интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Механическая работа и мощность силы. Что такое мощность и работа


Механическая работа и мощность силы

Занимательные фишки - 7 класс Занимательные фишки - 8 класс Занимательные фишки - 9 класс 10-11 класс Диафильмы по физике

«Физика - 10 класс»

Закон сохранения энергии — фундаментальный закон природы, позволяющий описывать большинство происходящих явлений.

Описание движения тел также возможно с помощью таких понятий динамики, как работа и энергия.

Вспомните, что такое работа и мощность в физике.

Совпадают ли эти понятия с бытовыми представлениями о них?

Все наши ежедневные действия сводятся к тому, что мы с помощью мышц либо приводим в движение окружающие тела и поддерживаем это движение, либо же останавливаем движущиеся тела.

Этими телами являются орудия труда (молоток, ручка, пила), в играх — мячи, шайбы, шахматные фигуры. На производстве и в сельском хозяйстве люди также приводят в движение орудия труда.

Применение машин во много раз увеличивает производительность труда благодаря использованию в них двигателей.

Назначение любого двигателя в том, чтобы приводить тела в движение и поддерживать это движение, несмотря на торможение как обычным трением, так и «рабочим» сопротивлением (резец должен не просто скользить по металлу, а, врезаясь в него, снимать стружку; плуг должен взрыхлять землю и т. д.). При этом на движущееся тело должна действовать со стороны двигателя сила.

Работа совершается в природе всегда, когда на какое-либо тело в направлении его движения или против него действует сила (или несколько сил) со стороны другого тела (других тел).

Сила тяготения совершает работу при падении капель дождя или камня с обрыва. Одновременно совершает работу и сила сопротивления, действующая на падающие капли или на камень со стороны воздуха. Совершает работу и сила упругости, когда распрямляется согнутое ветром дерево.

Определение работы.

Второй закон Ньютона в импульсной форме Δ = Δt позволяет определить, как меняется скорость тела по модулю и направлению, если на него в течение времени Δt действует сила .

Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуются величиной, зависящей как от сил, так и от перемещений тел. Эту величину в механике и называют работой силы.

Изменение скорости по модулю возможно лишь в том случае, когда проекция силы Fr на направление перемещения тела отлична от нуля. Именно эта проекция определяет действие силы, изменяющей скорость тела по модулю. Она совершает работу. Поэтому работу можно рассматривать как произведение проекции силы Fr на модуль перемещения |Δ| (рис. 5.1):

А = Fr|Δ|.         (5.1)

Если угол между силой и перемещением обозначить через α, то Fr = Fcosα.

Следовательно, работа равна:

А = |Δ|cosα.         (5.2)

Наше бытовое представление о работе отличается от определения работы в физике. Вы держите тяжёлый чемодан, и вам кажется, что вы совершаете работу. Однако с точки зрения изики ваша работа равна нулю.

Работа постоянной силы равна произведению модулей силы и перемещения точки приложения силы и косинуса угла между ними.

В общем случае при движении твёрдого тела перемещения его разных точек различны, но при определении работы силы мы под Δ понимаем перемещение её точки приложения. При поступательном движении твёрдого тела перемещение всех его точек совпадает с перемещением точки приложения силы.

Работа, в отличие от силы и перемещения, является не векторной, а скалярной величиной. Она может быть положительной, отрицательной или равной нулю.

Знак работы определяется знаком косинуса угла между силой и перемещением. Если α < 90°, то А > 0, так как косинус острых углов положителен. При α > 90° работа отрицательна, так как косинус тупых углов отрицателен. При α = 90° (сила перпендикулярна перемещению) работа не совершается.

Если на тело действует несколько сил, то проекция равнодействующей силы на перемещение равна сумме проекций отдельных сил:

Fr = F1r + F2r + ... .

Поэтому для работы равнодействующей силы получаем

А = F1r|Δ| + F2r|Δ| + ... = А1 + А2 + ... .         (5.3)

Если на тело действует несколько сил, то полная работа (алгебраическая сумма работ всех сил) равна работе равнодействующей силы.

