Рис. 1.131.5. Электрическая энергия и электрическая мощность. Электрическая энергия электрическая мощность
1.5. Электрическая энергия и электрическая мощность
1.5.1. Электрическая энергия
Из закона Ома (1.9)
.
Учитывая, что , запишем
. (1.13)
Умножим левую и правую части уравнения на
, (1.14)
где – работа (энергия) источника.
Так как , то(1.15)
где – энергия, передаваемая потребителю;– энергия, расходуемая на потери во внутреннем сопротивлении источника.
Следует отметить, что работа и энергия – понятия равноценные. Энергия – способность источника совершать работу. Чтобы измерить энергию источника, надо измерить работу, которую он совершает, расходуя эту энергию.
Размерность энергии В·А·с=Дж.
На практике за единицу энергии принимают 1 кВт·ч= 3600000Дж.
1.5.2. Электрическая мощность
Электрическая мощность – это физическая величина, характеризующая скорость передачи или преобразования электрической энергии
(1.16)
Размерность мощности – ватт (вт). 1вт– мощность, при которой за одну секунду совершается работа в один джоуль.
Мощность, отдаваемая (полезная) источником энергии потребителю (приемнику)
(1.17)
Потери мощности во внутреннем сопротивлении
. (1.18)
При работе источника на нагрузку в виде сопротивления преобразование электрической энергии в электрическую мощность выражают с помощью закона Джоуля-Ленца. Мощность, выделяемая (или потребляемая) в сопротивлении R:
.
1.5.3. Кпд источника энергии
Отношение мощности приемника (полезной мощности) к мощности источника энергииназывается его коэффициентом полезного действия (КПД):
(1.19)
Из последней формулы видно, что чем меньше внутреннее сопротивление , тем выше КПД источника. Определим, при каком условии источник энергии развивает полезную максимальную мощность. Преобразуем формулу (1.17), учитывая (1.9)
. (1.20)
Исследуем уравнение (1.20) на максимум
(1.21)
отсюда .
Тогда формула (1.20) приобретает вид
. (1.22)
Таким образом, источник ЭДС развивает максимальную полезную мощность, когда внешнее сопротивление равно внутреннему сопротивлению источника.
Однако такой режим является невыгодным, так как в этом случае 50 % энергии теряется во внутреннем сопротивлении источника
(1.23)
Режим цепи, при котором внешнее сопротивление цепи равно внутреннему сопротивлению источника энергии, называется режимом согласованной нагрузки. Такой режим используется в телемеханике, электросвязи и автоматике, где передаются малые мощности. Мощные источники, как правило, работают на приемник сопротивлением = (10...20) , обеспечивая максимальный КПД (более 95 %).
1.6. Закон Ома для участка цепи, содержащего эдс
Рассмотрим участок цепи, содержащий сопротивление и ЭДС (рис. 1.14).
Рис. 1.14
Разность потенциалов между точками и равна напряжению
.
Выразим потенциал точки через потенциал точки. С этой целью сначала выражаем потенциал точки через потенциал точки, затем потенциал точки– через потенциал точки(учитывая при этом, что ток протекает от более высокого потенциала к более низкому и направление действия ЭДС указывает на возрастание потенциала).
Для схемы на рис. 1.14 а
или
.
Тогда
. (1.24)
Для схемы на рис. 1.14 б:
или
.
Тогда
. (1.25)
Из уравнения (1.24) для схемы (рис. 1.14 а)
. (1.26)
Из уравнения (1.25) для схемы (рис. 1.14 б)
. (1.27)
В общем случае
. (1.28)
Последнее уравнение выражает в математической форме закон Ома для участка цепи, содержащего ЭДС.
studfiles.net
Электрическая энергия, её особенности, область применения.
Электрическая энергия — единая мера любых форм движения материи. Энергия, направленная на движение электрических зарядов.
Преимущества – а) легко передается на большие расстояния;
- б) универсальная (легко преобразуется в другие виды энергии)
- в) Техн. процессы на электроэнергии легко автоматизируются.
Электрическая энергия используется почти повсеместно. Большая часть производимой электроэнергии приходится на промышленность. Так же на транспорт, сельское и коммунальное хозяйства.
Многие железнодорожные линии перешли на электрическую тягу. Освещение жилищ, улиц городов, производственные и бытовые нужды сел и деревень - все это тоже является крупным потребителем электроэнергии.
Электрическая цепь, назначения основных элементов.
Электрическая цепь - совокупность устройств, предназначенных для прохождения электрического тока.
Цепь образуется источниками энергии (генераторами), потребителями энергии (нагрузками), системами передачи энергии (проводами).
Электрическая цепь состоит из 3 основных элементов: - источник
-провода
-приёмник .
1) Источник – преобразует первичный вид энергии во вторичный ( в электрическую энергию) .
Примеры источника: батарея, генератор, термопары.
2) Провода – соединительная роль.
3) Приёмник – служит для обратного преобразования электрической энергии в нужный нам вид энергии.
Примеры приёмника: лампочка, нагревательный элемент (плитка нагревательная), двигатель.
Анализ простых электрических цепей методом эквивалентного сопротивления.
В нём схема
Преобразование треугольника в эквивалентную звезду при расчёте мостовых схем.
Преобразуется пассивная часть электрической цепи (приёмники).
