интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

11.1. Реактивная мощность в системах электроснабжения. Мощность системы электроснабжения


4. Компенсация реактивной мощности в системе электроснабжения

Перетоки РМ в сети вызывают дополнительные потери мощности и электроэнергии, влияют на уровни напряжения в узлах сети, ухудшают пропускную способность электрических сетей и требуют значительных затрат для их компенсации.

Компенсация реактивной мощности (с учетом качества электроэнергии)

в сетях промышленных предприятий является одним из основных направлений сокращения потерь электроэнергии и повышения эффективности работы электроустановок предприятий.

Следует отметить, что с точки зрения экономии электроэнергии и регулирования напряжения компенсацию реактивной мощности наиболее целесообразно осуществлять у ее потребителей.

Задачей компенсации реактивной мощности является проведение мероприятий, при осуществлении которых реактивная мощность, потребляемая от источника питания, была бы оптимальна для данного узла нагрузки.

Последствия перетока реактивной мощности:

- ухудшение режимов работы ЭП из-за значительных потерь напряжения в электрических цепях;

- снижение статической устойчивости узлов нагрузки;

- необходимость увеличения пропускной способности элементов сети;

- необходимость увеличения мощности генераторов на электрических станциях для генерации реактивной мощности, вызванной ее перетоками.

4.1 Принцип компенсации реактивной мощности

Известно, что прохождение переменного электрического тока всегда сопровождается возникновением переменного (с частотой тока) магнитного потока. Изменение магнитного потока неизбежно сопровождается индуктированием электродвижущей силы самоиндукции, действие которой всегда направлено против изменения тока, проходящего в электрической цепи. Это и является индуктивной нагрузкой, вызывающей отставание во времени изменений переменного тока от изменений переменного напряжения на так называемый угол сдвига фаз ().

Индуктивная нагрузка, вызываемая явлением самоиндукции, в цепи переменного тока всегда имеет место, так как для прохождения переменного тока проводники цепи представляют не только активное (R), но и индуктивное (XL) сопротивления. Основную индуктивную нагрузку в сетях переменного тока представляют машины и аппараты, действие которых основано на использовании магнитного потока (трансформаторы, электрические двигатели, реакторы, индукционные электрические печи и т. п.). Таким образом, в сети переменного тока имеются потребители активной (P) и реактивной (Q) мощности.

Необходимую реактивную мощность для обеспечения работы ЭП вынуждены выдавать генераторы электрических станций. Но так как обмотки генераторов рассчитаны из условий допустимого нагрева на полный ток, то наличие в сети реактивной мощности и, следовательно, реактивного тока (Iр) приводит к недоиспользованию обмотки генераторов по активной мощности.

С другой стороны, реактивная составляющая тока, проходя по всем элементам сети от генераторов до потребителей, вызывает дополнительные потери мощности, электроэнергии и напряжения. Этим и объясняется необходимость компенсировать потребление реактивной мощности с помощью источников реактивной мощности, включаемых в сеть в местах ее потребления.

Принцип компенсации реактивного тока в электрической сети рассмотрим на примере рисунке 4.1.

Рис. 4.1 Принцип компенсации реактивной мощности

На рисунке 4.1(а) показана схема питания от сети напряжением (U) электроприемника, имеющего активное (R) и индуктивное (XL) сопротивление.

Полный ток цепи (I) вследствие наличия индуктивной нагрузки (XL) будет отставать от напряжения (U) на угол . Величина углатем больше, чем больше индуктивное сопротивление нагрузки (XL).

Значения составляющих тока:

; , (4.1)

где Iа.н – активная составляющего тока нагрузки, А; Iр.н – реактивная составляющего тока нагрузки, А; Iн – полный ток нагрузки, А.

Функции угла определяется соотношением величинR и XL:

; ;, (4.2)

где R – активное сопротивление, Ом; XL – реактивное сопротивление, Ом.

Полный ток, потребляемый из сети, будет равен сумме векторов активной и реактивной составляющих этого тока, то есть,

, (4.3)

где Iн – полный ток нагрузки, А.

В соответствии с этим мощность, потребляемая из сети:

- активная мощность

, (4.4)

где P – активная потребляемая мощность, кВт; U – напряжение питания нагрузки, кВ; Iн – ток нагрузки, А.

-реактивная мощность

, (4.5)

где Q – реактивная потребляемая мощность, кВ·Ар.

- полная мощность

, (4.6)

где S – полная потребляемая мощность, кВ·А.

Включение в схему (рис. 4.1 а) емкости (С) с реактивным сопротивлением Хс, которая создает емкостный ток , опережающий напряжение на угол 90º и противоположно направлен , за счет чего и происходит компенсация реактивной мощности, потребляемой индуктивным сопротивлением

(см. рис. 4.1 б). При этом ток , потребляемый из сети, после подключения емкости с сопротивлениемуменьшается, так как он будет равен сумме векторов

, (4.7)

где –реактивная составляющая тока с учетом компенсации, А.

Если ток отстает по фазе от напряжения (индуктивный характер), то реактивная мощность потребляется и обозначается со знаком «+» (потребитель).

Если ток опережает напряжение (емкостный характер), то реактивная мощность генерируется и обозначается со знаком «-» (источник).

studfiles.net

11.1. Реактивная мощность в системах электроснабжения

Формально математическим определением реактивной мощности является (2.25) или выражение

(11.1)

Реактивная мощность является параметром режима, характеризующим интенсивность обмена электромагнитной энергией между элементами системы электроснабжения, обусловленного реактивными составляющими токов. В зависимости от знака фазы  и корня значение (11.1) может быть положительным или отрицательным. Это позволяет вьщелить источники и потребители реактивной мощности. Для элементов, в которых ток опережает напряжение, реактивная мощность отрицательная, и такие элементы являются источниками реактивной мощности. Реактивную мощность можно передавать по электрическим сетям. При ее передаче возникают потери. В системе электроснабжения в целом и для каждого узла в любой момент времени должен соблюдаться баланс: сумма поступающих в узел и отходящих от узла реактивных мощностей равна нулю.

Для генераторов и потребителей активной мощности существует объективный критерий классификации: в генераторах осуществляется преобразование энергии какого-либо вида в электрическую, а у по­требителей - преобразование электрической энергии. Для реактивной мощности разделение на генераторы и потребители, определяемые

275

знаком, в значительной степени условно. Активная мощность поступа­ет в систему электроснабжения от 6УР и выходит из системы электро­снабжения (преобразование энергии на 1УР). Реактивная мощность циркулирует в пределах системы электроснабжения, а производство и потребление реактивной мощности не связано с преобразованием энергии. Интегрирование реактивной мощности по времени не дает какой-либо существенно полезной величины.

Значение "реактивной энергии" не может быть использовано для оценки эффективности компенсации реактивной мощности. Баланс реактивной мощности должен выполняться для любого момента вре­мени, а не в среднем за какой-либо период. Например, при недокомпен-сации в период максимума нагрузки и перекомпенсации в период ми­нимума нагрузки можно добиться, чтобы "реактивная энергия" на 6УР за год равнялась нулю. Однако судить по этому факту об эффективности компенсации реактивной мощности с точки зрения электрики нельзя.

