интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

1. Количество теплоты, выделяемое проводником с током. Мощность через количество теплоты


Количество теплоты и тепловая мощность

Опубликовано 13 Окт 2013

Количество теплоты и тепловая мощностьЧеловечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва.

. энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С. Какая нужна мощность источника тепла, чтобы сделать это за 1 час. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов. Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q , подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

Количество теплоты и тепловая мощность

1. Твердое тело, имеющее температуру T1 , нагреваем до температуры Tпл , затрачивая на этот процесс количество теплоты равное Q1 .

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2 — Q1 .

3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп , затрачивая на это количество теплоты равное Q3 — Q2 .

4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4 — Q3 .

5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2 . При этом затраты количества теплоты составят Q5 — Q4 . (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)

Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5 , переводя вещество через три агрегатных состояния.

Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5 , пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до температуры Т1 . Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.

Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

m – масса вещества в кг

с – удельная теплоемкость вещества в Дж/(кг*К)

λ – удельная теплота плавления и кристаллизации вещества в Дж/кг

1.3. При кипении, испарении (конденсации):

r – удельная теплота газообразования и конденсации вещества в Дж/кг

2. Со стороны производства тепла, то есть со стороны источника:

q – удельная теплота сгорания топлива в Дж/кг

2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):

Q = t * I * U = t * R * I ^2=( t / R ) * U ^2

I – действующее значение тока в А

U – действующее значение напряжения в В

R – сопротивление нагрузки в Ом

Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности ( c , λ , r , q ) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).

Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:

Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.

В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…

В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)

Расчет выполним в программе MS Excel или в программе OOo Calc.

С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге».

Ремонт своими руками:

Энциклопедия сантехника Балансировочный клапанБалансировочный...

Температурный датчик для отопления: виды, назначение, установка, отзывыТемпературный д...

Как утеплить пол первого (1) этажа в доме или квартире своими рукамиУтепление пола ...

Как сделать естественную вентиляцию подвала своими рукамиКак сделать ест...

Избавляемся от конденсата на потолке гаража - больше не капаетМногие из владе...

Монтаж воздуховода для кухонной вытяжки: пошаговая инструкцияКак выполняется...

Расчет радиаторов отопления, расчет количества секций радиаторов отопленияМы поможем Вам ...

Как выбрать стабилизатор напряжения для газового котлаКак выбрать ста...

Как проверить вентиляцию в квартире: причины поломок, влияние на работу, инструкция по очисткеПроверка вентил...

Виды котлов и их классификацияВиды отопительн...

Однотрубная система отопления ленинградка: схемы устройстваОднотрубная сис...

Алюминиевые батареи отопления в системе теплоснабжения - достоинства и недостатки конструкцийВ 80-х годах п...

Какой теплоноситель, для системы отопления, выбрать - воду или антифризКак правильно в...

Расчет количества секций биметаллических радиаторовКак сделать пра...

Чугунные ретро радиаторы отопления: особенности, помощь в выборе, производители и ценыДля систем цент...

Чугунный радиатор отопления мс 140Чугунные радиат...

Алюминиевый радиатор в системе отопленияЭффективность а...

Отопление дома солнечными батареямиПоследнее врем...

Электрообогрев и сфера его примененияЭлектро отопле...

Чугунные радиаторы МС-140: производители, цены, технические характеристикиЧугунные радиат...

Вакуумные радиаторы отопления - надежность и экономияВакуумные батар...

Незамерзающие жидкости для систем кондиционирования (охлаждения), антифризы и теплоносители Теплый Д...Хладо-Теплоноси...

Утепление стен частного дома снаружи: выбор материалаКак сделать уте...

Как сделать отопление в частном доме правильно самому, монтаж системы своими руками: инструкция, фот...Как сделать ото...

Выбор радиаторов отопления - советы специалистовСовременные ви...

3 способа утепления колодца на зимуВопрос подачи в...

vizada.ru

Количество теплоты. Уравнение теплового баланса

Занимательные фишки - 7 класс Занимательные фишки - 8 класс Занимательные фишки - 9 класс 10-11 класс Диафильмы по физике

«Физика - 10 класс»

В каких процессах происходят агрегатные превращения вещества?Как можно изменить агрегатное состояние вещества?