Звезда - соединение трех. проводников, имеющих общий узел и вид трёхлучевой звезды.
Треугольник - три сопр., образовывающие собой стороны треугольника.
Режимы работы электрической цепи.
1) Режим короткого замыкания. (КЗ)
В режиме короткого замыкания источник питания замкнут накоротко. Режим является аварийным. Ток короткого замыкания КЗ во много раз превышает значение номинального тока. Режим не используется при сварочных работах.
Rн = 0 I = max КПД стремится к 0 Рн=0
2) Режим согласованной нагрузки
Свойства электрической цепи – наибольшая мощность нагрузки развивается источником, когда сопротивление нагрузки равно внутреннему сопротивлению источника. Используется в системах автоматики, радио, ТВ.
Rн=Rв КПД=50% Рн стр. к максимуму
3) Режим холостого хода (Х Х)
В режиме холостого хода источник питания отсоединен от нагрузки и работает вхолостую. Сопротивление внешнего участка цепи и ток равен 0.
Rн = ∞ КПД=100% Рн прибл. = 0
4) Режим номинальный (паспортный)
В силовых (?) цепях, когда большие токи используют паспортный режим, он задаётся паспортными данными приёмника.
Сложная цепь постоянного тока. Применение законов Кирхгофа для расчёта цепи.
Сложная цепь – разветвлённая цепь с несколькими источниками питания.
Узел - место или точка цепи, где сходится более 3 ветвей.
Ветвь - участок цепи, заключённый между 2-мя узлами, на элементах которых сила токов имеет одно и то же значение.
Контур - замкнутая часть цепи, состоящая из нескольких ветвей.
Расчёт цепи с помощью 1-ого и 2-ого закона Кирхгофа.
Первый закон Кирхгофа
В любом узле электрической цепи алгебраическая сумма токов равна нулю
,
где m – число ветвей подключенных к узлу.
При записи уравнений по первому закону Кирхгофа токи, направленные к узлу, берут со знаком «плюс», а токи, направленные от узла – со знаком «минус».
Второй закон Кирхгофа
В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках.
,
где n – число источников ЭДС в контуре; m – число элементов с сопротивлением Rk в контуре; Uk=RkIk – напряжение или падение напряжения на k-м элементе контура.
Если в электрической цепи включены источники напряжений, то второй закон Кирхгофа формулируется в следующем виде: алгебраическая сумма напряжений на всех элементах контура, включая источники ЭДС равна нулю
.
Порядок расчёта цепи по з. Кирхгофа :
1) Задаётся условными направлениями тока на всех ветвях эл. цепи.
2) Составляем ур-е по 1-му з. Кирхгофа (причём число ур-й должно быть на 1-цу меньше числа узлов эл. цепи).
3) Недостающие ур-я составляются по 2-му з. Кирхгофа (общее число ур-ий равно числу ветвей эл. цепи).
4) Решаем с-му ур-й, определяем все неизвестные токи.
5) Зная токи, легко рассчитать мощность на нашем участке (если при расчёте ток со знаком "-", значит действительное направление не совпадает с условно выбранным на чертеже)
studfiles.net
Электрическая энергия - это... Что такое Электрическая энергия?
Электромагнитная энергия — термин, под которым подразумевается энергия, заключенная в электромагнитном поле. Сюда же относятся частные случаи чистого электрического поля и чистого магнитного поля. Эта энергия равна механической работе, совершаемой при перемещении зарядов и проводников в электрическом и магнитном полях.
Работа электрического поля по перемещению заряда
Понятие работы A электрического поля E по перемещению заряда Q вводится в полном соответствии с определением механической работы:
где — разность потенциалов (также употребляется термин напряжение)
Во многих задачах рассматривается непрерывный перенос заряда в течение некоторого времени между точками с заданной разностью потенциалов U(t), в таком случае формула для работы следует переписать следующим образом:
где — сила тока
Мощность электрического тока в цепи
Мощность W электрического тока для участка цепи определяется обычным образом, как производная от работы A по времени, то есть выражением:
— это наиболее общее выражение для мощности в электрической цепи.
С учётом закона Ома :
Электрическую мощность, выделяемую на сопротивлении R можно выразить как через ток: ,
так и через напряжение:
Соответственно, работа (выделившаяся теплота) является интегралом мощности по времени:
Энергия электрического и магнитного полей
Для электрического и магнитного полей их энергия пропорциональна квадрату напряжённости поля. Следует отметить, что, строго говоря, термин энергия электромагнитного поля является не вполне корректным. Вычисление полной энергии электрического поля даже одного электрона приводит к значению равному бесконечности, поскольку соответствующий интеграл (см. ниже) расходится. Бесконечная энергия поля вполне конечного электрона составляет одну из теоретических проблем классической электродинамики. Вместо него в физике обычно используют понятие плотности энергии электромагнитного поля (в определенной точке пространства). Общая энергия поля равняется интегралу плотности энергии по всему пространству.
Плотность энергии электромагнитного поля является суммой плотностей энергий электрического и магнитного полей.
В системе СИ:
где E — напряжённость электрического поля, H — напряжённость магнитного поля, — электрическая постоянная, и — магнитная постоянная. Иногда для констант и — используют термины диэлектрическая проницаемость и магнитная проницаемость вакуума, — которые являются крайне неудачными, и сейчас почти не употребляются.