Реактивная энергия и вытекающий из нее средневзвешенный коэф­фициент мощности не отражают реальных закономерностей функциони­рования систем электроснабжения, поэтому использование соответ­ствующих терминов не оправдано. Полезным назначением реактивных счетчиков, получивших распространение в системах электроснабжения, является возможность их использования для построения графиков ре­активных нагрузок путем фиксации показаний счетчиков за достаточно малые промежутки времени (полчаса, час).

Реактивные мощности для каждой из симметричных составляющих режима являются независимыми величинами, объединенными только названием. Источники реактивной мощности в системе одной последо­вательности не могут компенсировать потребление реактивной мощности в системе другой последовательности (отличие от активной мощности). Аналогично источниками реактивной мощности для любой из высших гармоник нельзя компенсировать потребление реактивной мощности на другой гармонике. Отсюда следует вывод о недопустимости суммирования реактивных мощностей для симметричных и гармоничных составляющих.

Компенсирующие устройства должны выбираться по результатам расчетов симметричных и синусоидальных режимов. Затем рассчитыва­ются дополнительные технико-экономические ограничения, связанные с возникновением несимметрии и несинусоидальности. Для этого нужны не значения реактивной мощности, а значения токов и напряжений симметричных и гармоничных составляющих. Обычно достаточно рас­считать напряжения обратной (иногда нулевой) последовательности основной частоты и напряжения.

Когда обнаруживается недопустимость или экономическая нецеле­сообразность несимметричных (несинусоидальность) режимов, выяв­ляются пути их нормализации. Надо стремиться использовать уже вы-

276

бранное по нормальным условиям работы оборудование, расширив область его использования. В частности, устройства симметрирования и снижения гармоник могут создаваться на базе тех же батарей, которые выбраны по условиям компенсации реактивной мощности в нормальных режимах.

Наиболее значительными потребителями реактивной мощности яв­ляются асинхронные двигатели, электротермические установки, вен­тильные преобразователи. В балансе реактивных нагрузок потери реак­тивной мощности в элементах системы электроснабжения достигают 20%. Естественный коэффициент мощности электрических нагрузок различных промышленных предприятий изменяется в пределах cos ест = = 0,7  0,9. Это означает, что промышленные предприятия потребляют реактивную мощность Qр = (1,02  0,48) Рр.

Способы обеспечения промышленных потребителей активной и ре­активной мощностью различаются. Если источниками активной мощности являются только генераторы электрических станций, то видов источников реактивной мощности больше. К ним относятся все виды синхронных машин (синхронные генераторы, электродвигатели и компенсаторы), батареи конденсаторов, емкостная проводимость воздушных и кабельных линий электропередачи.

Затраты на производство реактивной мощности генераторами элект­рических станций, как правило, ниже, чем затраты на производство ре­активной мощности остальными источниками. Но передача реактивной мощности от шин электрических станций по сетям электрической системы и сетям промышленных предприятий приводит к дополнительным затратам, которые обусловлены увеличением:

1) потерь активной мощности и энергии в элементах сети, по которым передается реактивная мощность Q при напряжении U. Дополнительные потери активной мощности в элементе сети с активным сопротивлением R

(11.2)

2) потерь реактивной мощности в элементах сети, по которым она передается. Дополнительные потери в элементе с реактивным сопро­тивлением X, вызванные передачей реактивной мощности Q,

(11.3)

Увеличение потерь реактивной мощности требует увеличения мощ­ности ее источников;

3) пропускной способности элементов, которая определяется полной расчетной мощностью. В ряде случаев это может привести к увеличению

277

сечения проводников и номинальной мощности трансформаторов;

4) потерь напряжения в элементах сети. Дополнительные потери на­пряжения в элементе сети, вызванные передачей реактивной мощности Q, приближенно определяются так:

(11.4)

Увеличение потерь напряжения в сети может потребовать установки дополнительных средств регулирования напряжения.

Полные затраты на производство и передачу всей необходимой про­мышленному предприятию реактивной мощности от шин электрических станций в большинстве случаев значительно больше, чем затраты на производство реактивной мощности непосредственно в системе электроснабжения. Поэтому экономически целесообразно от генераторов электрических станций передавать часть реактивной мощности, а большую компенсировать на шинах (присоединениях) 5УР-2УР. Возникает задача выбора видов, мощности и мест размещения компен­сирующих устройств (источников реактивной мощности), обеспечивающих баланс реактивной мощности в режиме максимальных и минимальных нагрузок при минимуме суммарных затрат на производство и передачу реактивной мощности.

studfiles.net

Система электроснабжения: устройство, эксплуатация :: SYL.ru

Электричество на текущий момент является наиболее востребованным источником энергии, обеспечивающим снабжение промышленных предприятий, частных домовладений, общественных зданий и других объектов. Кроме того, существенные объемы электроэнергии потребляют инфраструктурные, инженерные и хозяйственные коммуникации, не относящиеся к производственным мощностям и частному сектору. В то же время система электроснабжения (СЭ) может иметь разную техническую организацию именно в зависимости от условий эксплуатации и требований потребителя.

Задачи систем электроснабжения

Для работы любого электрооборудования требуется соответствующий источник питания. Хотя сегодня развиваются технологии, оптимизирующие процессы аккумуляции других видов энергии, электричество по-прежнему участвует в поддержании работы большей части эксплуатируемых потребителей. В качестве последних могут выступать бытовые приборы, электронные устройства, производственные агрегаты, осветительная техника, инженерные станции, строительный инструмент и т. д. Основная задача СЭ заключается именно в снабжении электричеством. Однако специалисты не рассматривают эту функцию в процессе организации сетей.

В ходе проектирования и установки отдельных компонентов энергоснабжающей инфраструктуры главная задача питания разделяется на несколько частей или технологических этапов. В первую очередь система электроснабжения выполняет генерацию самой энергии. Это начальный этап, в процессе которого формируется электрический заряд. Далее осуществляется передача электроэнергии по соответствующей сетевой инфраструктуре, характеристики которой зависят от места прокладки, требований безопасности и т. д. Конечная задача данной системы будет заключаться в распределении энергии между разными потребителями. Некоторые системы ориентируются на одного потребителя, обеспечивая транспортировку от места генерации и до конечной точки энергоснабжения, но это бывает редко, в основном при обслуживании крупных промышленных объектов.

Устройство систем электроснабжения

Полный цикл реализации энергоснабжения задействует несколько видов коммуникационных средств и оборудования. Это сложная инфраструктура, в состав которой входят электростанции, сети передачи энергии, распределительные устройства и т. д. Прежде всего, надо отметить источники энергии, которые ее генерируют. Это могут быть традиционные электростанции, гидрологические и тепловые установки выработки энергии. К слову, сам принцип переработки разных видов топлива еще не означает, что станции ориентированы на поставку энергии другого типа. Энергия от сгорания твердого топлива, тепловая энергия и другие источники также преобразуются в электричество. И за эту функцию отвечает отдельная группа систем, включающая преобразователи, трансформаторы, выпрямители, конвекторы и другие устройства. Они могут занимать разные места в общей инфраструктуре – и в составе базового генератора, и непосредственно перед потребителями для коррекции характеристик.

В обязательном порядке устройство системы электроснабжения включает сети передачи заряда. Для этого используются воздушные линии электропередачи, кабельные подземные каналы и бытовая электропроводка. От источника генерации через преобразователь энергия направляется в магистральную линию передачи. Далее следует этап распределения. Транспортируемый совокупный объем электроэнергии через открытое или закрытое распределительное оборудование переправляется разным потребителям. Здесь же в зависимости от структуры распределения и потребления могут использоваться средства контроля энергии, защиты, диагностики и управления.

