1350
СТ-310 1.5 470...1250
ТСА-270-1,ТСА-270-2,ТСА-270-3 1.25 400...1250
ТС-250,ТС-250-1,ТС-250-2,ТС-250-2М,ТС-250-2П 1.1 350...900
ТС-200К 1 330...850
ТС-200-2 0.95 300...800
ТС-180,ТС-180-2,ТС-180-4,ТС-180-2В 0.87 275...700

При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.

Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.

Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.

Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2...3 В, что подтверждало высокую симметрию трехфазного напряжения.

Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.

В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.

К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.

Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.

electro-shema.ru

Трехфазный асинхронный двигатель

Электричество стало самым популярным видом энергии только за счет электрического двигателя. Двигатель, с одной стороны, - вырабатывает электрическую энергию, если его вал принудительно крутить, а с другой - способен преобразовать электрическую энергию в энергию вращения. До великого Тесла все сети были постоянного тока, а двигатели соответственно только постоянными. Тесла применил переменный ток и построил двигатель переменного тока. Переход на переменные двигатель был необходим чтобы избавиться от щеток - подвижного контакта. С развитием электроники трехфазным двигателям было дано новое качество - регулирование скорости тиристорными приводами. Именно в плане регулирования скоростью переменные проигрывали постоянным. Конечно, в болгарках есть щетки и коллектор, но здесь так было проще, а вот в холодильниках двигатель без щеток. Щетки достаточно неудобная штука и все производители дорогой техники стараются этот момент обойти.

Трехфазные двигатели самые распространенные в промышленности. Принято считать, по аналогии с постоянными двигателя, что у переменника также есть полюса. Пара полюсов - это одна катушка обмотки, намотанная на станке в виде овала и вставленная в пазы статора. Чем больше пар полюсов, тем меньше двигатель развивает оборотов и тем выше крутящий момент на валу ротора. У каждой фазы несколько пар полюсов. К примеру, если на статоре 18 пазов для обмотки, то на каждую фазу приходится 6 пазов и значит у каждой фазы 3 пары полюсов. Концы обмоток выводятся на клеммник на котором можно скоммутировать фазы либо в звезду, либо в треугольник. На двигателе приклепана бирка с данными, обычно "звезда / треугольник 380 / 220 В." Это означает, что при линейном напряжении сети в 380 В нужно включать двигатель по схеме звезда, а при линейном 220 В - треугольник. Наиболее распространена схема "звезда" и эту сборку проводов прячут внутрь двигателя, выводя на обмотки лишь три конца фаз.

трехфазный двигатель переменного тока внешний вид

Все двигатели крепятся к станкам и приспособам при помощи лап или фланца. Фланец - для крепления двигателя со стороны вала ротора в подвешенном состоянии. Лапы нужны для фиксации двигателя на плоской поверхности. Для того чтобы закрепить двигатель, нужно взять лист бумаги, поставить лапами на этот лист и точно разметить отверстия. После этого, приложить лист к поверхности крепежа и перенести размеры. Если двигатель плотно стыкуется с другой частью, то нужно выставить его относительно крепежа и вала, а только затем размечать крепление.

трехфазный двигатель переменного тока фланец лапы

Двигатели бывают самых разных размеров. Чем больше размеры и масса, тем мощнее двигатель. Какие бы они ни были по размеры, изнутри все одинаковые. С передней стороны выглядывает вал со шпонкой, с другой стороны зад прикрыт накладной пластиной-кожухом.

трехфазный двигатель переменного тока вид сбоку

Обычно клеммные колодки вставляются в коробки на двигателе. Это позволяет удобно производить монтаж, но в силу многих факторов такие колодки отсутствуют. Поэтому все делается надежной скруткой.

трехфазный двигатель переменного тока

Бирка с паспортными данными говорит про мощность двигателя (0,75 кВт), скорость (1350 оборотов в минуту), частоту тока сети (50 Гц), напряжение треугольник - звезда (220/380), коэффициент полезного действия (72%), коэффициент мощности (0,75).