Потоки энергии электромагнитного поля
Для электромагнитной волны плотность потока энергии определяется вектором Пойнтинга S (в российской научной традиции — вектор Умова-Пойнтинга).
В системе СИ вектор Пойнтинга равен: ,
— векторному произведению напряжённостей электрического и магнитного полей, и направлен перпендикулярно векторам E и H. Это естественным образом согласуется со свойством поперечности электромагнитных волн.
Вместе с тем, формула для плотности потока энергии может быть обобщена для случая стационарных электрических и магнитных полей, и имеет совершенно тот же вид: .
Сам факт существования потоков энергии в постоянных электрических и магнтных полях, на первый взгляд, выглядит очень странно, но это не приводит к каким-либо парадоксам; более того, такие потоки обнаруживаются в эксперименте.
См. также
dal.academic.ru
Электрическая мощность — Википедия
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Единицей измерения в Международной системе единиц (СИ) является ватт (русское обозначение: Вт, международное: W).
Мгновенная электрическая мощность
Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A{\displaystyle A} в точку B{\displaystyle B}, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки A{\displaystyle A} в точку B{\displaystyle B}. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения:
U{\displaystyle U} — напряжение на участке A−B{\displaystyle A-B} (принимаем его постоянным на интервале Δt{\displaystyle \Delta t}), Q{\displaystyle Q} — количество зарядов, прошедших от A{\displaystyle A} к B{\displaystyle B} за время Δt{\displaystyle \Delta t}, A{\displaystyle A} — работа, совершённая зарядом Q{\displaystyle Q} при движении по участку A−B{\displaystyle A-B}, P{\displaystyle P} — мощность.Записывая вышеприведённые рассуждения, получаем:
PA−B=AΔt{\displaystyle P_{A-B}={\frac {A}{\Delta t}}}Для единичного заряда на участке A−B{\displaystyle A-B}:
Pe(A−B)=UΔt{\displaystyle P_{e(A-B)}={\frac {U}{\Delta t}}}Для всех зарядов:
PA−B=UΔt⋅Q=U⋅QΔt{\displaystyle P_{A-B}={\frac {U}{\Delta t}}\cdot {Q}={U}\cdot {\frac {Q}{\Delta t}}}Поскольку ток есть электрический заряд, протекающий по проводнику в единицу времени, то есть I=QΔt{\displaystyle I={\frac {Q}{\Delta t}}} по определению, в результате получаем:
PA−B=U⋅I{\displaystyle P_{A-B}=U\cdot I}.Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:
мгновенная электрическая мощность p(t){\displaystyle p(t)}, выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t){\displaystyle u(t)} и силы тока i(t){\displaystyle i(t)} на этом участке:
p(t)=u(t)⋅i(t).{\displaystyle p(t)=u(t)\cdot i(t).}Если участок цепи содержит резистор c электрическим сопротивлением R{\displaystyle R}, то
p(t)=i(t)2⋅R=u(t)2R{\displaystyle p(t)=i(t)^{2}\cdot R={\frac {u(t)^{2}}{R}}}.Дифференциальные выражения для электрической мощности
Мощность, выделяемая в единице объёма, равна:
w=dPdV=E⋅j{\displaystyle w={\frac {dP}{dV}}=\mathbf {E} \cdot \mathbf {j} },где E{\displaystyle \mathbf {E} } — напряжённость электрического поля, j{\displaystyle \mathbf {j} } — плотность тока. Отрицательное значение скалярного произведения (векторы E{\displaystyle \mathbf {E} } и j{\displaystyle \mathbf {j} } противонаправлены или образуют тупой угол) означает, что в данной точке электрическая мощность не рассеивается, а генерируется за счёт работы сторонних сил.
В случае изотропной среды в линейном приближении:
w=σE2=E2ρ=ρj2=j2σ{\displaystyle w=\sigma E^{2}={\frac {E^{2}}{\rho }}=\rho j^{2}={\frac {j^{2}}{\sigma }}},где σ=def1ρ{\displaystyle \sigma \,{\overset {\underset {\mathrm {def} }{}}{=}}\,{\frac {1}{\rho }}} — удельная проводимость, величина, обратная удельному сопротивлению.
В случае наличия анизотропии (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла) в линейном приближении:
w=σαβEαEβ{\displaystyle w=\sigma _{\alpha \beta }E_{\alpha }E_{\beta }},где σαβ{\displaystyle \sigma _{\alpha \beta }} — тензор проводимости.
Видео по теме
Мощность постоянного тока
Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:
P=I⋅U{\displaystyle P=I\cdot U}.Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:
P=I2⋅R=U2R{\displaystyle P=I^{2}\cdot R={\frac {U^{2}}{R}}}, где R{\displaystyle R} — электрическое сопротивление.Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:
P=I⋅E{\displaystyle P=I\cdot {\mathcal {E}}}, где E{\displaystyle {\mathcal {E}}} — ЭДС.Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность p=I2⋅r{\displaystyle p=I^{2}\cdot r} прибавляется к поглощаемой ил
wikipedia.green
Электрическая мощность - это... Что такое Электрическая мощность?