Проектирование систем электроснабжения

Создание проекта СЭ означает разработку документации, на основе которой исполнители будут на практике реализовывать инфраструктурный объект, обеспечивающий энергетическое обслуживание потребителей. Сама документация может быть представлена в виде схем, описаний, графиков, таблиц и чертежей. Как правило, проектирование подразумевает изначальную разбивку всего комплекса на несколько подсистем. Благодаря такому подходу система электроснабжения оптимизируется в соответствии с конкретными требованиями для каждого участка инфраструктуры.

Независимо от иерархии систем, основой для проектирования выступают электроустановки. Специалист оценивает и формирует наиболее выгодные связи между электроустановками, трансформаторными подстанциями, потребителями и промежуточными электротехническими устройствами, формирующими сеть до 1 кВ или более 1 кВ. Понятие выгоды в данном случае многогранно.

Согласно требованиям нормативных актов, проектирование систем электроснабжения должно ориентироваться на оптимизацию финансовых ресурсов, надежность, безопасность, гибкость в эксплуатации и возможность дальнейшего расширения системы. Тем не менее за основу разработки технической части группа проектировщиков берет конкретные значения и параметры, отражающие требования потребителя электроэнергии. На основе расчетов системы уже конструкторы подбирают оптимальные решения для физической реализации проекта – составляются схемы, в которых указываются станции, узлы, детали и элементы систем и подсистем.

Разновидности СЭ

Выделяется несколько классификаций систем энергоснабжения, которые отличаются и по общей схеме организации, и по конфигурации применяемых устройств. Для начала стоит отметить, что существуют местные локальные источники питания и системы полного цикла. Например, автономные системы электроснабжения предприятия, дома или дачи сосредотачивают в своей структуре весь спектр задач энергетического снабжения. Их автономность обуславливается независимостью от магистрального энергообеспечения, что, впрочем, тоже условно. К таким системам относят инверторы, топливные генераторы и аккумуляторные блоки. В этой группе также есть своя классификация по типу аккумулируемого источника питания. К примеру, аккумуляторы и инверторы требуют изначального подзаряда от центрального источника электроэнергии. В сущности, это накопители, ресурс которых можно расходовать в случаях перебоев в магистральной сети. Топливные генераторы более независимы – их функция обеспечивается дизелем или бензином.

Системы полного цикла уже были рассмотрены выше. Они формируют инфраструктуру, в которой задействуется станция-генератор электроэнергии, оборудование для распределения и преобразования. И если автономные системы электроснабжения подключаются к работе в основном при аварийных случаях на магистралях, то центральное питание рассчитывается на работу в режиме постоянного обслуживания потребителей. Отдельная классификация затрагивает класс энергетических станций, которые выступают главными источниками энергии.

Виды станций-генераторов энергии

Традиционная энергетика базируется на тепловых электростанциях (ТЭС). В России на этом источнике работает порядка 75% потребителей энергии. В данном случае энергия вырабатывается в процессе сгорания органического топлива, в качестве которого может выступать уголь, газ, торф и т. д. Причем ТЭСы генерируют не только электроэнергию, но также могут снабжать потребителей теплом и паром. Комбинированные пароэлектрогенераторы в основном обслуживают промышленные объекты. Большие объемы электроэнергии позволяют генерировать и атомные электростанции (АЭС). Основу таких объектов формирует ядерная установка, в которой для выработки электроэнергии используются реакторы. Как и в случае с тепловыми станциями, АЭС позволяют обеспечивать потребителей тепловой энергией.

Менее популярны гидрологические, геотермальные, ветровые и приливные станции. Это уже альтернативные источники энергии, к достоинствам которых можно отнести практически бесплатную потребляемую энергию от природных явлений и ресурсов. Однако сам процесс технической организации делает электрические системы электроснабжения такого типа нерентабельными. Обустройство инфраструктуры, особенности обслуживания и эксплуатации требуют высоких затрат, не говоря о том, что те же ветровые станции, к примеру, не способны обеспечивать стабильное энергоснабжение. Наиболее перспективным направлением в сфере альтернативного энергообеспечения является аккумуляция солнечной энергии.

Солнечные генераторы электроэнергии

Такие станции работают на принципах гелиотермальной энергетики, которая предполагает организацию процесса поглощения солнечных лучей с дальнейшим распределением и преобразованием аккумулируемого тепла. При этом существуют разные технические концепции реализации таких процессов. Некоторые станции базируются на принципе теплового нагрева активных элементов, которые в дальнейшем передают накопленную энергию преобразователям. Более популярна система электроснабжения концентрирующего типа. В данном случае энергия сосредотачивается с помощью линз на аккумулирующих панелях. Сами панели могут выполнять и функцию преобразователей, на выходе отдавая готовую к использованию электроэнергию. При этом солнечные генераторы в основном являются локальными, то есть их используют практически на месте потребления. В качестве примера можно привести крыши домов и предприятий, на поверхностях которых уложены солнечные панели. Такие элементы напрямую снабжают объекты, в конструкцию которых вводятся.

Защитные средства

Работа любой системы электроснабжения требует подключения дорогостоящего оборудования и ресурсов питания, на которых лежит большая ответственность. Это обуславливает и необходимость введения соответствующих средств обеспечения безопасной эксплуатации инфраструктуры. Обязательной является релейная защита системы электроснабжения, которая базируется на автоматических устройствах, при необходимости обеспечивающих отсечение поврежденного оборудования или участков распределения и передачи заряда. В состав таких систем входят автоматические выключатели, устройства ввода резервного оборудования, контроллеры трансформаторов, противоаварийная автоматика и т. д.

Отдельного внимания заслуживают и средства токовой защиты. Это дифференциальные и комбинированные устройства, в задачи которых, в частности, входит предотвращение замыканий на землю. Изоляционная защита систем электроснабжения представляет собой конструкционное решение, которое может быть не связано с релейной автоматикой. Однако системы контроля способны фиксировать и нарушения защитных слоев и оболочек посредством измерительной аппаратуры.

Техническое обслуживание СЭ

Нормативные требования предписывают службам контроля и содержания электроснабжающих сетей регулярно выполнять диагностику и техническую наладку вверенного оборудования. Специалисты должны в соответствии с графиком проверять состояние расходных материалов и элементов. В частности, может производиться замена отдельных отрезков электропроводки, деталей генераторов, выключателей, розеток и электроламп. Капитальный ремонт системы электроснабжения может предполагать замену ответственных компонентов сети, в числе которых те же трансформаторные блоки, преобразователи и распределительные устройства. Но для принятия такого решения должен быть составлен проект ремонтных работ. Ему предшествует осмотр поврежденных участков по технологическим картам. Сотрудники обслуживающей организации выявляют неполадки посредством измерительных приборов, которые в постоянном режиме фиксируют характеристики напряжения, силы тока, сопротивления и других электротехнических параметров.

Эксплуатация систем электроснабжения

Кроме профилактического контроля и осмотров, которые проводятся в рамках плановых проверок, работу систем электрообеспечения в постоянном режиме контролируют диспетчерские пункты. Непосредственно от технологических зон генерации, преобразования и распределения энергии на пульт управления поступают сигналы о текущем состоянии оборудования на конкретном участке. Инфраструктура взаимодействия обеспечивается посредством автоматических контроллеров, связанных с датчиками замера электротехнических показателей. В перечень задач операторов входит управление системами электроснабжения посредством ввода резервных источников питания, отключения поврежденного оборудования, переключения между режимами эксплуатации, разгрузочных действий и т. д. При этом существенная роль в управляющих комплексах все же отводится автоматике, которая изначально принимает решения в соответствии с заложенными программами.

Заключение

Эксперты уже давно прогнозируют постепенный отказ человечества от электроэнергии. Конечно, в ближайшие десятилетия этого не произойдет, но тенденция перехода к новым источникам энергии очевидна. Об этом говорят и попытки внедрения генераторов на альтернативных видах топлива. Впрочем, стабильность и надежность систем электроснабжения такого типа пока еще уступает тем же электроустановкам.

С чем же связан возможный отказ от электроэнергии? В первую очередь это финансовые затраты. Организация электрообеспечения имеет множество достоинств даже по сравнению с традиционными источниками энергии. Тем не менее стремление к минимизации расходов заставляет технологов искать другие варианты энергетического снабжения.

www.syl.ru

Расчет автономной системы электроснабжения на солнечных батареях

Приводим простой пошаговый метод расчета автономной энергосистемы на солнечных батареях. Этот метод поможет Вам определить требования к системе и выбрать необходимые Вам комплектующие и материалы системы автономного электроснабжения.

Расчет энергосистемы состоит из нескольких этапов:

  1. Определение общей нагрузки и потребляемой мощности.
  2. Определение необходимой мощности инвертора и емкости аккумуляторной батареи.
  3. Определение необходимого количества фотоэлектрических модулей (собственно самих солнечных батарей), исходя из данных по среднестатическому количеству солнечной радиации в месте установки системы.
  4. Примерный расчет стоимости системы (и варианты при различных изготовителях)

После выполнения 4 шага, если стоимость автономной системы окажется слишком велика, можно рассмотреть различные варианты уменьшения стоимости Вашей системы электроснабжения на солнечных батареях:

  • уменьшение потребляемой мощности за счет замены существующих потребителей на энергоэффективные, с низким потребление электричества, а также исключение тепловой, "фантомной" и необязательной нагрузки (например, можно использовать холодильники, кондиционеры и т.п., работающие на газе).
  • замену нагрузки переменного тока на нагрузку постоянного тока. В этом случае можно выиграть на отсутствии потерь в инверторе (от 10 до 40%). Однако, нужно учитывать особенности построения низковольтных систем постоянного тока.
  • введение в систему электроснабжения дополнительного генератора электроэнергии - ветроустановки или дизель- или бензогенератора.
  • смириться с тем, что электроэнергия будет у Вас не всегда. И чем больше будет мощность системы отличаться от потребляемой мощности, тем более вероятны будут у Вас периоды отсутствия электроэнергии. В такие периоды, а это может быть совсем не продолжительно (1-3 недели зимой, в самые короткие дни), Вы можете сами просто немного ограничить Ваше обычное энергопотребление и все. При этом экономия на оборудовании может быть ОЧЕНЬ существенной (вплоть до 50%!)

 Можете рассмотреть самодельную ветроэлектростанцию или мини ГЭС - своими руками.

Расчет автономной Системы электроснабжения на солнечной энергии

 

Shema solnechnye batarei

 

Составьте список устройств-потребителей электроэнергии, которые Вы собираетесь питать от автономной энергосистемы. Определите потребляемую мощность во время их работы. Большинство устройств имеют маркировку, на которой указана номинальная потребляемая мощность в ваттах или киловаттах. Если указан потребляемый ток, то нужно умножить этот ток на номинальное напряжение (обычно 220 В). Перемножается мощность на время работы для определения требуемой энергии в Вт ч в неделю. Далее все эти данные суммируются для вычисления полной нагрузки переменного тока в ватт-часах в неделю .

Подсчитайте нагрузку переменного тока.Если у Вас нет такой нагрузки, то можете пропустить этот шаг и перейти к подсчету нагрузки постоянного тока.

1.1. Перечислите всю нагрузку переменного тока, ее номинальную мощность и число часов работы в неделю. Умножьте мощность на число часов работы для каждого прибора. Сложите получившиеся значения для определения суммарной потребляемой энергии переменного тока в неделю.

solnechnye batarei raschet

1.2. Далее нужно подсчитать сколько энергии постоянного тока потребуется. Для этого нужно умножить получившееся значение на коэффициент 1,2, учитывающий потери в инверторе.

1.3. Определите значение входного напряжения инвертора по характеристикам выбранного инвертора. Обычно это 12 или 24 В.

1.4. Разделите значение п.1.2 на значение п.1.3. Вы получите число Ампер-часов в неделю, требуемое для покрытия вашей нагрузки переменного тока.

Подсчитайте нагрузку постоянного тока

1.5. Запишите данные нагрузки постоянного тока :

Описание нагрузки постоянного тока Ватт X часов/неделю = Вт*ч/неделю
    X   =  
    X   =  
      Всего    

 

1.6. Определите напряжение в системе постоянного тока. Обычно это 12 или 24 В. (Как в п.1.3)

1.7. Определите требуемое количество А*ч в неделю для нагрузки постоянного тока (разделите значение п.1.5 на значение п.1.6).

1.8. Сложите значение п.1.4 и п. 1.7 для определения суммарной требуемой емкости аккумуляторной батареи. Это будет количество А*ч, потребляемых в неделю.

1.9. Разделите значение п.1.8 на 7 дней; Вы получите суточное значение потребляемых А*ч.

2. Оптимизируйте Вашу нагрузку

На этом этапе важно проанализировать Вашу нагрузку и попытаться уменьшить потребляемую мощность как можно больше. Это важно для любой системы, но особенно важно для системы электроснабжения жилого дома, так как экономия может быть очень существенной. Сначала определите большую и изменяемую нагрузку (например, насосы для воды, наружное освещение, холодильники переменного тока, стиральная машина, электронагревательные приборы и т.п) и попытайтесь исключить их из вашей системы или заменить на другие аналогичные модели, такие как приборы, работающие на газе или от постоянного тока.

Начальная стоимость приборов постоянного тока обычно выше (потому что они выпускаются не в таком массовом количестве), чем таких же приборов переменного тока, но вы избежите потерь в инверторе. Более того, зачастую приборы постоянного тока более эффективны, чем приборы переменного тока (во многих бытовых приборах, особенно электронных, переменный ток преобразуется в постоянный, что ведет к потерям энергии в блоках питания приборов).

Замените лампы накаливания на люминесцентные лампы везде, где это возможно. Люминесцентные лампы обеспечивают такой же уровень освещенности при том, что потребляют в 4-5 раз меньше электроэнергии. Срок их службы также примерно в 8 раз больше.

Если у Вас есть нагрузка, которую Вы не можете исключить, рассмотрите вариант, при котором Вы будете включать ее только в солнечные периоды, или только летом. Пересмотрите список Вашей нагрузки и пересчитайте данные.

Выберите тип аккумуляторной батареи, которую Вы будете использовать. Рекомендуются использовать герметичные необслуживаемые свинцово-кислотные аккумуляторы, которые обладают самыми лучшими эксплуатационно-экономическими параметрами.