Изменить внутреннюю энергию любого тела можно, совершая работу, нагревая или, наоборот, охлаждая его.Так, при ковке металла совершается работа, и он разогревается, в то же время металл можно разогреть над горящим пламенем.

Также если закрепить поршень (рис. 13.5), то объём газа при нагревании не меняется и работа не совершается. Но температура газа, а следовательно, и его внутренняя энергия возрастают.

Внутренняя энергия может увеличиваться и уменьшаться, поэтому количество теплоты может быть положительным и отрицательным.

Процесс передачи энергии от одного тела другому без совершения работы называют теплообменом.

Количественную меру изменения внутренней энергии при теплообмене называют количеством теплоты.

Молекулярная картина теплообмена.

При теплообмене на границе между телами происходит взаимодействие медленно движущихся молекул холодного тела с быстро движущимися молекулами горячего тела. В результате кинетические энергии молекул выравниваются и скорости молекул холодного тела увеличиваются, а горячего уменьшаются.

При теплообмене не происходит превращения энергии из одной формы в другую, часть внутренней энергии более нагретого тела передаётся менее нагретому телу.

Количество теплоты и теплоёмкость.

Вам уже известно, что для нагревания тела массой т от температуры t1 до температуры t2 необходимо передать ему количество теплоты:

Q = cm(t2 - t1) = cm Δt.         (13.5)

При остывании тела его конечная температура t2 оказывается меньше начальной температуры t1 и количество теплоты, отдаваемой телом, отрицательно.

Коэффициент с в формуле (13.5) называют удельной теплоёмкостью вещества.

Удельная теплоёмкость — это величина, численно равная количеству теплоты, которую получает или отдаёт вещество массой 1 кг при изменении его температуры на 1 К.

Удельная теплоёмкость газов зависит от того, при каком процессе осуществляется теплопередача. Если нагревать газ при постоянном давлении, то он будет расширяться и совершать работу. Для нагревания газа на 1 °С при постоянном давлении ему нужно передать большее количество теплоты, чем для нагревания его при постоянном объёме, когда газ будет только нагреваться.

Жидкие и твёрдые тела расширяются при нагревании незначительно. Их удельные теплоёмкости при постоянном объёме и постоянном давлении мало различаются.

Удельная теплота парообразования.

Для превращения жидкости в пар в процессе кипения необходима передача ей определённого количества теплоты. Температура жидкости при кипении не меняется. Превращение жидкости в пар при постоянной температуре не ведёт к увеличению кинетической энергии молекул, но сопровождается увеличением потенциальной энергии их взаимодействия. Ведь среднее расстояние между молекулами газа много больше, чем между молекулами жидкости.

Величину, численно равную количеству теплоты, необходимой для превращения при постоянной температуре жидкости массой 1 кг в пар, называют удельной теплотой парообразования.

Процесс испарения жидкости происходит при любой температуре, при этом жидкость покидают самые быстрые молекулы, и она при испарении охлаждается. Удельная теплота испарения равна удельной теплоте парообразования.

Эту величину обозначают буквой r и выражают в джоулях на килограмм (Дж/кг).

Очень велика удельная теплота парообразования воды: rН20 = 2,256 • 106 Дж/кг при температуре 100 °С. У других жидкостей, например у спирта, эфира, ртути, керосина, удельная теплота парообразования меньше в 3—10 раз, чем у воды.

Для превращения жидкости массой m в пар требуется количество теплоты, равное:

Qп = rm.         (13.6)

При конденсации пара происходит выделение такого же количества теплоты:

Qк = -rm.         (13.7)

Удельная теплота плавления.

При плавлении кристаллического тела всё подводимое к нему тепло идёт на увеличение потенциальной энергии взаимодействия молекул. Кинетическая энергия молекул не меняется, так как плавление происходит при постоянной температуре.

Величину, численно равную количеству теплоты, необходимой для превращения кристаллического вещества массой 1 кг при температуре плавления в жидкость, называют удельной теплотой плавления и обозначают буквой λ.

При кристаллизации вещества массой 1 кг выделяется точно такое же количество теплоты, какое поглощается при плавлении.