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
Мгновенная электрическая мощность
Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения: U — напряжение на участке A-B (принимаем его постоянным на интервале Δt), Q — количество зарядов, прошедших от А к B за время Δt. А — работа, совершённая зарядом Q при движении по участку A-B, P — мощность. Записывая вышеприведённые рассуждения, получаем:
Для единичного заряда на участке A-B:
Для всех зарядов:
Поскольку ток есть не что иное, как количество зарядов в единицу времени, то есть по определению, в результате получаем:
Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:
мгновенная электрическая мощность p(t), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t) и силы тока i(t) на этом участке:
Если участок цепи содержит резистор c электрическим сопротивлением R, то
Дифференциальные выражения для электрической мощности
Мощность, выделяемая в единице объёма, равна:
В линейном изотропном приближении:
В линейном анизотропном приближении (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла):
Мощность постоянного тока
Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:
Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:
Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:
где — ЭДС. |
Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.
Мощность переменного тока
В переменном электрическом поле формула для мощности постоянного тока оказывается неприменимой. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.
Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.
Активная мощность
Единица измерения — ватт (W, Вт).
Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U и I — среднеквадратичные значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением
В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.
Реактивная мощность
Единица измерения — вольт-ампер реактивный (var, вар)
Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .
Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.
Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.
Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.
Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.
Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.[источник не указан 124 дня]
Полная мощность
Единица полной электрической мощности — вольт-ампер (V·A, В·А)
Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I; связана с активной и реактивной мощностями соотношением: где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).
Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:
Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.
Комплексная мощность
Мощность, аналогично импедансу, можно записать в комплексном виде:
где — комплексное напряжение, — комплексный ток, — импеданс, * — оператор комплексного сопряжения.Модуль комплексной мощности равен полной мощности S. Действительная часть равна активной мощности Р, а мнимая — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.
Неактивная мощность
Неактивная мощность (пассивная мощность)[источник не указан 172 дня] — это мощность нелинейных искажений тока, равная корню квадратному из разности квадратов полной и активной мощностей в цепи переменного тока. В цепи с синусоидальным напряжением неактивная мощность равна корню квадратному из суммы квадратов реактивной мощности и мощностей высших гармоник тока[источник не указан 172 дня]. При отсутствии высших гармоник неактивная мощность равна модулю реактивной мощности.
Под мощностью гармоники тока понимается произведение действующего значения силы тока данной гармоники на действующее значение напряжения[источник не указан 172 дня].
Наличие нелинейных искажений тока в цепи означает нарушение пропорциональности между мгновенными значениями напряжения и силы тока, вызванное нелинейностью нагрузки, например когда нагрузка имеет реактивный или импульсный характер. При линейной нагрузке сила тока в цепи пропорциональна мгновенному напряжению, вся потребляемая мощность является активной. При нелинейной нагрузке увеличивается кажущаяся (полная) мощность в цепи за счёт мощности нелинейных искажений тока, которая не принимает участия в совершении работы[источник не указан 172 дня]. Мощность нелинейных искажений не является активной и включает в себя как реактивную мощность, так и мощность прочих искажений тока. Данная физическая величина имеет размерность мощности, поэтому в качестве единицы измерения неактивной мощности можно использовать В∙А (вольт-ампер) или вар (вольт-ампер реактивный). Вт (ватт) использовать нежелательно, чтобы неактивную мощность не спутали с активной.
Связь неактивной, активной и полной мощностей
Величину неактивной мощности обозначим N. Через i обозначим вектор тока, через u — вектор напряжения. Буквами I и U будем обозначать соответствующие действующие значения:
Представим вектор тока i в виде суммы двух ортогональных составляющих ia и ip, которые назовём соответственно активной и пассивной. Поскольку в совершении работы участвует только составляющая тока, коллинеарная напряжению, потребуем, чтобы активная составляющая была коллинеарна напряжению, то есть ia = λu, где λ — некоторая константа, а пассивная — ортогональна, то есть Имеем
Запишем выражение для активной мощности P, скалярно умножив последнее равенство на u:
Отсюда находим
Выражение для величины неактивной мощности имеет вид где S = U I — полная мощность.
Для полной мощности цепи справедливо представление, аналогичное выражению для цепи с гармоническими током и напряжением, только вместо реактивной мощности используется неактивная мощность:
Таким образом, понятие неактивной мощности представляет собой один из способов обобщения понятия реактивной мощности для случая несинусоидальных тока и напряжения. Неактивная мощность иногда называется реактивной мощностью по Фризе.
Измерения
- Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра и амперметра.
- Для измерения коэффициента реактивной мощности применяют фазометры
- Государственный эталон — ГЭТ 153-86 Государственный специальный эталон единицы электрической мощности в диапазоне частот 40-2500 Гц. Институт-хранитель: ВНИИМ
Мощность некоторых электрических приборов
В таблице указаны значения мощности некоторых потребителей электрического тока:
Лампочка фонарика | 1 |
Лампа люминесцентная бытовая | 5…30 |
Лампа накаливания бытовая | 25…150 |
Холодильник бытовой | 15…200 |
Электропылесос | 100…2 000 |
Электрический утюг | 300…2 000 |
Стиральная машина | 350…2 000 |
Электрическая плитка | 1 000…2 000 |
Сварочный аппарат бытовой | 1 000…5 500 |
Двигатель трамвая | 45 000…50 000 |
Двигатель электровоза | 650 000 |
Электродвигатели прокатного стана | 6 000 000…9 000 000 |
Большинство бытовых приборов рассчитаны на напряжение 220 В, но на разную силу тока. Поэтому мощность потребителей электроэнергии разная.