Далее Вам нужно определить, сколько энергии Вам нужно получать от аккумуляторной батареи. Часто это определяется количеством дней, в течение которых АБ будет питать нагрузку самостоятельно без подзаряда. Дополнительно к этому параметру Вам нужно учитывать характер работы системы электроснабжения. Например, если Вы устанавливаете систему для Вашего загородного дома, который Вы посещаете только на выходные, Вам лучше установить АБ большей емкости, потому что она может заряжаться в течение всей недели, а отдавать энергию только в выходные дни. С другой стороны, если Вы добавляете фотоэлектрические модули к уже существующей системе электроснабжения на базе дизель- или бензогенератора, Ваша батарея может иметь меньшую емкость, чем расчетная, потому что этот генератор может быть включен для подзаряда АБ в любое время.

После того, как Вы определите требуемую емкость АБ, можно переходить к рассмотрению следующих очень важных параметров.

3.1. Определите максимальное число последовательных "дней без солнца" (т.е. когда солнечной энергии недостаточно для заряда АБ и работы нагрузки из-за непогоды или облачности). Вы также можете принять за этот параметр выбранное Вами количество дней, в течение которых АБ будет питать нагрузку самостоятельно без подзаряда.

3.2. Умножьте суточное потребление в А*ч (см. п.1.9 расчета потребляемой энергии выше) на количество дней, определенных в предыдущем пункте.

3.3. Задайте величину глубины допустимого разряда АБ. Учитывайте, что чем больше глубина разряда, тем быстрее Ваши АБ выйдут из строя. Мы рекомендуем значение глубины разряда 20% (не более 30%), что значит что Вы можете использовать 20% от значения номинальной емкости вашей АБ. Используйте коэффициент 0,2 (или 0,3). Ни при каких обстоятельствах разряд батареи не должен превышать 80%!

3.4. Разделите п.3.2 на п.3.3

3.5.Выберите коэффициент из таблицы, приведенной ниже, который учитывает температуру окружающей среды в помещении, где установлены АБ. Обычно это средняя температура в зимнее время. Этот коэффициент учитывает уменьшение емкости АБ при понижении температуры.

Температурный коэффициент для аккумуляторной батареи

Температура в градусах коэффициент
Фаренгейта Цельсия
80F     26.7C 1.00
70F 21.2C 1.04
60F 15.6C 1.11
50F 10.0C 1.19
40F 4.4C 1.30
30F -1.1C 1.40
20F -6.7C 1.59

 

3.6. Умножьте значение п.3.4 на коэффициент п.3.5. Вы получите общую требуемую емкость АБ.

3.7. Разделите это значение на номинальную емкость выбранной Вами аккумуляторной батареи. Округлите полученное значение до ближайшего большего целого. Это будет количество батарей, которые будут соединены параллельно.

3.8. Разделите номинальное напряжение постоянного тока системы (12, 24 или 48В) на номинальное напряжение выбранной аккумуляторной батареи (обычно 2, 6 или 12В).Округлите полученное значение до ближайшего большего целого. Вы получите значение последовательно соединенных батарей.

3.9. Умножьте значение п.3.7 на значение п.3.8. для того, чтобы подсчитать требуемое количество аккумуляторных батарей.

4. Определите количество пиковых солнце-часов в день для вашего места

Несколько факторов влияют на то, как много солнечной энергии будет принимать Ваша солнечная батарея: 

  • Когда будет использоваться система? Летом? Зимой? Круглый год?
  • Типичные погодные условия вашей местности
  • Будет ли система ориентироваться на солнце
  • Расположение и угол наклона фотоэлектрических модулей 

Для определения среднемесячного прихода солнечной радиации Вы можете воспользоваться таблицей прихода солнечной радиации для некоторых городов России.

Месячные и годовые суммы суммарной солнечной радиации, кВт*ч/м2

solnechnye batarei

*для справки: при ярком солнце мощность солнечного излучения - 1000 Вт/м2, при темной облачности может быть и 50 Вт/м2

Выработка электроэнергии солнечной фотоэлектрической батареей (СБ) зависит от угла падения солнечных лучей на СБ. Максимум бывает при угле 90 градусов. При отклонении от этого угла все большее количество лучей отражается, а не поглощается СБ.

Зимой приход радиации значительно меньше из-за того, что дни короче, облачных дней больше, Солнце стоит ниже на небосклоне. Если Вы используете Вашу систему только летом, используйте летние значения, если круглый год, используете значения для зимы. Для надежного электроснабжения выбирайте из среднемесячных значений наименьшее для периода, в течение которого будет использоваться ФЭС.

Выбранное среднемесячное значение для худшего месяца нужно разделить на число дней в месяце. Вы получите среднемесячное количество число пиковых солнце-часов, которое будет использоваться для расчета Вашей СБ.

Далее необходимо определить общее количество модулей, необходимых для вашей системы.

Ток в точке максимальной мощности Impp может быть определен из спецификаций модулей. Вы также можете определить Imppподелив номинальную мощность модуля на напряжение в точке максимальной мощности Umpp (обычно 17 - 17.5 В для 12 - вольтового модуля).

5.1. Умножьте значение п. 1.9 на коэффициент 1.2 для учета потерь на заряд-разряд АБ

5.2. Разделите полученное значение на среднее число пиковых солнце-часов в вашей местности. Вы получите ток, который должна генерировать СБ

5.3. Для определения числа модулей, соединенных параллельно разделите значение п. 5.2 на Impp одного модуля. Округлите полученное число до ближайшего большего целого.

5.4. Для определения числа модулей, соединенных последовательно, разделите напряжение постоянного тока системы (обычно 12, 24, 48 В) на номинальное напряжение модуля (обычно 12 или 24 В).

5.5. Общее количество требуемых фотоэлектрических модулей равно произведению значений п. 5.3 и п. 5.4.

Для расчета стоимости фотоэлектрической системы электроснабжения нужно сложить стоимости СБ, АБ, инвертора, контроллера заряда АБ и соединительной арматуры (провода, выключатели, предохранители и т.п.)

Стоимость солнечной батареи равна произведению значения п.5.5 на стоимость одного модуля. Стоимость аккумуляторной батареи равна произведению значения п.3.9 на стоимость одной аккумуляторной батареи. Стоимость инвертора зависит от его мощности и типа. Стоимость соединительной арматуры можно принять примерно равной 0,1-1% от стоимости системы.

Пример расчета автономной системы электроснабжения на фотоэлементах.

solnechnye batarei 1

solnechnye batarei 2

solnechnye batarei 3

(*Цены приведены для примера и могут сильно отличаться у разных производителей) 

Основываясь на данных расчета Вам необходимо выбрать основные компоненты автономной энергосистемы на солнечных батареях.

Это: 

  • Контроллер заряда
  • Инвертор
  • Соединительные провода
  • Предохранители, переключатели и разъемы
  • Измерители и индикаторы
  • Инструмент для монтажа
  • Резервный генератор (не обязательно)

 

Выбор оборудования

raschet solnechnye batarei 1

Панели фотоэлементов

При подборе панелей помимо их мощности следует учитывать три фактора — их геометрию, номинальное выходное напряжение и тип фотоэлементов.

Выбор размеров панели

Геометрия определяется конкретными условиями установки, и здесь трудно дать общие рекомендации кроме одной — если у вас есть возможность выбора между большой панелью и несколькими маленькими, лучше взять большую — более эффективно используется общая площадь и будет меньше внешних соединений, а значит,будет выше надёжность. Размеры готовых панелей не слишком велики и не превысят полтора-два квадратных метра при номинальной мощности до 200-250 Вт. Панели небольших размеров (возможно, на меньшее номинальное напряжение) их следует использовать только там, где невозможно установить более крупные панели.