Совершённую силой работу можно представить графически. Поясним это, изобразив на рисунке зависимость проекции силы от координаты тела при его движении по прямой.

Пусть тело движется вдоль оси ОХ (рис. 5.2), тогда

Fcosα = Fx, |Δ| = Δх.

Для работы силы получаем

А = F|Δ|cosα = FxΔx.

Очевидно, что площадь прямоугольника, заштрихованного на рисунке (5.3, а), численно равна работе при перемещении тела из точки с координатой х1 в точку с координатой х2.

Формула (5.1) справедлива в том случае, когда проекция силы на перемещение постоянна. В случае криволинейной траектории, постоянной или переменной силы мы разделяем траекторию на малые отрезки, которые можно считать прямолинейными, а проекцию силы на малом перемещении Δ — постоянной.

Тогда, вычисляя работу на каждом перемещении Δ а затем суммируя эти работы, мы определяем работу силы на конечном перемещении (рис. 5.3, б).

Единица работы.

Единицу работы можно установить с помощью основной формулы (5.2). Если при перемещении тела на единицу длины на него действует сила, модуль которой равен единице, и направление силы совпадает с направлением перемещения её точки приложения (α = 0), то и работа будет равна единице. В Международной системе (СИ) единицей работы является джоуль (обозначается Дж):

1 Дж = 1 Н • 1 м = 1 Н • м.

Джоуль — это работа, совершаемая силой 1 Н на перемещении 1 если направления силы и перемещения совпадают.

Часто используют кратные единицы работы — килоджоуль и мега джоуль:

1 кДж = 1000 Дж, 1 МДж = 1000000 Дж.

Мощность.

Работа может быть совершена как за большой промежуток времени, так и за очень малый. На практике, однако, далеко не безразлично, быстро или медленно может быть совершена работа. Временем, в течение которого совершается работа, определяют производительность любого двигателя. Очень большую работу может совершить и крошечный электромоторчик, но для этого понадобится много времени. Потому наряду с работой вводят величину, характеризующую быстроту, с которой она производится, — мощность.

Мощность — это отношение работы А к интервалу времени Δt, за который эта работа совершена, т. е. мощность — это скорость совершения работы:

Подставляя в формулу (5.4) вместо работы А её выражение (5.2), получаем

Таким образом, если сила и скорость тела постоянны, то мощность равна произведению модуля вектора силы на модуль вектора скорости и на косинус угла между направлениями этих векторов. Если же эти величины переменные, то по формуле (5.4) можно определить среднюю мощность подобно определению средней скорости движения тела.

Понятие мощности вводится для оценки работы за единицу времени, совершаемой каким-либо механизмом (насосом, подъёмным краном, мотором машины и т. д.). Поэтому в формулах (5.4) и (5.5) под всегда подразумевается сила тяги.

В СИ мощность выражается в ваттах (Вт).

Мощность равна 1 Вт, если работа, равная 1 Дж, совершается за 1 с.

Наряду с ваттом используются более крупные (кратные) единицы мощности:

1 кВт (киловатт) = 1000 Вт, 1 МВт (мегаватт) = 1 000 000 Вт.

Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Законы сохранения в механике - Физика, учебник для 10 класса - Класс!ная физика

Импульс материальной точки --- Закон сохранения импульса --- Реактивное движение. Успехи в освоении космоса --- Примеры решения задач по теме «Закон сохранения импульса» --- Механическая работа и мощность силы --- Энергия. Кинетическая энергия --- Примеры решения задач по теме «Кинетическая энергия и её изменение» --- Работа силы тяжести. Консервативные силы --- Работа силы упругости. Консервативные силы --- Потенциальная энергия --- Закон сохранения энергии в механике --- Работа силы тяготения. Потенциальная энергия в поле тяготения --- Примеры решения задач по теме «Закон сохранения механической энергии» --- Основное уравнение динамики вращательного движения --- Закон сохранения момента импульса. Кинетическая энергия абсолютно твёрдого тела, вращающегося относительно неподвижной оси --- Примеры решения задач по теме «Динамика вращательного движения абсолютно твёрдого тела»

Устали? - Отдыхаем!