Удельная теплота плавления льда довольно велика: 3,34 • 105 Дж/кг.

«Если бы лёд не обладал большой теплотой плавления, то тогда весной вся масса льда должна была бы растаять в несколько минут или секунд, так как теплота непрерывно передаётся льду из воздуха. Последствия этого были бы ужасны; ведь и при существующем положении возникают большие наводнения и сильные потоки воды при таянии больших масс льда или снега». Р. Блек, XVIII в.

Для того чтобы расплавить кристаллическое тело массой m, необходимо количество теплоты, равное:

Qпл = λm.         (13.8)

Количество теплоты, выделяемой при кристаллизации тела, равно:

Qкр = -λm         (13.9)

Уравнение теплового баланса.

Рассмотрим теплообмен внутри системы, состоящей из нескольких тел, имеющих первоначально различные температуры, например теплообмен между водой в сосуде и опущенным в воду горячим железным шариком. Согласно закону сохранения энергии количество теплоты, отданной одним телом, численно равно количеству теплоты, полученной другим.

Отданное количество теплоты считается отрицательным, полученное количество теплоты — положительным. Поэтому суммарное количество теплоты Q1 + Q2 = 0.

Если в изолированной системе происходит теплообмен между несколькими телами, то

Q1 + Q2 + Q3 + ... = 0.         (13.10)

Уравнение (13.10) называется уравнением теплового баланса.

Здесь Q1, Q2, Q3 — количества теплоты, полученной или отданной телами. Эти количества теплоты выражаются формулой (13.5) или формулами (13.6)—(13.9), если в процессе теплообмена происходят различные фазовые превращения вещества (плавление, кристаллизация, парообразование, конденсация).

Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Основы термодинамики. Тепловые явления - Физика, учебник для 10 класса - Класс!ная физика

Насыщенный пар --- Давление насыщенного пара --- Влажность воздуха --- Примеры решения задач по теме «Насыщенный пар. Влажность воздуха» --- Кристаллические тела --- Аморфные тела --- Внутренняя энергия --- Работа в термодинамике --- Примеры решения задач по теме «Внутренняя энергия. Работа» --- Количество теплоты. Уравнение теплового баланса --- Примеры решения задач по теме: «Количество теплоты. Уравнение теплового баланса» --- Первый закон термодинамики --- Применение первого закона термодинамики к различным процессам --- Примеры решения задач по теме: «Первый закон термодинамики» --- Второй закон термодинамики --- Статистический характер второго закона термодинамики --- Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей --- Примеры решения задач по теме: «КПД тепловых двигателей»

Устали? - Отдыхаем!

Вверх

class-fizika.ru

16. Внутренняя энергия. Количество теплоты. Работа в термодинамике. Первый закон термодинамики. Теплоёмкость вещества.

Внутренняя энергия– энергия хаотического (теплового) движения микрочастиц системы и энергия взаимодействия этих частиц.

Внутренняя энергия – однозначная функция термодинамического состояния системы, т.е. в каждом состоянии система обладает вполне определенной внутренней энергией (она не зависит от того как энергия пришла в данное состояние). Это означает, что при переходе системы из одного состояния в другое измерение внутренней энергии определяется только разностью значений внутренней энергии этих состояний и не зависит от пути перехода.

Число степеней свободы – число независимых переменных (координат), полностью определяющих положение системы в пространстве. Двухатомный газ обладает 5 степенями свободы. Трехатомный газ имеет 6 степеней свободы (3 поступательных и 3 вращательных). Независимо от общего числа степеней свободы молекул три степени свободы всегда поступательные. Ни одна из поступательных степеней свободы не имеет преимущества перед другими, поэтому на каждую из них приходится в среднем одинаковая энергия, равная

В классической статистической физике выводится закон Больцмана о равномерном распределении энергии по степеням свободы молекул: для статистической системы, находящейся в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная ,

А на каждую колебательную степень свободы – в среднем энергия, равная . Таким образом, средняя энергия молекулы, где- сумма числа поступательных, числа вращательных и удвоенного числа колебательных степеней свободы молекулы.

В классической теории рассматривают молекулы с жесткой связью между атомами, для них совпадает с числом степеней свободы молекулы.