Для достижения нужных значений номинального напряжения и номинальной мощности панели можно объединять в последовательные сборки, которые затем коммутируются параллельно — аналогично тому, как коммутируется банк аккумуляторов. Как и в случае аккумуляторов, в одной сборке следует использовать только однотипные панели.

Обычно панели заводского изготовления имеют прямоугольную форму с соотношением сторон 1:2 или близким к нему. Поэтому если надо монтировать их вплотную в несколько рядов, то их можно размещать «стоя» (длинной стороной вертикально) или «лёжа на боку» (длинной стороной горизонтально). Возникает вопрос — какую ориентацию предпочесть? Ответ — ту, при которой во время движения Солнца минимум панелей будут испытывать полутень, так как даже один затенённый элемент резко снижает выработку всей панели. Например, если в предполагаемом месте установки возможно наиболее вероятно вертикальное смещение границы затенения (от конька соседской крыши, от высокого глухого длинного забора, от полосы кустарника, от верхушек близкого леса и пр.), то панели лучше располагать «лёжа на боку». Если тень в основном будет перемещаться по горизонтали от одной боковой стороны к другой (скажем, тени от угла высокого дома, от толстого столба, от высокого дерева), то панели будем располагать «стоя». Дополнительно можно заметить, что при вертикальном расположении панелей меньше число горизонтальных стыков, что способствует лучшему смыванию грязи и сходу снега с панелей, поэтому панели, которые ничто не будет затенять, лучше монтировать «стоя». Но если возможно затенение панелей, то приоритетно преимущественное направление затенения и выхода из тени.

Выбор напряжения солнечной батареи

С напряжением тоже всё просто — лучше выбирать 24-вольтовые панели, поскольку рабочие токи у них вдвое меньше, чем у 12-вольтовых той же мощности. Панели одинаковой мощности одного и того же производителя, рассчитанные на разное напряжение, обычно различаются лишь внутренней коммутацией фотоэлементов. Панели с номинальным напряжением выше 24 В встречаются редко и обычно собираются из более низковольтных. 12-вольтовые панели, на мой взгляд, оправданы лишь в двух случаях — для маломощных систем, где 12 вольт являются рабочим напряжением инвертора, а также если по архитектурным или конструктивным соображениям необходимо использовать панели малого размера, для которых не существует вариантов на 24 В.

При индивидуальной сборке панелей из отдельных фотоэлементов не нужно забывать о защитных диодах в каждой цепочке для предотвращения протекания обратного тока при неравномерной засветке. В противном случае мощность, выработанная освещёнными секциями панели, вместо полезной нагрузки будет выделяться на затенённом фотоэлементе, а это чревато его перегревом и полным выходом из строя (неосвещённый фотоэлемент в этой ситуации окажется открытым диодом). Допускаемый прямой ток защитных диодов должен быть больше, чем ток короткого(коротыша) замыкания защищаемой цепочки фотоэлементов при максимальной освещённости.

Типы фотоэлементов

Наконец, надо выбрать тип фотоэлементов. В настоящее время наиболее часто предлагаются (распространенные) фотоэлементы на монокристаллическом или поликристаллическом кремнии. Монокристаллический кремний обычно имеет КПД в районе 16-18%, а поликристаллический — 12-14%, зато он несколько дешевле. Однако в готовых панелях цена за ватт (т.е. в пересчёте на вырабатываемую мощность) получается почти одинаковой, и монокристаллический кремний может оказаться даже выгодней. По такому параметру, как степень и скорость деградации, разницы между ними практически да и фактически нет. В связи с этим выбор в сторону монокристаллического кремния очевиден — при равной мощности панели из него компактнее. Кроме того, при снижении освещённости монокристаллический кремний обеспечивает номинальное напряжение выше и дольше, чем поликристаллический, а это позволяет получать хоть какую-то энергию даже в очень пасмурную погоду и в лёгких сумерках. Зато у поликристаллического кремния обычно ниже напряжение холостого хода (у монокристаллического оно может превышать номинал вдвое), ниже и напряжение максимальной мощности. Но если подключать панель к инвертору и аккумулятору не напрямую, а через современный контроллер, то это не имеет существенного значения.

Выбор размещения и суммарной мощности панелей

Очевидно, что обычно нет смысла выбирать суммарную мощность панелей фотопреобразователей больше мощности инвертора. Тем не менее, такое превышение может быть оправдано при наличии мощной постоянной нагрузки и мощного блока аккумуляторов или в расчёте на длительные периоды пасмурной погоды.

Ещё одним интересным вариантом, когда суммарная мощность панелей может существенно превосходить как мощность инвертора, так и мощность, нужную для зарядки аккумуляторов, является их размещение на противоположных стенах коттеджа или на очень крутых скатах крыши (наклон ската не менее 45°), если они ориентированы на запад и восток — тогда мощность каждого поля солнечных батарей (восточного и западного) может достигать 80% от полной требуемой мощности системы, а мощность фотопанелей, подключённых к одному контроллеру, может превышать его номинальную мощность почти в полтора раза! Дело в том, что прямые лучи(солнца) не могут одновременно освещать две противоположные стены или два противоположных крутых ската крыши, а мощность, выдоваемых батареей при отсутствии прямой засветки, падает раз в 10 (во избежание перегрузки контроллера берём её с двух-кратным запасом, отсюда и получается цифра 80%, а не 90%). Да, такая «сплит-система» будет дороже, чем «моноблочная» система с той же рабочей мощностью, но с единым(общем) полем фото-панелей, ориентированным на юг, — ведь панелей надо больше! В чём же преимущество «сплит-системы» над «моноблочной»?

В период длинных дней, когда Солнце всходит на востоке или даже северо-востоке, а заходит на западе или северо-западе, одно из полей «сплит-системы» всегда будет освещено Солнцем и потому будет выдавать хорошую мощность. Лишь в полдень лучи солнце будут скользить по обоим полям панелей, но в это время солнечный свет максимален, и воспринимаемое обоими панелями излучение весьма существенно. В то же время ориентированный на юг «моноблок» даёт мощный максимум выработки в середине дня, но утром или вечером его выработка обусловлена лишь рассеянымсветом а значит минимальна. Между тем именно в это время хорошо бы зарядить аккумуляторы после ночи или на ночь! В пасмурную погоду облака рассеивают свет, и его одинаково успешно воспринимают оба поля фотопанелей, так что общая выработка «сплит-системы» превосходит «моноблок» прямо пропорционально суммарной мощности всех панелей (но сама выработка достаточно мала, что исключает опасность перегрузки контроллера заряда). Лишь в короткие солнечные зимние дни ориентированный на юг «моноблок» по дневной выработке будет превосходить эту «сплит-систему». Но на большей части территории России зима пасмурная, а в пасмурные дни важна суммарная мощность всех фотопанелей, так что и здесь «моноблок» проигрывает сплит-системе. Особенно очень эффективно такое размещение фото-панелей в южных районах, где меньше разность между летними и зимними днями и даже зимой солнце поднимается очень высоко и достаточно далеко заходит на восток и запад.