Вверх

class-fizika.ru

Законы сохранения в механике Закон сохранения импульса. Реактивное движение

При взаимодействии тел импульсодного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, такая система называетсязамкнутой.

 

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

 

Этот фундаментальный закон природы называется законом сохранения импульса.Он является следствием из второго и третьегозаконов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона Если эти тела взаимодействуют в течение времени t, то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны: Применим к этим телам второй закон Ньютона:

где и – импульсы тел в начальный момент времени, и – импульсы тел в конце взаимодействия. Из этих соотношений следует:

 

Это равенство означает, что в результате взаимодействия двух тел их суммарный импульс не изменился. Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, то есть векторную сумму импульсов всех тел, входящих в эту систему.

Механическая работа и мощность

Энергетические характеристики движения вводятся на основе понятия механической работыили работы силы.

Работой A, совершаемой постоянной силой называется физическая величина, равная произведению модулей силы и перемещения, умноженному на косинус угла α между векторами силы и перемещения (рис. 1.1.9):

 

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю. В системе СИ работа измеряется в джоулях (Дж).

Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.

1

Рисунок 1.1.9.

Работа силы :

Если проекция силы на направление перемещения не остается постоянной, работу следует вычислять для малых перемещений и суммировать результаты:

 

Это сумма в пределе (Δsi→ 0) переходит в интеграл.

Графически работа определяется по площади криволинейной фигуры под графиком Fs(x) (рис. 1.1.10).

2

Рисунок 1.1.10.

Графическое определение работы. ΔAi= FsiΔsi.

Примером силы, модуль которой зависит от координаты, может служить упругая сила пружины, подчиняющаяся закону Гука. Для того, чтобы растянуть пружину, к ней нужно приложить внешнюю силу модуль которой пропорционален удлинению пружины (рис. 1.1.11).

Зависимость модуля внешней силы от координаты x изображается на графике прямой линией (рис. 1.1.12).

4

Рисунок 1.1.12.

Зависимость модуля внешней силы от координаты при растяжении пружины.

По площади треугольника на рис. 1.18.4 можно определить работу, совершенную внешней силой, приложенной к правому свободному концу пружины:

 

Этой же формулой выражается работа, совершенная внешней силой при сжатии пружины. В обоих случаях работа упругой силы равна по модулю работе внешней силы и противоположна ей по знаку.

Если к телу приложено несколько сил, то общая работа всех сил равна алгебраической сумме работ, совершаемых отдельными силами, и равна работе равнодействующей приложенных сил.

Работа силы, совершаемая в единицу времени, называется мощностью. Мощность N – физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа:

 

В Международной системе (СИ) единица мощности называется ватт (Вт). Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с.

studfiles.net

Мощность - это... Что такое Мощность?

Мо́щность — физическая величина, равная в общем случае скорости изменения энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Различают среднюю мощность за промежуток времени

и мгновенную мощность в данный момент времени:

Интеграл от мгновенной мощности за промежуток времени равен полной переданной энергии за это время:

Единицы измерения

В системе СИ единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Другой распространённой единицей измерения мощности является лошадиная сила.

Соотношения между единицами мощности Единицы Вт кВт МВт кгс·м/с эрг/с л. с.(мет.) л. с.(анг.)
1 ватт 1 10−3 10−6 0,102 107 1,36·10−3 1,34·10−3
1 киловатт 103 1 10−3 102 1010 1,36 1,34
1 мегаватт 106 103 1 102·103 1013 1,36·103 1,34·103
1 килограмм-сила-метр в секунду 9,81 9,81·10−3 9,81·10−6 1 9,81·107 1,33·10−2 1,31·10−2
1 эрг в секунду 10−7 10−10 10−13 1,02·10−8 1 1,36·10−10 1,34·10−10
1 лошадиная сила (метрическая) 735,5 735,5·10−3 735,5·10−6 75 7,355·109 1 0,9863
1 лошадиная сила (английская) 745,7 745,7·10−3 745,7·10−6 76,04 7,457·109 1,014 1

Мощность в механике

Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:

где F — сила, v — скорость,  — угол между вектором скорости и силы.