Здесь не указаны сопротивление обмоток и ток двигателя. Сопротивление достаточно мало, если измерять омметром. Омметр измеряет активную составляющую, но не касается реактивной, т.е индуктивности. При включении двигателя в сеть, ротор стоит на месте и вся энергия обмоток замыкается на нем. Ток в этом случае превышает номинальный в 3 - 7 раз. Затем ротор начинает разгоняться под действием вращающегося магнитного поля, индуктивность растет, растет реактивное сопротивление и ток падает. Чем меньше двигатель, тем выше его активное сопротивление (200 - 300 Ом) и тем больше ему не страшен обрыв фазы. Большие двигатели обладают малым активным сопротивлением (2 - 10 Ом) и для них смертелен обрыв фазы.

трехфазный двигатель переменного тока

Формула для расчета тока двигателя следующая.

трехфазный двигатель переменного тока формула расчета

Если подставить значения для разбираемого двигателя, то получится следующее значение тока. Нужно учесть, что получившийся ток одинаковый по всем трем фазам. Здесь мощность выражается в кВт (0,75), напряжение в кВ (0,38 В), КПД и коэффициент мощности - в долях от удиницы. Получившийся ток - в амперах.

трехфазный двигатель переменного тока формула расчета

Разбору двигателя начинают с откручивая кожуха крыльчатки. Кожух нужен для безопасности персонала - чтобы руки не совали в крыльчатку. Был случай, инженер по охране труда, показывая студентам токарный цех, со словами "а вот так делать нельзя", сунул палец в дыру в кожухе и наткнулся на вращающуюся крыльчатку. Палец отрубило, студента хорошо запомнили урок. Все крыльчатки снабжаются кожухами. На предприятиях с малым уровнем доходности, вместе с кожухом снимают и крыльчатку.

Крыльчатка на валу фиксируется крепежной пластиной. В больших двигателях крыльчатка металлическая, в малых двигателях - пластиковая. Для съема нужно отогнуть усик пластинки и осторожно подтянув с двух сторон отвертками стягивать с вала. Если крыльчатка сломалась, то обязательно нужно поставить другую, ведь без нее нарушится охлаждение двигателя, что будет вызывать перегрев и в итоге станет причиной пробоя изоляции двигателя. Делается крыльчатка из двух полосок жести. Жесть изгибается полукольцами вокруг ротора, стягивается двумя болтами с гайками, чтобы плотно сидела на валу, а свободные концы жести отгибаются. Получится крыльчатка на четыре лопасти - дешево и сердито.

трехфазный двигатель переменного тока крыльчатка и вал

трехфазный двигатель переменного тока крыльчатка и вал

Важным элементом является шпонка на валу двигателя. Шпонка случит для виксации ротора в посадочной втулке или шестерне. Шпонка препятствует проворачиваю ротора относительно посадочного элемента. Набивать шпонку - тонкое дело. Лично я вначале немного насаживаю шестерню на ротор, набиваю ее на 1/3 и только затем вставляю шпонку и немного забиваю ее. После насаживаю всю шестерню вместе со шпонкой. При таком способе шпонка не вылезет в другой стороны. Здесь все дело в проточке канавки под шпонку. Со стороны ближней к корпусу двигателя канавка для шпонки имеет вид горки по которой очень плавно и легко шпонка выезжает. Бывают и другие виды канавок - закрытые с овальной шпонкой, но более распространены шпонки квадратного сечения.

трехфазный двигатель переменного тока шпонка

Со стороны обоих крышек есть болты. Для дальнейшей разборки двигателя их нужно выкрутить и сложить в баночку - чтобы не потерять. Эти болты крепят крышки в статору. В крышках плотно сидят подшипники. После выкручивая всех болтов крышки должны сойти, но они укоревают и сидят очень плотно. Нельзя ломами или отвертками, цепляя за уши для крепления кожуха сдирать крышки. Крышки хоть и сделаны из дюраля или чугуна, но очень ломкие. Проще всего ударить по валу через бронзовую надставку, или поднять двигатель и валом сильно ударить по твердой поверхности. Съеник также может сломать крышки.