Внутренняя энергия для произвольной массы m газа

где М – молярная масса, v – количество вещества.

Количество теплоты - энергия, переданная системе внешними телами путем теплообмена(процесс обмена внутренними энергиями при контакте тел с разными температурами). Можно говорить о двух формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии, применительно к термодинамическим процессам этим законом и является первое начало термодинамики, установленное в результате обобщения многовековых опытных данных.

Первое начало термодинамики : теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил. В дифференциальной форме уравнение будет иметь вид :

Или в более корректной форме: ,

где – бесконечно малое изменение внутренней энергии системы,

– элементарная работа,

- бесконечно малое количество теплоты.

В СИ количество теплоты измеряется в джоулях (Дж).

Если система периодически возвращается в первоначальное состояние, то изменение её внутренней энергии . Тогда, согласно первому началу термодинамики,.

Удельная теплоемкость вещества – величина, равная количеству теплоты, необходимому для нагревания одного килограмма на один Кельвин: ,

Единица удельной теплоемкости: джоуль на кг-кельвин (Дж/(кг*К)).

Молярная теплоемкость – величина, равная количеству теплоты, необходимому для нагревания 1 моль вещества на 1 К: ,

где количество вещества.

Единица молярной теплоемкости: джоуль на моль-кельвин (Дж/(моль*К)).

Удельная теплоемкость с связана с молярной Сm отношением: , где

М – молярная масса в-ва.

Молярная теплоемкость газа при постоянном объеме равна изменению внутренней энергии 1 моль газа при повышении его температуры на 1 К. Тогда:

Уравнение Майера: оно показывает, что СPвсегда больше СV на величину молярной газовой постоянной.

Использовав уравнение: ,

Уравнение Майера можно записать в виде:

При рассмотрении термодинамических процессов важно знать характерное для каждого газа отношение CP к CV:

studfiles.net

Количество теплоты, выделяемое проводником с током — урок. Физика, 8 класс.

Проходя по проводнику, ток может оказывать некоторые действия: тепловое, химическое и магнитное (подробно об этом можно почитать в \(7\) теме). Вспомним, с чем связано тепловое действие тока. Оно объясняется тем, что свободные электроны в металлах или ионы в растворах солей, кислот, щелочей, перемещаясь под действием электрического поля, взаимодействуют с ионами или атомами вещества проводника и передают им свою энергию. В результате работы электрического тока внутренняя энергия проводника увеличивается. Например, спираль лампочки раскаляется до такой температуры, что начинает излучать свет.

 

img10.gif

 

Нагретый проводник отдаёт полученную энергию окружающим телам путём теплопередачи. Значит, количество теплоты, выделяемое проводником, по которому течёт ток, равно работе тока, т.е. Q = A, где \(А\) — работа тока, \(Q\) — количество теплоты.Работу тока рассчитывают по формуле: A = U⋅I⋅t. Тогда количество теплоты будет определяться по такой же формуле: Q = U⋅I⋅t.

Пользуясь законом Ома, можно количество теплоты, выделяемое проводником с током, выразить через силу тока \(I\), сопротивление участка цепи \(R\) и время \(t\). Зная, что напряжение U = IR, получим: Q = I2⋅R⋅t.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени.

К такому же выводу на основании опытов пришли независимо друг от друга английский учёный Джеймс Джоуль и русский учёный Эмилий Христианович Ленц. Поэтому сформулированный выше вывод называется законом Джоуля—Ленца.

 

joule-james.png

 

Джоуль Джеймс Прескотт (\(1818—1889\)) — английский физик, член Лондонского королевского общества. Он внёс значительный вклад в исследование электромагнетизма и тепловых явлений, в создание физики низких температур, в обоснование закона сохранения и превращения энергии. Именем Джоуля назвали единицу измерения работы и энергии в системе СИ.

 

395.jpg

 

Эмилий Христианович Ленц (\(1804—1865\)) — российский физик и электротехник, академик Петербургской АН (\(1830\)), ректор Санкт-Петербургского университета (с \(1863\)) — один из основоположников электротехники. С его именем связано открытие закона, определяющего тепловые действия тока, и закона, определяющего направление индукционного тока.

 

Преобразование электрической энергии в тепловую широко используется в электрических печах и различных электронагревательных приборах.