Частный случай мощности при вращательном движении:

M — момент силы,  — угловая скорость,  — число пи, n — частота вращения (число оборотов в минуту, об/мин.).

Электрическая мощность

Электри́ческая мощность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. При изучении сетей переменного тока, помимо мгновенной мощности, соответствующей общефизическому определению, вводятся также понятия активной мощности, равной среднему за период значению мгновенной, реактивной мощности, которая соответствует энергии, циркулирующей без диссипации от источника к потребителю и обратно, и полной мощности, вычисляемой как произведение действующих значений тока и напряжения без учёта сдвига фаз.

Приборы для измерения мощности

См. также

Ссылки

dal.academic.ru

Мощность работы - это... Что такое Мощность работы?

 Мощность работы Величина физиологических сдвигов, наступивших в организме в результате выполнения определенной работы за определенное время (т. е. «цена», которую организм «уплатил» за выполненную физическую работу). Таким образом, понятие М. р. является индивидуальным. В спорте по М. выделяют две основные разновидности физических упражнений – с постоянной и переменной М. В первой в свою очередь определяют работу максимальной, субмаксимальной, большой и умеренной мощности.

Адаптивная физическая культура. Краткий энциклопедический словарь. — М.: Флинта. Э. Н. Вайнер, С. А. Кастюнин. 2012.

  • Моторика
  • Мутагены

Смотреть что такое "Мощность работы" в других словарях:

  • МОЩНОСТЬ РАБОТЫ — количество работы в единицу времени. Применительно к классификации физических упражнений с циклическим характером движений введено понятие относительной М. р. (или интенсивности). Различают максимальную М. р. (интенсивность) с предельным временем …   Психомоторика: cловарь-справочник

  • Мощность (физика) — Мощность  физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. Эффективная мощность, мощность двигателя, отдаваемая рабочей машине непосредственно или через силовую передачу.… …   Википедия

  • Мощность — Размерность L2MT−3 Единицы измерения СИ Вт СГС …   Википедия

  • Мощность локомотива — одна из основных характеристик, которая выражает тяговые и скоростные качества локомотива. Мощность локомотива есть объём выполненной локомотивом работы отнесённый к потраченному на его выполнение времени. В основном определяют касательную… …   Википедия

  • Мощность двигателя — характеризует полезную работу, производимую двигателем в единицу времени. Мощность газотурбинного двигателя Ne = GB/Nуд зависит от секундного расхода воздуха GB и удельной мощности Nуд (при GB = 1 кг/с), определяемой параметрами… …   Энциклопедия техники

  • МОЩНОСТЬ — физич. величина, измеряемая отношением работы к промежутку времени, в течение к рого она произведена. Если работа производится равномерно, то М. определяется ф лой N=A/t, где А работа за время t, а в общем случае N=dA/dt, dA элем. работа за элем …   Физическая энциклопедия

  • МОЩНОСТЬ ЧЕЛОВЕКА — МОЩНОСТЬ ЧЕЛОВЕКА, количество механической работы, выполняемой человеком в единицу времени (напр. в 1 сек.). По данным ряда авторов средняя М. человека равна х/10 г17 лошадиной силы и в пересчете на кзм колеблется в пределах от 7,5 до 11… …   Большая медицинская энциклопедия

  • МОЩНОСТЬ — МОЩНОСТЬ, в физике интенсивность совершения РАБОТЫ или же производства или потребления, ЭНЕРГИИ. Является мерой производительности двигателя или какого либо источника питания. Первым ученым, начавшим измерять мощность, был Джеймс ВАТТ. Он… …   Научно-технический энциклопедический словарь

  • Мощность — величина, равная отношению произведенной работы к единице времени. Словарь бизнес терминов. Академик.ру. 2001 …   Словарь бизнес-терминов

  • МОЩНОСТЬ — МОЩНОСТЬ, физическая величина N, измеряемая отношением работы A к промежутку времени t, в течение которого она совершена; если работа совершается равномерно, то N=A/t. Измеряется в ваттах …   Современная энциклопедия

adaptive_physical_education.academic.ru

МОЩНОСТЬ РАБОТЫ - это... Что такое МОЩНОСТЬ РАБОТЫ?

 МОЩНОСТЬ РАБОТЫ - количество работы в единицу времени. Применительно к классификации физических упражнений с циклическим характером движений введено понятие относительной М. р. (или интенсивности). Различают максимальную М. р. (интенсивность) с предельным временем до 15-20 с, субмаксимальную - от 30-40 с до 3-5 мин, большую - от 3-5 мин до 30-60 мин, и умеренную - свыше 30-60 мин.

Психомоторика: cловарь-справочник.— М.: ВЛАДОС. В.П. Дудьев. 2008.

  • МОТОРНЫЙ
  • МУСКУЛ

Смотреть что такое "МОЩНОСТЬ РАБОТЫ" в других словарях:

  • Мощность работы — Величина физиологических сдвигов, наступивших в организме в результате выполнения определенной работы за определенное время (т. е. «цена», которую организм «уплатил» за выполненную физическую работу). Таким образом, понятие М. р. является… …   Адаптивная физическая культура. Краткий энциклопедический словарь

  • Мощность (физика) — Мощность  физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. Эффективная мощность, мощность двигателя, отдаваемая рабочей машине непосредственно или через силовую передачу.… …   Википедия

  • Мощность — Размерность L2MT−3 Единицы измерения СИ Вт СГС …   Википедия

  • Мощность локомотива — одна из основных характеристик, которая выражает тяговые и скоростные качества локомотива. Мощность локомотива есть объём выполненной локомотивом работы отнесённый к потраченному на его выполнение времени. В основном определяют касательную… …   Википедия

  • Мощность двигателя — характеризует полезную работу, производимую двигателем в единицу времени. Мощность газотурбинного двигателя Ne = GB/Nуд зависит от секундного расхода воздуха GB и удельной мощности Nуд (при GB = 1 кг/с), определяемой параметрами… …   Энциклопедия техники

  • МОЩНОСТЬ — физич. величина, измеряемая отношением работы к промежутку времени, в течение к рого она произведена. Если работа производится равномерно, то М. определяется ф лой N=A/t, где А работа за время t, а в общем случае N=dA/dt, dA элем. работа за элем …   Физическая энциклопедия

  • МОЩНОСТЬ ЧЕЛОВЕКА — МОЩНОСТЬ ЧЕЛОВЕКА, количество механической работы, выполняемой человеком в единицу времени (напр. в 1 сек.). По данным ряда авторов средняя М. человека равна х/10 г17 лошадиной силы и в пересчете на кзм колеблется в пределах от 7,5 до 11… …   Большая медицинская энциклопедия

  • МОЩНОСТЬ — МОЩНОСТЬ, в физике интенсивность совершения РАБОТЫ или же производства или потребления, ЭНЕРГИИ. Является мерой производительности двигателя или какого либо источника питания. Первым ученым, начавшим измерять мощность, был Джеймс ВАТТ. Он… …   Научно-технический энциклопедический словарь

  • Мощность — величина, равная отношению произведенной работы к единице времени. Словарь бизнес терминов. Академик.ру. 2001 …   Словарь бизнес-терминов

  • МОЩНОСТЬ — МОЩНОСТЬ, физическая величина N, измеряемая отношением работы A к промежутку времени t, в течение которого она совершена; если работа совершается равномерно, то N=A/t. Измеряется в ваттах …   Современная энциклопедия

psychomotor.academic.ru

Механическая работа - это... Что такое Механическая работа?

   Механическая работа
Работа силы
Ключевые статьи
См. также: Портал:Физика

Механическая работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины, направления силы (сил) и от перемещения точки (точек) тела или системы[1].

Определение

В механике можно ввести понятие работы, исходя из довольно простых представлений[2]

Работа силы (сил) над одной точкой

  • Работа нескольких сил определяется естественным образом как работа их равнодействующей (их векторной суммы). Поэтому дальше будем говорить об одной силе.

При прямолинейном движении одной материальной точки и постоянном значении приложенной к ней силы работа (этой силы) равна произведению величины проекции вектора силы на направление движения и величины совершённого перемещения[3]:

Здесь точкой обозначено скалярное произведение[4],  — вектор перемещения; подразумевается, что действующая сила постоянна в течение всего того времени, за которое вычисляется работа.

Если сила не постоянна, то в этом случае она вычисляется как интеграл[5]:

(подразумевается суммирование по кривой, которая является пределом ломаной, составленной из последовательных перемещений если вначале считать их конечными, а потом устремить длину каждого к нулю).

Если существует зависимость силы от координат[6], интеграл определяется[7] следующим образом:

,

где и  — радиус-векторы начального и конечного положения тела соответственно.

  • Cледствие: если направление движения тела ортогонально силе, работа (этой силы) равна нулю.

Работа силы (сил) над системой или неточечным телом

Работа сил над системой материальных точек определяется как сумма работ этих сил над каждой точкой (работы, совершённые над каждой точкой системы, суммируются в суммарную работу этих сил над системой).

Даже если изначально тело не является системой дискретных точек, можно разбить его (мысленно) на множество бесконечно малых элементов (кусочков), каждый из которых считать материальной точкой, вычисляя работу в соответствии с определением выше. В этом случае дискретная сумма заменяется на интеграл.

  • Эти определения могут быть использованы как для какой-то конкретной силы или класса сил — для вычисления именно их работы отдельно, так и для вычисления полной работы, совершаемой всеми силами, действующими на систему.

Кинетическая энергия

Кинетическая энергия вводится в механике в прямой связи с понятием работы.

Схема рассуждений такова: 1) попробуем записать работу, совершаемую всеми силами, действующими на материальную точку и, пользуясь вторым законом Ньютона (позволяющим выразить силу через ускорение), попытаться выразить ответ только через кинематические величины, 2) убедившись, что это удалось, и что этот ответ зависит только от начального и конечного состояния движения, введём новую физическую величину, через которую эта работа будет просто выражаться (это и будет кинетическая энергия).

Если  — полная работа, совершённая над частицей, определяемая как сумма работ совершенных приложенными к частице силами, то она выражается как:

где называется кинетической энергией. Для материальной точки, кинетическая энергия определяется как работа силы, ускорившей точку от нулевой скорости до величины скорости и выражается как:

Для сложных объектов, состоящих из множества частиц, кинетическая энергия тела равна сумме кинетических энергий частиц.

Потенциальная энергия

Сила называется потенциальной, если существует скалярная функция координат, известная как потенциальная энергия и обозначаемая , такая что

Если все силы, действующие на частицу консервативны, и является полной потенциальной энергией, полученной суммированием потенциальных энергий соответствующих каждой силе, тогда:

.

Этот результат известен как сохранение механической энергии и утверждает, что полная механическая энергия в замкнутой системе, в которой действуют консервативные силы

является постоянной относительно времени. Этот закон широко используется при решении задач классической механики.

Работа в термодинамике

В термодинамике работа, совершенная газом при расширении[8], рассчитывается как интеграл давления по объёму:

Работа, совершенная над газом, совпадает с этим выражением по абсолютной величине, но противоположна по знаку.

  • Естественное обобщение этой формулы применимо не только к процессам, где давление есть однозначная функция объема, но и к любому процессу (изображаемому любой кривой в плоскости PV), в частности, к циклическим процессам.
  • В принципе, формула применима не только к газу, но и к чему угодно, способному оказывать давление (надо только чтобы давление в сосуде было всюду одинаковым, что неявно подразумевается в формуле).

Эта формула прямо связана с механической работой. Действительно, попробуем написать механическую работу при расширении сосуда, учитывая, что сила давления газа будет направлена перпендикулярно каждой элементарной площадке, равна произведению давления P на площадь dS площадки, и тогда работа, совершаемая газом для смещения h одной такой элементарной площадки будет

Видно, что это и есть произведение давления на приращение объема вблизи данной элементарной площадкой. А просуммировав по всем dS получим конечный результат, где будет уже полное приращение объема, как и в главной формуле параграфа.