Литература
- ГОСТ 8.417-2002 Единицы величин
- ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
- Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
- Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193—2009. — 146 с.
Дополнительная литература
- Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
- Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
- Агунов М. В., Агунов А. В., Вербова Н. М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, № 7, С. 45-48.
- Агунов А. В. Неактивные составляющие полной мощности в автономных электротехнических системах судостроения. Автореферат диссертации на соискание ученой степени кандидата технических наук. СПб., СПбГМТУ, 1997, 20 с.
- Агунов М. В. Энергетические процессы в электрических цепях с несинусоидальными режимами и их эффективность. Кишинев-Тольятти: МолдНИИТЭИ, 1997, 84 с.
- Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
- Агунов А. В. Управление качеством электроэнергии при несинусоидальных режимах. СПб., СПбГМТУ, 2009, 134 с.
- Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
- Агунов А. В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, № 2, С. 47-50.
Ссылки
См. также
xzsad.academic.ru
Мощность электрическая - Википедия
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
Мгновенная электрическая мощность[ | ]
Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A{\displaystyle A} в точку B{\displaystyle B}, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки A{\displaystyle A} в точку B{\displaystyle B}. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения:
U{\displaystyle U} — напряжение на участке A−B{\displaystyle A-B} (принимаем его постоянным на интервале Δt{\displaystyle \Delta t}), Q{\displaystyle Q} — количество зарядов, прошедших от A{\displaystyle A} к B{\displaystyle B} за время Δt{\displaystyle \Delta t}, A{\displaystyle A} — работа, совершённая зарядом Q{\displaystyle Q} при движении по участку A−B{\displaystyle A-B}, P{\displaystyle P} — мощность.Записывая вышеприведённые рассуждения, получаем:
PA−B=AΔt{\displaystyle P_{A-B}={\frac {A}{\Delta t}}}Для единичного заряда на участке A−B{\displaystyle A-B}:
Pe(A−B)=UΔt{\displaystyle P_{e(A-B)}={\frac {U}{\Delta t}}}Для всех зарядов:
PA−B=UΔt⋅Q=U⋅QΔt{\displaystyle P_{A-B}={\frac {U}{\Delta t}}\cdot {Q}={U}\cdot {\frac {Q}{\Delta t}}}Поскольку ток есть электрический заряд, протекающий по проводнику в единицу времени, то есть I=QΔt{\displaystyle I={\frac {Q}{\Delta t}}} по определению, в результате получаем:
PA−B=U⋅I{\displaystyle P_{A-B}=U\cdot I}.Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:
мгновенная электрическая мощность p(t){\displaystyle p(t)}, выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t){\displaystyle u(t)} и силы тока i(t){\displaystyle i(t)} на этом участке:
p(t)=u(t)⋅i(t).{\displaystyle p(t)=u(t)\cdot i(t).}Если участок цепи содержит резистор c электрическим сопротивлением R{\displaystyle R}, то
p(t)=i(t)2⋅R=u(t)2R{\displaystyle p(t)=i(t)^{2}\cdot R={\frac {u(t)^{2}}{R}}}.Дифференциальные выражения для электрической мощности[ | ]
Мощность, выделяемая в единице объёма, равна:
w=dPdV=E⋅j{\displaystyle w={\frac {dP}{dV}}=\mathbf {E} \cdot \mathbf {j} },где E{\displaystyle \mathbf {E} } — напряжённость электрического поля, j{\displaystyle \mathbf {j} } — плотность тока. Отрицательное значение скалярного произведения (векторы E{\displaystyle \mathbf {E} } и j{\displaystyle \mathbf {j} } противонаправлены или образуют тупой угол) означает, что в данной точке электрическая мощность не рассеивается, а генерируется за счёт работы сторонних сил.
В случае изотропной среды в линейном приближении:
w=σE2=E2ρ=ρj2=j2σ{\displaystyle w=\sigma E^{2}={\frac {E^{2}}{\rho }}=\rho j^{2}={\frac {j^{2}}{\sigma }}},где σ=def1ρ{\displaystyle \sigma \,{\overset {\underset {\mathrm {def} }{}}{=}}\,{\frac {1}{\rho }}} — удельная проводимость, величина, обратная удельному сопротивлению.
В случае наличия анизотропии (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла) в линейном приближении:
w=σαβEαEβ{\displaystyle w=\sigma _{\alpha \beta }E_{\alpha }E_{\beta }},где σαβ{\displaystyle \sigma _{\alpha \beta }} — тензор проводимости.
Мощность постоянного тока[ | ]
Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:
P=I⋅U{\displaystyle P=I\cdot U}.Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:
P=I2⋅R=U2R{\displaystyle P=I^{2}\cdot R={\frac {U^{2}}{R}}}, где R{\displaystyle R} — электрическое сопротивление.Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:
P=I⋅E{\displaystyle P=I\cdot {\mathcal {E}}}, где E{\displaystyle {\mathcal {E}}} — ЭДС.Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность p=I2⋅r{\displaystyle p=I^{2}\cdot r} прибавляется к поглощаемой или вычитается из отдаваемой.
Мощность переменного тока[ | ]
В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для большинства простых практических расчётов не слишком полезна непосредственно. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.
Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ{\displaystyle \varphi } (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.
Активная мощность[ | ]
Единица измерения — ватт (русское обозначение: Вт; международное: W).