Если же дом ориентирован по сторонам света не стенами, а углами, то можно разместить поля фотопанелей не на противоположные стороны (восток и запад), а на смежные юго-восток и юго-запад, — тогда и зимой даже в нашей Средней полосе эта система будет вне конкуренции, хотя во избежание перегрузки контроллеров «избыток» мощности, возможно, придётся снизить до 70%, а то и до 50% (точная цифра определяется конкретными условиями размещения панелей). Наконец, можно попытаться ориентировать фотопанели на все три «солнечные» стороны света — восток, юг и запад, — но такое лучше предусматривать на стадии проектирования дома и «посадки» его на местность.

При подсоединение панелей к контроллеру нужно следить, чтобы их суммарный максимальный ток не превышал 80% .. 90% от номинального тока контроллера. Пример, для 10-амперного ШИМ-контроллера суммарный ток должен составлять не более 8 .. 9 А. Запас необходим для того, чтобы контроллер мог выдержать выработку, например, в ясный зимний день, когда белый снег, хорошо отражающий свет, способствует перезасветке фотоэлементов по сравнению с расчётной, а умеренный мороз немного повышает их КПД. Таким образом, к одному 10-амперному контроллеру с ШИМ можно подключить панели на 24 В суммарной мощностью 300 Вт, а на 12 В — всего 150 Вт. Для контроллеров с MPPT, превращающих «излишек» напряжения в дополнительный ток, необходимый запас по номинальному току может быть ещё больше и суммарный ток батарей может быть ограничен вплоть до 60% .. 75% от тока, отдаваемого контроллером в нагрузку, то есть мощность панелей, подключаемых к 10-амперному контроллеру с MPPT, не должна превышать 220 .. 240 Вт при 24 В и вдвое меньше при 12 В. Обычно заводы производители контроллеров указывают допустимую суммарную мощность или номинальный суммарный ток подключаемых к ним панелей фотоэлементов.

bazila.net

5 Системы электроснабжения

5 Система электроснабжения

Система электроснабжения – это совокупность электроустановок, предназначенных для обеспечения потребителей электрической энергией.

Система электроснабжения предприятий состоит из электрических сетей напряжением до 1000 В и выше,преобразовательных устройств, дополнительных автономных источников питания и электроприемников. Она предназначена для обеспечения потребителей электрической энергией в необходимом количестве и соответствующего качества в виде однофазного или трехфазного переменного тока различных частот и напряжений и постоянного тока.

Режимом работы системы электроснабжения называется некоторое ее состояние, определяемое значениями напряжений, нагрузки, токов, частоты и других физических переменных величин, характеризующих процесс получения и преобразования энергии и называемых параметрами режима.

Различают следующие режимы работы: 1) нормальный установившийся режим с параметрами, находящимися в нормированных пределах; 2) нормальный переходный режим, связанный с эксплутационными изменениями схемы электроснабжения предприятия или схемы питающей энергосистемы; 3) аварийный переходный режим с резким изменением параметров вследствие аварийного изменения в схеме питающей энергосистемы или в схеме электроснабжения предприятия; 4) послеаварийный установившийся режим, возникающий после аварийного отключения части элементов схемы энергосистемы или схемы электроснабжения предприятия.

Применяемые в схемах электроснабжения электрические аппараты выполняют следующие основные функции: защиту электроустановок от токов короткого замыкания и перегрузок, управление электроприемниками, автоматическую работу элементов электроустановок. Защита электроустановок от токов короткого замыкания (КЗ) может осуществляться плавкими предохранителями и автоматическими выключателями. Защита от перегрузок в электроустановках осуществляется при помощи тепловых реле, встроенных в магнитные пускатели и контакторы, отрегулированных на расчетный ток срабатывания. Управление электроприемниками осуществляется коммутационными аппаратами: автоматическими выключателями, контакторами и магнитными пускателями.

Автоматическая работа элементов электроустановок обеспечивается релейно-контакторной аппаратурой или логическими элементами, которые быстро реагируют на изменение режима работы и подают команду на отключение или включение соответствующих цепей. Например, при коротком замыкании, когда ток увеличивается в десятки и сотни раз, необходимо немедленно отключить поврежденный участок, чтобы не нарушить работу смежных неповрежденных частей системы электроснабжения. Такая команда может быть подана только автоматическим устройством – электромагнитным реле, реагирующим на изменение тока и замыкающим цепи управления соответствующих выключателей. Автоматическое отключение элементов системы при коротком замыкании должно быть избирательным (селективным). Избирательность действия защитных аппаратов можно обеспечить, например, за счет соответствующего выбора времени срабатывания защит смежных участков цепи.

При токах короткого замыкания за время действия защитной аппаратуры в электрических аппаратах выделяется большое количество тепла. Поэтому аппараты должны обладать термической стойкостью, т.е. способностью выдерживать в течение заданного промежутка времени ток короткого замыкания без нарушения работоспособности аппарата. Кроме того, при замыканиях возникают значительные электродинамические силы, которые могут повредить электрооборудование. Способность электрооборудования выдерживать механические нагрузки при токах КЗ называется электродинамической стойкостью. Правильный выбор коммутационной и защитной аппаратуры, учитывающий как нормальные, так и аварийные режимы работы, позволяет наряду с другими мероприятиями повысить надежную работу электрооборудования предприятий связи. Для удобства практического применения в пособии приводятся таблицы с основными параметрами коммутационного и защитного оборудования напряжением до 1000 В и даются примеры электротехнических расчетов.

Cистемы распределения энергии на судах.

Судовые электрические сети представляют совокупность устройств, с помощью которых осуществляется передача электроэнергии от источников к приёмникам. В состав этих устройств входят кабель, провода, электрораспределительные устройства и арматура (щиты, соединительные ящики, крестовые коробки, штепсельные разъёмы и т.п.) Судовые электрические сети подразделяются на силовые, аварийные и сети приёмников.

Силовые сети предназначены для распределения электроэнергии от ГРЩ основной электростанции до преобразователей или приёмников электроэнергии. На судах внутреннего плавания распространение получили радиальная, магистральная и смешанная системы.

При радиальной или фидерной системе канализации мощные и обычно ответственные приёмники получают питание непосредственно от ГРЩ, а остальные от электрораспределительных щитов по отдельным фидерам. РРРФ установил перечень приёмников, которые должны получать питание по отдельным фидерам:

- ЭП рулевого устройства;

- якорного устройства;

- пожарных насосов;

- щиты основного освещения;

- и т. д.

Преимущества данной системы канализации электроэнергии – надёжность работы и независимость приёмников один от другого. Недостатки – повышенный расход кабеля, значительный объём электромонтажных работ, относительно большое число проходов через переборки.

При магистральной системе канализации электрической энергии все приёмники получают питание по одной или нескольким магистралям через включенные в них щиты или магистральные коробки.

Преимущества такой системы – меньший расход кабеля, меньший объём электромонтажных работ и минимальное число проходов через переборки. Недостатки – меньшая надёжность и взаимная зависимость приёмников одной магистрали. Магистральная система применяется для питания неответственных приёмников.

По смешанной магистрально-фидерной системе одна часть приёмников получает питание по фидерам, а другая – по магистралям. Эта система позволяет учесть достоинства и недостатки вышеуказанных систем и обеспечить достаточную надёжность работы при уменьшении расхода кабеля объёма электромонтажных работ.

Аварийные электрические сети служат для подачи и распределения электроэнергии от аварийного или кратковременного аварийного источника до аварийных приёмников, перечень которых оговаривается РРРФ.