Рассмотрим несколько детальнее, чем это было сделано выше, построение определения энергии как риманова интеграла.

Пусть материальная точка движется по непрерывно дифференцируемой кривой , где s — переменная длина дуги, и на неё действует сила , направленная по касательной к траектории в направлении движения (если сила не направлена по касательной, то будем понимать под проекцию силы на положительную касательную кривой, таким образом сведя и этот случай к рассматриваемому далее). Величина , называется элементарной работой силы на участке и принимается за приближенное значение работы, которую производит сила , воздействующая на материальную точку, когда последняя проходит кривую . Сумма всех элементарных работ является интегральной суммой Римана функции .

В соответствии с определением интеграла Римана, можем дать определение работе:

Предел, к которому стремится сумма всех элементарных работ, когда мелкость разбиения стремится к нулю, называется работой силы вдоль кривой .

Таким образом, если обозначить эту работу буквой , то, в силу данного определения,

,

следовательно,

(1).

Если положение точки на траектории её движения описывается с помощью какого-либо другого параметра (например, времени) и если величина пройденного пути , является непрерывно дифференцируемой функцией, то из формулы (1) получим

Единицей измерения работы в СИ является Джоуль, в СГС — эрг

1 Дж = 1 кг·м²/с² = 1 Н·м 1 эрг = 1 г·см²/с² = 1 дин·см 1 эрг = 10−7Дж

Ссылки

  1. ↑ Концепции современного естествознания
  2. ↑ Такие представления можно конкретизировать как систему постулатов, приводящую достаточно однозначно к определению, описанному в основной статье:
    1. работу совершает только компонента силы, совпадающая с направлением перемещения точки, к которой она приложена, или противоположная направлению перемещения точки (в последнем случае работа считается отрицательной),
    2. работа постоянной силы пропорциональна компоненте такой силы, описанной в пункте 1, и длине вектора перемещения,
    3. работа по перемещению точки за несколько последовательных промежутков времени суммируется (работа за всё это время равна сумме работ, совершенных за каждый промежуток),
    4. работа суммы (векторной суммы) сил, приложенных к точке равна сумме работ, совершенных каждой силой в отдельности,
    5. работа, совершенная над системой (телом) равна сумме работ, совершенных над каждой ее частью (в частности — равна сумме работ, совершенных над каждой точкой системы).
  3. ↑ Механическая работа. Мощность
  4. ↑ Можно считать, что механическая работа может служить в области физики одной из главных иллюстраций для скалярного произведения.
  5. ↑ Это делается исходя из того, что можно разбить суммарное конечное перемещение на маленькие последовательные перемещения , на каждом из которых сила будет почти постоянной, а значит можно будет воспользоваться определением для постоянной силы, введенным выше. Затем работы на всех этих перемещениях суммируется, что и дает в результате интеграл.
  6. ↑ Как это очень часто бывает. Например, в случае кулоновского поля, растягивающейся пружины, силы тяготения планеты итд итд.
  7. ↑ По сути через предыдущий, поскольку здесь ; вектор же малого перемещения совпадает с .
  8. ↑ Работа, совершаемая газом при его сжатии, очевидно отрицательна, но вычисляется по той же формуле. Работа, совершаемая газом (или над газом) без его расширения или сжатия (например, в процессе перемешивания мешалкой), в принципе может быть выражена подобной формулой, но всё же не прямо этой, так как она требует обобщения: дело в том, что в формуле давление подразумевается одинаковым по всему объему (что часто выполняется в термодинамике, поскольку речь там часто идет о процессах, близких к равновесным), что и приводит к наиболее простой формуле (в случае же вращающейся мешалки, например, давление будет разным на передней и задней стороне лопасти, что приведет к необходимому усложнению формулы, если мы захотим применить ее к такому случаю; эти соображения относятся и ко всем другим неравновесным случаям, когда давление неодинаково в разных частях системы).

Литература

  • Кудрявцев Л. Д. Курс математического анализа. — 5-е, переработанное и дополненное. — М.: Дрофа, 2003. — Т. 1. — С. 640—641. — 703 с.

См. также

dic.academic.ru


Каталог товаров
    .