P=U⋅I⋅cosφ{\displaystyle P=U\cdot I\cdot \cos \varphi }.
Среднее за период T{\displaystyle T} значение мгновенной мощности называется активной электрической мощностью или электрической мощностью: P=1T∫0Tp(t)dt{\displaystyle P={\frac {1}{T}}\int \limits _{0}^{T}p(t)dt}. В цепях однофазного синусоидального тока P=U⋅I⋅cosφ{\displaystyle P=U\cdot I\cdot \cos \varphi }, где U{\displaystyle U} и I{\displaystyle I} — среднеквадратичные значения напряжения и тока, φ{\displaystyle \varphi } — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r{\displaystyle r} или её проводимость g{\displaystyle g} по формуле P=I2⋅r=U2⋅g{\displaystyle P=I^{2}\cdot r=U^{2}\cdot g}. В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S{\displaystyle S} активная связана соотношением P=S⋅cosφ{\displaystyle P=S\cdot \cos \varphi }.
В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.
Реактивная мощность[ | ]
Единица измерения — вольт-ампер реактивный (русское обозначение: вар; международное: var)[1].
Q=U⋅I⋅sinφ{\displaystyle Q=U\cdot I\cdot \sin \varphi }.
Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U{\displaystyle U} и тока I{\displaystyle I}, умноженному на синус угла сдвига фаз φ{\displaystyle \varphi } между ними: Q=U⋅I⋅sinφ{\displaystyle Q=U\cdot I\cdot \sin \varphi } (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S{\displaystyle S} и активной мощностью P{\displaystyle P} соотношением: |Q|=S2−P2{\displaystyle |Q|={\sqrt {S^{2}-P^{2}}}}.
Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.
Необходимо отметить, что величина sinφ{\displaystyle \sin \varphi } для значений φ{\displaystyle \varphi } от 0 до плюс 90° является положительной величиной. Величина sinφ{\displaystyle \sin \varphi } для значений φ{\displaystyle \varphi } от 0 до −90° является отрицательной величиной. В соответствии с формулой Q=UIsinφ{\displaystyle Q=UI\sin \varphi }, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.
Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.
Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии, возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.
Полная мощность[ | ]
Единица полной электрической мощности — вольт-ампер (русское обозначение: В·А; международное: V·A)[1].
Полная мощность — величина, равная произведению действующих значений периодического электрического тока I{\displaystyle I} в цепи и напряжения U{\displaystyle U} на её зажимах: S=U⋅I{\displaystyle S=U\cdot I}; связана с активной и реактивной мощностями соотношением: S=P2+Q2,{\displaystyle S={\sqrt {P^{2}+Q^{2}}},} где P{\displaystyle P} — активная мощность, Q{\displaystyle Q} — реактивная мощность (при индуктивной нагрузке Q>0{\displaystyle Q>0}, а при ёмкостной Q<0{\displaystyle Q<0}).
Векторная зависимость между полной, активной и реактивной мощностью выражается формулой: S⟶=P⟶+Q⟶.{\displaystyle {\stackrel {\longrightarrow }{S}}={\stackrel {\longrightarrow }{P}}+{\stackrel {\longrightarrow }{Q}}.}
Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.
Комплексная мощность[ | ]
Мощность, аналогично импедансу, можно записать в комплексном виде:
S˙=U˙I˙∗=I2Z=U2Z∗,{\displaystyle {\dot {S}}={\dot {U}}{\dot {I}}^{*}=I^{2}\mathbb {Z} ={\frac {U^{2}}{\mathbb {Z} ^{*}}},} где U˙{\displaystyle {\dot {U}}} — комплексное напряжение, I˙{\displaystyle {\dot {I}}} — комплексный ток, Z{\displaystyle \mathbb {Z} } — импеданс, * — оператор комплексного сопряжения.Модуль комплексной мощности |S˙|{\displaystyle \left|{\dot {S}}\right|} равен полной мощности S{\displaystyle S}. Действительная часть Re(S˙){\displaystyle \mathrm {Re} ({\dot {S}})} равна активной мощности P{\displaystyle P}, а мнимая Im(S˙){\displaystyle \mathrm {Im} ({\dot {S}})} — реактивной мощности Q{\displaystyle Q} с корректным знаком в зависимости от характера нагрузки.
Измерения[ | ]
- Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра и амперметра.
- Для измерения коэффициента реактивной мощности применяют фазометры
- Государственный эталон — ГЭТ 153—2012 Государственный первичный эталон единицы электрической мощности в диапазоне частот от 1 до 2500 Гц. Институт-хранитель: ВНИИМ
Мощность некоторых электрических приборов[ | ]
В таблице указаны значения мощности некоторых потребителей электрического тока:
лампочка фонарика | 1 |
сетевой роутер, хаб | 10…20 |
системный блок ПК | 100…1700 |
системный блок сервера | 200…1500 |
монитор для ПК ЭЛТ | 15…200 |
монитор для ПК ЖК | 2…40 |
лампа люминесцентная бытовая | 5…30 |
лампа накаливания бытовая | 25…150 |
Холодильник бытовой | 15…700 |
Электропылесос | 100… 3000 |
Электрический утюг | 300…2 000 |
Стиральная машина | 350…2 000 |
Электрическая плитка | 1 000…2 000 |
Сварочный аппарат бытовой | 1 000…5 500 |
Двигатель лифта невысокого дома | 3 000...15 000 |
Двигатель трамвая | 45 000…50 000 |
Двигатель электровоза | 650 000 |
Электродвигатель шахтной подъемной машины | 1 000 000...5 000 000 |
Электродвигатели прокатного стана | 6 000 000…9 000 000 |
См. также[ | ]
Примечания[ | ]
Литература[ | ]
- ГОСТ 8.417-2002 Единицы величин
- ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
- Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
- Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193—2009. — 146 с.