трехфазный двигатель переменного тока съем крышек

Если крышки подались - все отлично. Одна сойдет хорошо, вторую через двигатель нужно выбить палкой. Подшипники нужно выбивать палкой с обратной стороны крышки. Если же подшипник не сидит в крышке, а болтается, то нужно взять керн и накернить всю поверхность посадки подшипника. Затем набить подшипник. Подшипник не должен давать биение и скрип. При ремонте неплохо ножом вскрыть закрытые подшипники ножом, удалить старую смазку и заложить на 1/3 объема новую смазку.

трехфазный двигатель переменного тока смазка подшипников

Статор асинхронного двигателя переменного тока изнутри покрыт обмотками. Со стороны шпонки на роторе эти обмотки считаются лобовыми и это перед двигателя. На лобовые обмотки приходят все концы катушек и здесь катушки собираются в группы. Для сборки обмоток нужно намотать катушки, вставить в пазы статора изоляционные прокладки, которые отделят стальной статор от покрытой изоляцией медной проволоки обмотки, заложить обмотки и сверху накрыть вторым слоем изоляции и зафиксировать обмотки изоляционными палочками, сварить концы обмоток, натянуть на них изоляцию, вывести концы для подключения напряжения, пропитать весь статор в ванне с лаком и высушить статор в печи.

трехфазный двигатель переменного тока статор

Ротор асинхронного двигателя переменного тока короткозамкнут - нет обмоток. Вместо них набор трансформаторной стали круглого сечения с несимметричной формой. Видно, что канавки идут по спирали.

трехфазный двигатель переменного тока ротор

Одним из методов запуска трехфазного двигателя линейного напряжения от двухпроводной сети фазного напряжения является включение между двумя фазами рабочего конденсатора. К сожалению, рабочий конденсатор не может запустить двигатель, нужно двигатель крутануть за вал, но это опасно, но можно параллельно рабочему конденсатору включить дополнительный пусковой конденсатор. При таком подходе двигатель будет запускаться. Однако, при достижении номинальных оборотов, пусковой конденсатор нужно отключить, оставив только рабочий.

схема включения трехфазного двигателя на 220 В

Рабочий конденсатор выбирается из расчета 22 мкФ на 1 кВт двигателя. Пусковой конденсатор выбирается из расчета в 3 раза больше рабочего конденсаторы. Если есть двигатель на 1,5 кВт, то Ср = 1,5*22 = 33 мкФ; Сп = 3*33 = 99 мкФ. Конденсатор нужен только бумажный с напряжением минимум 160 В при включении обмоток в звезду и 250 В при включении обмоток в треугольник. Стоит отметить, что лучше использовать включение обмоток в звезду - больше мощности.

Китайцы не сталкиваются с проблемой сертификации или регистрации, поэтому все нововведения из журналов "Радио" и "Моделист кструктор" делаются моментально. Например, вот такой трехфазный двигатель, который возможно включать на 220 В причем в автоматичесаком режиме. Для этого рядом с лобовыми обмотками расположена подковообразная пластина с нормальнозамкнутым контактом.

трехфазный двигатель переменного тока ротор 380/220

В распределительной коробке вместо клеммника вставлены конденсаторы. Один на 16 мкФ 450 В - рабочий, второй на 50 мкФ 250 В - пусковой. Почему такая разница в напряжении непонятно, видимо пихали то, что было.

пусковой и рабочий конденсаторы

На роторе двигателя расположена подпружиненная пластмассина, которая под действием центробежной силы давит на подковообразный контакт и размыкает цепь пускового конденсатора.

Получается, что включении двигателя оба конденсаторы подключены. Ротор раскручивается до определенных оборотов, при которых китайцы считают, что запуск завершен, пластина на роторе смещается, надавливая на контакт и отключая пусковой конденсатор. Если оставить пусквой конденсатор подключенным, то двигатель будет перегреваться.

механическая система отключения конденсатора

Для запуска двигателя от системы 380 В нужно отключить конденсаторы, вызвонить обмотки и подключить напряжение трехфазной сети к ним.

коробка двигателя

Всем удачного разбора.

www.volt-220.com


Каталог товаров
    .