 

Состояние сети, когда по проводам и приборам проходит ток больше допустимого значения, называется перегрузкой. Опасность этого явления в тепловом действии тока, ведь при большой перегрузке изоляция проводников легко воспламеняется. Перегрузка может возникнуть при подключении устройств большой мощности через удлинитель (смотри рисунок и никогда так не делай!).

 

1.jpg

 

Для примера, перегрузка проводов на \(25\)% приводит к сокращению срока их службы где-то с \(20\) лет до \(3—5\) месяцев, а перегрузка проводов на \(50\)% — до нескольких часов.

Источники:

Пёрышкин А.В. Физика, 8 класс// ДРОФА, 2013.

http://www.myshared.ru/slide/93472/  http://electricalschool.info/main/osnovy/1090-zakon-dzhoulja-lenca.htmlhttp://class-fizika.narod.ru/10_7.htmhttp://уроки.мирфизики.рф/%d0%b7%d0%b0%d0%ba%d0%be%d0%bd-%d0%b4%d0%b6%d0%be%d1%83%d0%bb%d1%8f-%d0%bb%d0%b5%d0%bd%d1%86%d0%b0/ http://www.nscience.ru/chemistry/physical/thermodynamics/what_does_thermidynamics_research/http://energetika.in.ua/ru/books/book-2/part-2/section-1/1-2http://to-name.ru/biography/emilij-lenc.htmhttp://mistroim.ru/remont-pomesheniy/elektrichestvo/kakie-neispravnosti-v-elektroseti-mogut-vozniknut/http://frutmrut.ru/zakon-dzhoulya-lenca

www.yaklass.ru

Тепловая мощность. Количество теплоты.

Тепловая мощность -- это мощность, которая выделяется в форме теплоты, что приводит к нагреванию резистора и окружающей среды (за счет теплопередачи) : P=UI

Количество теплоты, затраченной на обогрев тела или выделившейся при его охлаждении равно произведению удельной теплоёмкости вещества, массы тела и разницы конечной и начальной температур: Q = c m ∆ T.

 

Билет №9

1.Электрический диполь –система из двух равных по абсолютной величине, но противоположных по знаку точечных электрических зарядов, расстояние l между которыми мало по сравнению с расстоянием до рассматриваемых точек поля.

2.Линии тока и трубка тока.Течение жидкости изображается линиями тока - линиями, касательные к которым в каждой точке совпадают с направлением вектора скорости частиц. При ламинарном течении часть потока жидкости, ограниченная линиями тока, образует трубку тока. Частицы жидкости не выходят за пределы трубки тока, поэтому через любое ее сечение проходит одно и то же количество жидкости.

 

Билет №10

1.Глаз и его функции. Глаз как оптическая система состоит из следующих элементов, которые выполняют различные функции:

1.Склера — достаточно прочная внешняя белковая оболочка белого цвета, защищающая глаз и придающая ему постоянную форму.

2. Роговица — передняя часть склеры, более выпуклая и прозрачная; действующая как собирающая линз, оптическая сила которой — примерно 40 дптр; роговица — наиболее сильно преломляющая часть (обеспечивает до 75 % фокусирующей способности глаза), толщина которой 0,6-1 мм, п = 1,38.

3. Сосудистая оболочка — с внутренней стороны склера выстлана сосудистой оболочкой (темные пигментные клетки, препятствующие рассеиванию света в глазу).

4. Радужная оболочка — в передней части сосудистая оболочка переходит в радужную.

5. Зрачок — круглое отверстие в радужной оболочке, диаметр, которого может изменяться в пределах от 2 до 8 мм (радужная оболочка и зрачок, который выполняют роль диафрагмы, регулирующей доступ света внутрь глаза), площадь отверстия изменяется в 16 раз.

6. Хрусталик — природная прозрачная двояковыпуклая линза диаметром 8-10 мм, имеющая слоистую структуру, наибольший показатель преломления в слоях хрусталика п = 1,41; хрусталик находится за радужной оболочкой, примыкает к зрачку, оптическая сила его равна 20-30 дптр.

7. Зрительный нерв — подходя к глазу, разветвляется, образуя на задней стенке сосудистой оболочки светочувствительный слой — сетчатку.

8. Сетчатка — светочувствительный слой, она представляет собой разветвление зрительного нерва с нервными окончаниями в виде палочек и колбочек, из них колбочки (их примерно 10 млн. клеток) служат для различения мелких деталей предмета и восприятия цветов. Палочки же (20 млн. клеток) не дают возможности различать цвета и мелкие предметы, но они высокочувствительны к слабому свету. С помощью палочек человек различает предметы в сумерки и ночью. Палочки и колбочки очень малы. Диаметр палочки 2 • 10~3 мм, длина 6 • 10-3мм, диаметр же колбочки 7 • 10-3мм, а длина около 35 • 10-3мм. Палочки и колбочки распределены неравномерно: в средней части сетчатки преобладают колбочки, а по краям — палочки.

9. Стекловидное тело — объем части глаза (задняя глазная камера) между хрусталиком и сетчаткой, заполненный прозрачным стекловидным веществом, имеет оптическую силу до 6 дптр.

10. Желтое пятно — самое чувствительное место на сетчатке, то есть человек видит ясно те предметы, изображение, которых проектируется на желтое пятно.

11. Центральная ямка — наиболее чувствительная часть желтого пятна; это узкая область, в которой сетчатка углублена, здесь палочки совсем отсутствуют, а колбочки расположены очень плотно;

12. В том месте, где зрительный нерв входит в глаз, нет ни палочек, ни колбочек, и лучи, попадающие на эту область, не вызывают ощущения света, отсюда и название «слепое пятно».

13. Конъюнктива — наружная оболочка глаза, выполняет барьерную и защитную роль.

 



infopedia.su

Количество теплоты

Внутренняя энергия тела может изменяться за счет работы внешних сил. Для характеристики изменения внутренней энергии при теплообмене вводится величина, называемая количеством теплоты и обозначаемая Q.

Количество теплоты – это физическая величина, показывающая, какая энергия передана телу в результате теплообмена.

В международной системе единицей количества теплоты, также как работы и энергии, является джоуль: [Q] = [A] = [E] = 1 Дж.

На практике еще иногда применяется внесистемная единица количества теплоты – калория. 1 кал. = 4,2 Дж.

Следует отметить, что термин «количество теплоты» неудачен. Он был введен в то время, когда считалось, что в телах содержится некая невесомая, неуловимая жидкость – теплород. Процесс теплообмена, якобы, заключается в том, что теплород, переливаясь из одного тела в другое, переносит с собой и некоторое количество теплоты. Сейчас, зная основы молекулярно-кинетической теории строения вещества, мы понимаем, что теплорода в телах нет, механизм изменения внутренней энергии тела иной. Однако, сила традиций велика и мы продолжаем пользоваться термином, введенным на основе неверных представлений о природе теплоты. Вместе с тем, понимая природу теплообмена, не следует полностью игнорировать неверные представления о нем. Напротив, проводя аналогию между потоком тепла и потоком гипотетической жидкости теплорода, количеством теплоты и количеством теплорода, можно при решении некоторых классов задач наглядно представить протекающие процессы и верно решить задачи. В конце-концов, верные уравнения, описывающие процессы теплообмена, были в свое время получены на основе неверных представлений о теплороде, как носителе теплоты.

Количество теплоты, передаваемое от одного тела к другому, может идти на нагревание тела, плавление, парообразование, либо выделяться при противоположных процессах – остывании тела, кристаллизации, конденсации. Теплота выделяется при сгорании топлива.

Рассмотрим более подробно процессы, которые могут протекать в результате теплообмена.

Нальем в пробирку немного воды и закроем ее пробкой. Подвесим пробирку к стержню, закрепленному в штативе, и подведем под нее открытое пламя. От пламени пробирка получает некоторое количество теплоты и температура жидкости, находящейся в ней, повышается. При повышении температуры внутренняя энергия жидкости увеличивается. Происходит интенсивный процесс ее парообразования. Расширяющиеся пары жидкости совершают механическую работу по выталкиванию пробки из пробирки.

Проведем еще один опыт с моделью пушки, изготовленной из отрезка латунной трубки, которая укреплена на тележке. С одной стороны трубка плотно закрыта эбонитовой пробкой, сквозь которую пропущена шпилька. К шпильке и трубке припаяны провода, оканчивающиеся клеммами, на которые может подаваться напряжение от осветительной сети. Модель пушки, таким образом, представляет собой разновидность электрического кипятильника.

Нальем в ствол пушки немного воды и закроем трубку резиновой пробкой. Подключим пушку к источнику тока. Электрический ток, проходя через воду, нагревает ее. Вода закипает, что приводит к ее интенсивному парообразованию. Давление водяных паров растет и, наконец, они совершают работу по выталкиванию пробки из ствола пушки.

Пушка, вследствие отдачи, откатывается в сторону, противоположную вылету пробки.

Оба опыта объединяют следующие обстоятельства. В процессе нагревания жидкости различными способами, температура жидкости и, соответственно, ее внутренняя энергия увеличивались. Для того, чтобы жидкость кипела и интенсивно испарялась, необходимо было продолжать ее нагревание.

Пары жидкости за счет своей внутренней энергии совершили механическую работу.

Исследуем зависимость количества теплоты, необходимой для нагревания тела, от его массы, изменения температуры и рода вещества. Для исследования данных зависимостей будем использовать воду и масло. (Для измерения температуры в опыте применяется электрический термометр, изготовленный из термопары, подключенной к зеркальному гальванометру. Один спай термопары опущен в сосуд с холодной водой для обеспечения постоянства его температуры. Другой спай термопары измеряет температуру исследуемой жидкости).

Опыт состоит из трех серий. В первой серии исследуется для постоянной массы конкретной жидкости (в нашем случае – воды) зависимость количества теплоты, необходимого для ее нагревания, от изменения температуры. О количестве теплоты, полученной жидкостью от нагревателя (электрической плитки), будем судить по времени нагревания, предполагая, что между ними существует прямо пропорциональная зависимость. Чтобы результат эксперимента соответствовал этому предположению, необходимо обеспечить стационарный поток тепла от электроплитки к нагреваемому телу. Для этого электроплитка была включена в сеть заранее, так чтобы к началу опыта температура ее поверхности перестала изменяться. Для более равномерного нагрева жидкости во время опыта, будем помешивать ее при помощи самой термопары. Будем фиксировать показания термометра через равные промежутки времени до тех пор, пока световой зайчик не дойдет до края шкалы.

Сделаем вывод: между количеством теплоты, необходимым для нагревания тела и изменением его температуры, существует прямая пропорциональная зависимость.

Во второй серии опытов будем сравнивать количества теплоты, необходимые для нагревания одинаковых жидкостей разной массы при изменении их температуры на одну и ту же величину.

Для удобства сравнения получаемых величин массу воды для второго опыта возьмем в два раза меньше, чем в первом опыте.

Вновь будем фиксировать показания термометра через равные промежутки времени.

Сравнивая результаты первого и второго опытов можно сделать следующие выводы.

Между массой вещества и количеством теплоты, необходимым для его нагревания, существует прямая пропорциональная зависимость.

В третьей серии опытов будем сравнивать количества теплоты, необходимые для нагревания равных масс различных жидкостей, при изменении их температуры на одну и ту же величину.

Будем нагревать на электроплитке масло, масса которого равна массе воды в первом опыте. Будем фиксировать показания термометра через равные промежутки времени.

Результат опыта подтверждает вывод о том, что количество теплоты, необходимое для нагревания тела, прямо пропорционально изменению его температуры и, кроме того, свидетельствует о зависимости этого количества теплоты от рода вещества.

Поскольку в опыте использовалось масло, плотность которого меньше плотности воды и для нагревания масла до некоторой температуры потребовалось меньшее количество теплоты, чем для нагревания воды, можно предположить, что количество теплоты, необходимое для нагревания тела, зависит от его плотности.

Чтобы проверить это предположение, будем одновременно нагревать на нагревателе постоянной мощности одинаковые массы воды, парафина и меди.

Через одно и то же время температура меди оказывается примерно в 10 раз, а парафина примерно в 2 раза выше температуры воды.

Но медь имеет большую, а парафин меньшую плотность, чем вода.

Опыт показывает, что величиной, характеризующей скорость изменения температуры веществ, из которых изготовлены тела, участвующие в теплообмене, является не плотность. Эта величина называется удельной теплоемкостью вещества и обозначается буквой c.

Для сравнения удельных теплоемкостей различных веществ служит специальный прибор. Прибор состоит из стоек, в которых крепится тонкая парафиновая пластинка и планка с пропущенными сквозь нее стержнями. На концах стержней укреплены алюминиевый, стальной и латунный цилиндры равной массы.

Нагреем цилиндры до одинаковой температуры, погрузив их в сосуд с водой, стоящий на горячей электроплитке. Закрепим горячие цилиндры на стойках и освободим их от крепления. Цилиндры одновременно прикасаются к парафиновой пластине и, плавя парафин, начинают погружаться в нее. Глубина погружения цилиндров одинаковой массы в парафиновую пластину, при изменении их температуры на одну и ту же величину, оказывается разной.

Опыт свидетельствует о том, что удельные теплоемкости алюминия, стали и латуни различны.

Проделав соответствующие опыты с плавлением твердых тел, парообразованием жидкостей, сгоранием топлива получаем следующие количественные зависимости.

Количество теплоты, необходимое для нагревания тела или выделяющееся при его охлаждении, прямо пропорционально массе тела и изменению его температуры.

Количество теплоты, необходимое для превращения жидкости в пар или выделяющееся при его конденсации, прямо пропорционально массе жидкости.

Количество теплоты, необходимое для плавления тела или выделяющееся при его кристаллизации, прямо пропорционально массе этого тела.

Количество теплоты, выделяющееся при сгорании топлива, прямо пропорционально его массе.

Во всех формулах, позволяющих рассчитывать количество теплоты для различных тепловых процессов, стоят коэффициенты пропорциональности, называемые удельными величинами, то есть приходящимися на единицу других величин. Удельные величины являются характеристиками веществ, а не тел.

Удельная теплоемкость вещества показывает, чему равно количество теплоты, необходимое для нагревания или выделяющееся при охлаждении 1 кг вещества на 1 К.

Удельные теплоты парообразования, плавления, сгорания показывают, какое количество теплоты требуется для парообразования, плавления или выделяется при конденсации, кристаллизации, сгорании 1 кг вещества.

Чтобы получить единицы удельных величин, их надо выразить из соответствующих формул и в полученные выражения подставить единицы теплоты – 1 Дж, массы – 1 кг, а для удельной теплоемкости – и 1 К.

Получаем единицы: удельной теплоемкости – 1 Дж/кг·К, остальных удельных теплот: 1 Дж/кг.

files.school-collection.edu.ru

Т. Количество теплоты — PhysBook

Количество теплоты

Как известно, при различных механических процессах происходит изменение механической энергии Wmeh. Мерой изменения механической энергии является работа сил, приложенных к системе:

\(~\Delta W_{meh} = A.\)

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты — это мера изменения внутренней энергии, которую тело получает (или отдает) в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны энергии. Они не характеризуют само состояние системы, а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю). Количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры T1 до температуры T2, рассчитывается по формуле

\(~Q = cm (T_2 - T_1) = cm \Delta T, \qquad (1)\)

где c — удельная теплоемкость вещества;

\(~c = \frac{Q}{m (T_2 - T_1)}.\)

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость c численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Теплоемкость тела CT численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

\(~C_T = \frac{Q}{T_2 - T_1} = cm.\)

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

\(~Q = Lm, \qquad (2)\)

где L — удельная теплота парообразования. При конденсации пара выделяется такое же количество теплоты.

Для того чтобы расплавить кристаллическое тело массой m при температуре плавления, необходимо телу сообщить количество теплоты

\(~Q = \lambda m, \qquad (3)\)

где λ — удельная теплота плавления. При кристаллизации тела такое же количество теплоты выделяется.

Количество теплоты, которое выделяется при полном сгорании топлива массой m,

\(~Q = qm, \qquad (4)\)

где q — удельная теплота сгорания.

Единица удельных теплот парообразования, плавления и сгорания в СИ — джоуль на килограмм (Дж/кг).

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 154-155.

www.physbook.ru


Каталог товаров
    .