Ссылки[ | ]
encyclopaedia.bid
Электрическая мощность - это... Что такое Электрическая мощность?
Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии.
Мгновенная электрическая мощность
Мгновенной мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.
По определению, электрическое напряжение — это отношение работы электрического поля, совершенной при переносе пробного электрического заряда из точки A в точку B, к величине пробного заряда. То есть можно сказать, что электрическое напряжение равно работе по переносу единичного заряда из точки А в точку B. Другими словами, при движении единичного заряда по участку электрической цепи он совершит работу, численно равную электрическому напряжению, действующему на участке цепи. Умножив работу на количество единичных зарядов, мы, таким образом, получаем работу, которую совершают эти заряды при движении от начала участка цепи до его конца. Мощность, по определению, — это работа в единицу времени. Введём обозначения: U — напряжение на участке A-B (принимаем его постоянным на интервале Δt), Q — количество зарядов, прошедших от А к B за время Δt. А — работа, совершённая зарядом Q при движении по участку A-B, P — мощность. Записывая вышеприведённые рассуждения, получаем:
Для единичного заряда на участке A-B:
Для всех зарядов:
Поскольку ток есть не что иное, как количество зарядов в единицу времени, то есть по определению, в результате получаем:
Полагая время бесконечно малым, можно принять, что величины напряжения и тока за это время тоже изменятся бесконечно мало. В итоге получаем следующее определение мгновенной электрической мощности:
мгновенная электрическая мощность p(t), выделяющаяся на участке электрической цепи, есть произведение мгновенных значений напряжения u(t) и силы тока i(t) на этом участке:
Если участок цепи содержит резистор c электрическим сопротивлением R, то
Дифференциальные выражения для электрической мощности
Мощность, выделяемая в единице объёма, равна:
В линейном изотропном приближении:
В линейном анизотропном приближении (например, в монокристалле или жидком кристалле, а также при наличии эффекта Холла):
Мощность постоянного тока
Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность можно вычислить по формуле:
Для пассивной линейной цепи, в которой соблюдается закон Ома, можно записать:
Если цепь содержит источник ЭДС, то отдаваемая им или поглощаемая на нём электрическая мощность равна:
где — ЭДС. |
Если ток внутри ЭДС противонаправлен градиенту потенциала (течёт внутри ЭДС от плюса к минусу), то мощность поглощается источником ЭДС из сети (например, при работе электродвигателя или заряде аккумулятора), если сонаправлен (течёт внутри ЭДС от минуса к плюсу), то отдаётся источником в сеть (скажем, при работе гальванической батареи или генератора). При учёте внутреннего сопротивления источника ЭДС выделяемая на нём мощность прибавляется к поглощаемой или вычитается из отдаваемой.
Мощность переменного тока
В переменном электрическом поле формула для мощности постоянного тока оказывается неприменимой. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.
Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.
Активная мощность
Единица измерения — ватт (W, Вт).
Среднее за период T значение мгновенной мощности называется активной мощностью: В цепях однофазного синусоидального тока где U и I — среднеквадратичные значения напряжения и тока, φ — угол сдвига фаз между ними. Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S активная связана соотношением
В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.
Реактивная мощность
Единица измерения — вольт-ампер реактивный (var, вар)
Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью Р соотношением: .
Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.
Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до −90° является отрицательной величиной. В соответствии с формулой Q = UI sin φ, реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например, асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.
Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.
Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения.
Измерительные преобразователи реактивной мощности, использующие формулу Q = UI sin φ, более просты и значительно дешевле измерительных преобразователей на микропроцессорной технике.[источник не указан 124 дня]
Полная мощность
Единица полной электрической мощности — вольт-ампер (V·A, В·А)
Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: S = U·I; связана с активной и реактивной мощностями соотношением: где Р — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q > 0, а при ёмкостной Q < 0).
Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:
Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому номинальная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.
Комплексная мощность
Мощность, аналогично импедансу, можно записать в комплексном виде:
где — комплексное напряжение, — комплексный ток, — импеданс, * — оператор комплексного сопряжения.Модуль комплексной мощности равен полной мощности S. Действительная часть равна активной мощности Р, а мнимая — реактивной мощности Q с корректным знаком в зависимости от характера нагрузки.
Неактивная мощность
Неактивная мощность (пассивная мощность)[источник не указан 172 дня] — это мощность нелинейных искажений тока, равная корню квадратному из разности квадратов полной и активной мощностей в цепи переменного тока. В цепи с синусоидальным напряжением неактивная мощность равна корню квадратному из суммы квадратов реактивной мощности и мощностей высших гармоник тока[источник не указан 172 дня]. При отсутствии высших гармоник неактивная мощность равна модулю реактивной мощности.
Под мощностью гармоники тока понимается произведение действующего значения силы тока данной гармоники на действующее значение напряжения[источник не указан 172 дня].