Электрическая сеть приёмников предназначается для распределения электроэнергии от определённого электрораспределительного щита или преобразователя до одноимённых приёмников.

Электрические сети различаются так же по роду тока, значению напряжения, числу проводов.

По роду тока – постоянного и переменного токов.

По значению напряжения – до 1000 В и свыше 1000 В

По числу проводов постоянного тока:

  1. Однопроводная система.

Позволяет экономить до 50% кабелей. РРРФ разрешает применять однопроводную систему при напряжении не выше 24 В и только после специального рассмотрения.

  1. Двухпроводная изолированная система.

Требует большого расхода кабелей для её реализации. РРРФ как и другие органы надзора, разрешают применение двухпроводной системы распределения без всяких ограничений.

  1. Трёхпроводная изолированная система.

По сравнению с двухпроводной позволяет иметь на судне два значения напряжения, отличающиеся одно от другого в 2 раза.

По числу проводов переменного тока:

  1. Однофазная двухпроводная изолированная система.

Обычно используется как часть трёхфазной системы и служит для передачи энергии однофазным приёмникам. Может использоваться самостоятельно для распределения электрической энергии для переносного освещения 12 В, переносного инструмента и т. д.

  1. Трёхфазная трёхпроводная изолированная система.

Применяется для питания трёх- и однофазных приёмников, когда номинальные напряжения у них одинаковы. РРРФ допускается к применению без ограничений.

  1. Трёхфазная четырёхпроводная изолированная система.

Для питания трёх- и однофазных приёмников в том случае, когда номинальное напряжение однофазных приёмников в раз меньше номинального напряжения трёхфазных, например, 220 и 380 В. Руководящий технический материал требует, чтобы при этой системе у генератора отключались все четыре провода.

  1. Трёхфазная четырёхпроводная неизолированная система.

С нейтральной точкой источника, электрически соединённой с корпусом судна. В этой системе нарушение изоляции в какой-либо фазе приводит к короткому замыканию, срабатыванию аппаратуры защиты и отключению повреждённого участка. РРРФ разрешается только для судов, у которых основным источником электроэнергии является береговая энергосистема.

studfiles.net

Мощность электрической сети

Мощность электрической сети Чтобы определить сущность понятия мощности электрической сети, необходимо дать обозначения мощности электрического тока как такового.

Под мощностью электрического тока считают ту количественную меру, которой он непосредственно и характеризуется. Определить ее можно сложив основные параметры — силу тока и его напряжение. Обозначается данное выражение мощности тока в Ваттах и измеряется специальным прибором – Ваттметром.

Как определить мощность электрической сети

Мощность электрической сети, внешней или внутренней, определяется этими соотношениями — мощностью тока и временем произведенной работы за определенную единицу времени. Работы современных энергосистем разрешают не только генерировать, но и передавать на расстояние практически любые мощности, вопрос лишь в непосредственной нуждаемости в них и в необходимых ресурсах для производства электрической энергии. Так рядовой потребитель обычно использует мощность, которую ему передает поставщик электроэнергии, в размере от 5 до 10Кв. Как правило, данной мощности потребителю с лихвой хватает для своего жизнеобеспечения и для работы всех необходимых электроприборов бытовой техники. Понятно, что энергонасыщенному производству для эффективной работы нужны будут совсем иные значения мощностей, на сотни порядков выше.

От чего зависит мощность электрической сети?

Смена мощностей электрической сети зависит и от внешних условий их поступления, и от установки ограничительных устройств (автоматов, полуавтоматов), которые регулируют поступление емкостных мощностей к источнику потребления. Делаться это может на разных уровнях, от бытового щитка в доме до центральных устройств электрораспределения.

Мощность электрической сети можно определить специальным прибором или рассчитать посредством математических вычислений (если знать параметры силы тока и напряжения).

Для измерения мощности прибором, нужно подключить тестер к источнику тока, настроить его именно на получение нужных данных, ведь тестер работает как в режиме ваттметра, так в режиме и амперметра. Поэтому можно узнать мощность сети и иным способом. Измерив силу тока и зная рабочее напряжение сети 220В, можно умножить данные значения и получить нужную сумму в Ватах.

Пропуск определенного объема мощностей через электрическую сеть требуют применения в обустройстве электроснабжения, комплектации энергосети материалами, которые будут соответствовать требованиям необходимых номинальных значений.

pue8.ru

Система электроснабжения - это... Что такое Система электроснабжения?

Система электроснабжения — совокупность источников и систем преобразования, передачи и распределения электрической энергии.

Система электроснабжения не включает в себя потребителей (или приёмников электроэнергии).

К системам электроснабжения (СЭС) предъявляются следующие основные требования:

  1. Надёжность системы и бесперебойность электроснабжения потребителей.
  2. Качество электроэнергии на вводе к потребителю.
  3. Безопасность обслуживания элементов СЭС.
  4. Унификация (модульность, стандартизация).
  5. Экономичность, включает в себя такие понятия, как энергоэффективность и энергосбережение.
  6. Экологичность.
  7. Эргономичность.

Конфигурация СЭС — схема расположения входящих в СЭС источников электроэнергии, устройств распределения, передачи, преобразования электроэнергии (электростанции, линии электропередачи, трансформаторные подстанции, распределительные устройства и т. д.).

Классификация СЭС

  1. По типу источников электроэнергии — электрохимические, дизель-электрические, атомные и т. д.
  2. По конфигурации — централизованные, децентрализованные, комбинированные.
  3. По роду и частоте тока — постоянного тока, переменного тока 50 Гц, переменного тока 400 Гц и др.
  4. По числу фаз — одно-, двух-, трёх-, многофазные.
  5. По режиму нейтрали — с изолированной нейтралью, глухозаземлённой нейтралью, компенсированной нейтралью и т. д.
  6. По надёжности электроснабжения — обеспечение потребителей 1 (1А, 1Б, 1В), 2, 3 категорий надёжности, обеспечение смешанных потребителей.
  7. По назначению — системы автономного, резервного, аварийного, дежурного электроснабжения.
  8. По степени мобильности — стационарные, мобильные, возимые, носимые.
  9. По принадлежности к основному потребителю — СЭС автомобиля, танка, вертолёта, спутника и т. д.

Состав СЭС

Система электроснабжения может включать в себя:

источники электроэнергии систему передачи электроэнергии систему преобразования электроэнергии систему распределения электроэнергии систему релейной защиты и автоматики
  • например: защита от перенапряжения, грозозащита, защита от короткого замыкания, дуговая защита
систему управления и сигнализации
  • например: система диспетчерской связи, автоматизированная система контроля и управления энергией (АСКиУЭ), автоматизированная система коммерческого учёта энергией (АСКУЭ)
систему эксплуатации
  • например: технологические карты, графики нагрузки, графики регламентного технологического обслуживания
систему собственных нужд
  • например: системы обогрева, освещения, вентиляции в зданиях и сооружениях, где размещены элементы СЭС
систему гарантированного электроснабжения наиболее ответственных потребителей

См. также

Литература

  • Правила устройства электроустановок
  • Правила технической эксплуатации электроустановок потребителей
  • Справочник по электроснабжению и оборудованию; под ред. А. А. Федорова
  • Системы электроснабжения, часть 1, 2 РВСН; А. А. Гуров
  • Гуревич В. И. Устройства электропитания релейной защиты: проблемы и решения., М. Инфра-инженерия, 2012, 288 с.

dic.academic.ru


Каталог товаров
    .