Наличие нелинейных искажений тока в цепи означает нарушение пропорциональности между мгновенными значениями напряжения и силы тока, вызванное нелинейностью нагрузки, например когда нагрузка имеет реактивный или импульсный характер. При линейной нагрузке сила тока в цепи пропорциональна мгновенному напряжению, вся потребляемая мощность является активной. При нелинейной нагрузке увеличивается кажущаяся (полная) мощность в цепи за счёт мощности нелинейных искажений тока, которая не принимает участия в совершении работы[источник не указан 172 дня]. Мощность нелинейных искажений не является активной и включает в себя как реактивную мощность, так и мощность прочих искажений тока. Данная физическая величина имеет размерность мощности, поэтому в качестве единицы измерения неактивной мощности можно использовать В∙А (вольт-ампер) или вар (вольт-ампер реактивный). Вт (ватт) использовать нежелательно, чтобы неактивную мощность не спутали с активной.
Связь неактивной, активной и полной мощностей
Величину неактивной мощности обозначим N. Через i обозначим вектор тока, через u — вектор напряжения. Буквами I и U будем обозначать соответствующие действующие значения:
Представим вектор тока i в виде суммы двух ортогональных составляющих ia и ip, которые назовём соответственно активной и пассивной. Поскольку в совершении работы участвует только составляющая тока, коллинеарная напряжению, потребуем, чтобы активная составляющая была коллинеарна напряжению, то есть ia = λu, где λ — некоторая константа, а пассивная — ортогональна, то есть Имеем
Запишем выражение для активной мощности P, скалярно умножив последнее равенство на u:
Отсюда находим
Выражение для величины неактивной мощности имеет вид где S = U I — полная мощность.
Для полной мощности цепи справедливо представление, аналогичное выражению для цепи с гармоническими током и напряжением, только вместо реактивной мощности используется неактивная мощность:
Таким образом, понятие неактивной мощности представляет собой один из способов обобщения понятия реактивной мощности для случая несинусоидальных тока и напряжения. Неактивная мощность иногда называется реактивной мощностью по Фризе.
Измерения
- Для измерения электрической мощности применяются ваттметры и варметры, можно также использовать косвенный метод, с помощью вольтметра и амперметра.
- Для измерения коэффициента реактивной мощности применяют фазометры
- Государственный эталон — ГЭТ 153-86 Государственный специальный эталон единицы электрической мощности в диапазоне частот 40-2500 Гц. Институт-хранитель: ВНИИМ
Мощность некоторых электрических приборов
В таблице указаны значения мощности некоторых потребителей электрического тока:
Лампочка фонарика | 1 |
Лампа люминесцентная бытовая | 5…30 |
Лампа накаливания бытовая | 25…150 |
Холодильник бытовой | 15…200 |
Электропылесос | 100…2 000 |
Электрический утюг | 300…2 000 |
Стиральная машина | 350…2 000 |
Электрическая плитка | 1 000…2 000 |
Сварочный аппарат бытовой | 1 000…5 500 |
Двигатель трамвая | 45 000…50 000 |
Двигатель электровоза | 650 000 |
Электродвигатели прокатного стана | 6 000 000…9 000 000 |
Большинство бытовых приборов рассчитаны на напряжение 220 В, но на разную силу тока. Поэтому мощность потребителей электроэнергии разная.
Литература
- ГОСТ 8.417-2002 Единицы величин
- ПР 50.2.102-2009 Положение о единицах величин, допускаемых к применению в Российской Федерации
- Бессонов Л. А. Теоретические основы электротехники. — М: Высшая школа, 1984.
- Гольдштейн Е. И., Сулайманов А. О., Гурин Т. С. Мощностные характеристики электрических цепей при несинусоидальных токах и напряжениях. ТПУ, — Томск, 2009, Деп. в ВИНИТИ, 06.04.09, № 193—2009. — 146 с.
Дополнительная литература
- Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
- Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
- Агунов М. В., Агунов А. В., Вербова Н. М. Определение составляющих полной мощности в электрических цепях с несинусоидальными напряжениями и токами методами цифровой обработки сигналов // Электротехника, 2005, № 7, С. 45-48.
- Агунов А. В. Неактивные составляющие полной мощности в автономных электротехнических системах судостроения. Автореферат диссертации на соискание ученой степени кандидата технических наук. СПб., СПбГМТУ, 1997, 20 с.
- Агунов М. В. Энергетические процессы в электрических цепях с несинусоидальными режимами и их эффективность. Кишинев-Тольятти: МолдНИИТЭИ, 1997, 84 с.
- Агунов М. В., Агунов А. В. Об энергетических соотношениях в электрических цепях с несинусоидальными режимами // Электричество, 2005, № 4, С. 53-56.
- Агунов А. В. Управление качеством электроэнергии при несинусоидальных режимах. СПб., СПбГМТУ, 2009, 134 с.
- Агунов М. В., Агунов А. В., Вербова Н. М. Новый подход к измерению электрической мощности // Промышленная энергетика, 2004, № 2, С. 30-33.
- Агунов А. В. Статический компенсатор неактивных составляющих мощности с полной компенсацией гармонических составляющих тока нагрузки // Электротехника, 2003, № 2, С. 47-50.
Ссылки
См. также
brokgauz.academic.ru
Поделиться с друзьями: