Резистор — пассивный элемент электрической цепи, имеющий единственную характеристику—сопротивление. Само название резистора произошло от латинского resisto—«сопротивляюсь». Поэтому, резистор часто называют просто сопротивлением. Из статьи вы сможете узнать немного полезной теории о сопротивлении, научитесь понимать маркировку резисторов, в том числе цветовую. Перед прочтением статьи вы можете сразу заказать набор из 600 штук наиболее востребованных резисторов (30 номиналов по 20 штук каждого) по ссылке или хороший расширенный набор из 820 резисторов (41 номинал по 20 штук каждого) здесь Электрический ток, текущий по проводам, испытывает сопротивление. Это сопротивление меняется в зависимости от внешних условий и свойств проводника. Чем тоньше провод—тем больше сопротивление. Чем длиннее провод—тем больше сопротивление. Если вы уже прошли десять километров, то идти становится тяжелее, чем в начале пути. Это сравнение не совсем правильное с точки зрения физики, но позволяет представить вышеописанные свойства проводников. Резисторы россыпью. В основном, советские. Величина сопротивления зависит от следующих факторов: Георг Симон Ом Единица измерения сопротивления—Ом. Названа в честь немецкого физика Георга Ома. Это тот самый Ом, который сформулировал закон Ома, без которого не обойтись при расчёте любой схемы. Физический смысл одного Ома таков: проводник имеет сопротивление 1 Ом, если сила тока, который протекает по этому проводнику, равна 1 А (Ампер), а напряжение, приложенное к концам этого проводника, равно 1 В (Вольт). Прибор для измерения сопротивления называется омметр. Омметр. Прибор для измерения сопротивления. Выпускается большое количество резисторов различных стандартных номиналов от единиц до миллионов Ом. Полезно знать соотношение величин сопротивлений: 1 КОм (килоом) = 1000 Ом1 МОм (мегаом) = 1000 КОм = 1 000 000 Ом Резисторы бывают трёх видов: Самый многочисленный класс—это постоянные резисторы—резисторы, сопротивление которых нельзя изменить. Потому они и называются постоянными. Переменный резистор—»крутилка». Их используют, например, для регулировки громкости. Подстроечный резистор – это тоже переменный резистор, но выполненный в более компактном корпусе. От переменного он отличается в основном тем, что не рассчитан на частое изменение сопротивления. Если часто крутить подстроечный резистор, он быстро выйдет из строя. Предназначен для установки туда, где нужно настраиваемое сопротивление, но настраиваться оно должно один раз (при изготовлении платы на заводе). Подстроечные резисторы используются, например, в радиоприёмниках. Естественно, выпускается множество резисторов, отличающихся друг от друга различными параметрами. Для того, чтобы понять характеристики резистора, его параметры отмечаются прямо у него на корпусе. Как именно маркируются резисторы мы и поговорим далее. Постоянные резисторы Когда говорят «номинал резистора», подразумевают «сопротивление резистора». Далее в тексте вы будете встречать оба термина. Почему возникла такая «двоякость» будет рассказано чуть ниже. Старые резисторы имели довольно большой размер, поэтому все номиналы указывались обычными буквами на корпусах этих резисторов. Но если вам в руки попадётся такой резистор, определить его сопротивление сразу вряд ли удастся, сопротивление там указывается не «в лоб». Кроме того, на резисторе указывалось не только его сопротивление, но и некоторые другие параметры. Чтобы в этом разобраться, рассмотрим характеристики постоянных резисторов. Резисторы характеризуются следующими свойствами: Далее поговорим об этих свойствах и узнаем, каким образом они указываются на корпусе резистора. Сопротивление—главная характеристика резистора (ради сопротивления его и ставят). О том, что такое сопротивление, мы уже коротко обсудили в начале статьи, поэтому сразу перейдём к его обозначению. Забегая вперёд скажу, что если вы пришли сюда, чтобы узнать, как «прочитать» цветные полоски на корпусе резистора—приступайте к чтению сразу от заголовка «Цветовая маркировка резисторов». Потому что сейчас мы для лучшего понимания сути учимся считывать маркировку отечественных резисторов. Если сопротивление меньше 1000 Ом: В этом случае после цифры, которая указывает значение сопротивления, пишут букву R. Или не пишут совсем никакой буквы. На некоторых старых резисторах советского производства вы можете увидеть слово Ом. Позже на резисторы стало принято наносить следующие символы: сначала целую часть числа, затем букву R, а затем – дробную часть числа. Примеры обозначения сопротивлений: 100 = 100 Ом100 R = 100 Ом Более поздние (современные) обозначения: 1R5 = 1,5 Ом1R0 = 1 Ом0R2 = 0,2 Ом Если первая цифра – 0, то ее обычно не пишут, поэтому: 0R2 = R2 = 0,2 Ом Если сопротивление больше 1000 Ом: В этом случае, чтобы не писать большие числа, используют килоомы и мегаомы. Вообще-то есть и более весомые приставки, например Гига- и Тера-, но такие большие сопротивления в электронике практически не встречаются, поэтому ограничимся кило- и мегаомами. Принцип записи значений остается таким же, просто меняются буквы, а, следовательно, и значения сопротивлений. Примеры: K100 = 100 Ом1К0 = 1 КОм = 1000 Ом1К5 = 1,5 КОм = 1500 ОмM220 = 0,22 МОм = 220 KОм = 220 000 Ом1М0 = 1 МОм = 1000 КОм = 1 000 000 Ом3М3 = 3,3 МОм = 3300 КОм = 3 300 000 Ом Это всё, что нужно знать про обозначение сопротивления. Можно обсудить следующую характеристику. Как изготовить резистор? Можно взять омметр, кусок проволоки и с помощью омметра измерить сопротивление куска проволоки определённой длины. Например, сопротивление сантиметрового отрезка нихромовой проволоки. Затем отмерить длину, которая даст нам нужное сопротивление и использовать этот кусок в качестве резистора. Примерно так всё и происходит в промышленности. Только вместо проволоки используют плёнки из специальных материалов, но суть остаётся прежней – известна длина (ширина, толщина, масса) некоего материала, который нужно упаковать в корпус для получения необходимого сопротивления. Но этот материал тоже нужно где-то производить, чем-то нарезать, куда-то перемещать. Все эти процессы влияют на сопротивление материала. Поэтому, трудно сделать все резисторы абсолютно одинаковыми – по разным причинам наблюдается разброс параметров. А если так, то все значения сопротивлений – это номинальные параметры, которые в реальности немного отличаются в ту или иную сторону. Поэтому и говорят «номинал резистора» вместо «сопротивление резистора». Величину этих отличий и определяет класс точности (допуск). Допуск измеряется в процентах. Пример: резистор 100 Ом +/- 5% Это означает, что сопротивление реального резистора может отличаться на пять процентов от номинала. Вспомним начальную школу: в нашем случае 100 Ом – это 100%, значит 5% – это 5 Ом. 100 – 5 = 95; 100 + 5 = 105 То есть величина конкретного резистора может «гулять» в пределах от 95 до 105 Ом. Для большинства схем это незначительно. Но в некоторых случаях требуется подобрать более точное сопротивление – тогда выбирают резистор с более высоким классом точности. То есть не 5%, а, например 2%. На старых резисторах допуск так и пишут: 20%, 10%, 5% и т.п. Но есть еще буквенная кодировка. Если на резисторе номинал указан буквенным способом, то последняя буква (если она есть) обозначает величину допуска. Значения этих букв приведены в таблице: Примеры:1К5К = 1,5 КОм 10%1К0М = 1 КОм 20%1К05В = 1,05 КОм 0,1% В физике мощность электрического тока обозначается буквой Р. Мощность измеряется в ваттах (обозначается Вт или W). Зависит мощность от силы тока и напряжения и для постоянного тока рассчитывается по формуле: P = I * U Если через резистор не протекает большой ток, то можно использовать резистор любой мощности – ничего с ним не случится. Но если через резистор течет значительный ток, то он может перегреться и выйти из строя (попросту сгореть). Поэтому, стоит рассчитать мощность, которая будет выделяться на резисторе – мощность рассеивания. Мощность пишется на корпусе резистора либо римскими, либо арабскими цифрами. На маломощных резисторах мощность обычно не указывают. Примеры обозначений: 1 W = 1 ВаттIV W = 4 Ватт2 Вт = 2 ВаттV Вт = 5 Ватт Мы рассмотрели способ обозначения резисторов, который использовался раньше. Современные резисторы маркируют иначе. Старый способ был не слишком удобен, но номинал резистора при таком способе обозначения понять можно безо всяких справочников. Однако, пришлось всё сделать ещё хуже. Современная аппаратура имеет небольшие размеры, а значит и компоненты, которые в ней используются, также должны иметь минимальный размер. Резисторы нужны маленькие и, несмотря на то, что современные технологии позволяют нанести на них надпись, разглядеть эту надпись потом будет непросто. Поэтому была разработана цветовая маркировка резисторов. Цветовая маркировка наносится на резистор в виде четырех или пяти цветных полос. У резисторов с четырьмя цветными полосками первая и вторая обозначают величину сопротивления в омах. Третья – это множитель, на который необходимо умножить величину сопротивления. Четвертая полоса определяет класс точности в процентах. Резисторы с пятью полосами – это резисторы с малой величиной допуска (0,1% – 2%). Первые три полосы – это величина сопротивления, четвертая – множитель, пятая – допуск. Каждому цвету соответствует своя цифра. Важно правильно выбрать порядок, в котором мы будем считывать цвета. Цветные кольца на резисторах сдвинуты к одному из выводов и располагаются слева направо. Если резистор слишком мал, и нет возможности сдвинуть маркировку к одному из выводов, то первая полоска делается приблизительно в два раза толще остальных. Но на некоторых резисторах эти правила не соблюдаются. В этом случае можно только угадать. Угадать нам поможет особенность маркировки: серебристый, золотистый и черный цвета определяют класс допуска резистора. Значит, полоски этих цветов никогда не бывают первыми. Поэтому, еслиодин из этих цветов (кроме черного) нанесен с какого-либо края, то этот край правый. Так же оранжевый, желтый и белый никогда не бывают последними. Значит, если один из этих цветов нанесен с какого-либо края, то это левый край. Таблица для расшифровки цветовой маркировки резистора: Можно потренироваться определять номинал на этой картинке. Есть еще резисторы, предназначенные для поверхностного монтажа (SMD). Такие резисторы настолько малы, что даже цветные полоски разместить на них проблематично. Маркировку сопротивлений на них принято наносить другим способом. Закодированное значение состоит из трех или четырех цифр. Последняя цифра означает степень числа десять, то есть просто количество нулей, которые нужно приписать к первым цифрам, чтобы получить значение в омах. Примеры: 103 – последняя цифра 3, значит, к числу 10 приписываем три нуля, получаем 10 000 Ом = 10КОм. 1562 – последняя цифра 2, значит, к числу 156 приписываем два нуля, получаем 15600 Ом =15,6 КОм. Если последняя цифра – ноль, то первые цифры и есть номинальное значение. Например, если на резисторе указана маркировка «100», то к числу 10 приписываем ноль нулей, получаем 10 Ом. SMD резистор 47кОм SMD резисторы рядом со спичкой для сравнения масштаба После прочтения статьи мы узнали, для чего нужны резисторы, какими бываю маркировки на резисторах и научились определять сопротивление резистора. Теперь самое время приступить к использованию данных приборов в реальных схемах. Есть и другие статьи, которые помогут научиться правильно использовать резистор в реальных электрических схемах: Купить набор из 600 штук наиболее востребованных резисторов (30 номиналов по 20 штук каждого) по ссылке или вот ещё хороший расширенный набор из 820 резисторов (41 номинал по 20 штук каждого) здесь.А ещё я собираю большой список проверенных продавцов. Ознакомиться можно здесь. РАСЧЕТ РЕЗИСТОРА И ЕГО МОЩНОСТИ ДЛЯ ОДНОГО СВЕТОДИОДА. Резистор мощность
Резистор | Электронные печеньки
Буква B C D F G J K M N Допуск 0,1% 0,25% 0,5% 1% 2% 5% 10% 20% 30% Цвет кольца или точек Первая цифра Вторая цифра Множитель Допуск, % Черный — 0 *1 1 — Коричневый 1 1 *10 10 1% Красный 2 2 *100 102 2% Оранжевый 3 3 *1.000 103 — Желтый 4 4 *10.000 104 — Зеленый 5 5 *100.000 105 0,5% Голубой 6 6 *1.000.000 106 0,25% Фиолетовый 7 7 *10.000.000 107 0,1% Серый 8 8 *100.000.000 108 0,05% Белый 9 9 *1.000.000.000 109 — Золотистый — — *0,1 10-1 5% Серебристый — — *0,01 10-2 10% Поделиться ссылкой:
Похожее
uscr.ru
Еще из школьной физики известен "Закон Ома". В школе учились все, поэтому, наверняка, это должен знать каждый, или, по крайней мере, помнить такое словосочетание. Так же, потребуется формула расчета мощности. Вот, оперируя этими двумя формулами, можно подобрать нужный резистор для подключения светодиода к 12В. Да и не только к 12В, к любому напряжению.
Пример:В качестве примера, возьмем светодиод L-132XYD. Его параметры: Ток = 10мA, напряжение = 2,5В. Его требуется подключить к автомобильному аккумулятору, в котором напряжение, в среднем, 13В. Помимо двух, изложенных выше, формул, следует так же знать, что еще существует, так называемый коэффициент надежности светодиода (видел на каком-то сайте, а потом, несколько знакомых сказали, что такая вещь действительно существует). Он равен 0,75. На этот коэффициент следует умножать ток потребления самого светодиода.И так, по закону Ома, если сила тока (I) прямо пропорциональна напряжению (U) и обратно пропорциональна сопротивлению (R), то, отсюда следует, что, искомое сопротивление (R) будет равняться отношению напряжения (U) к силе тока (I). Получилась формула расчета сопротивления (R). Теперь, в эту формулу следует добавить коэффициент надежности (0,75) и умножить его на ток (I):
Так же, существует понятие, как падение напряжения на светодиоде. Проще говоря, это напряжение светодиода, которое, в нашем случае, равняется 2,5В. Это нужно знать для того, чтобы правильно рассчитать напряжение, которое следует понизить. Т.е., Uформ. (напряжение, которое надо вставить в формулу) равняется разнице Uсущ. (существующее напряжение, к которому надо подсоединить светодиод, в нашем случае 13В) и Uпад. (падение напряжения на светодиоде, в данном случае 2,5В).Так как сила тока измеряется в амперах (А), а ток светодиода дан в миллиамперах (мА), то следует перевести ток светодиода из миллиампер в амперы (А). Так как 1А=1000мА, то, 10мА=0,01А. Вот эту величину и следует вставлять в формулу.Теперь, зная все, что нужно, можно рассчитать требуемый номинал резистора по следующей формуле:
Теперь, в уже готовую формулу, надо вставить нужные значения:
И так, номинал резистора известен, но, если, не удается найти именно такой резистор, то следует взять резистор с одним из стандартных значений, близкому к расчетному, но, тогда, только больше. В данном случае, можно использовать резистор в 1,5кОм, т.е. 1500Ом. Если номинал будет меньше расчетного, например 1,2кОм, то срок службы светодиода может заметно сократиться. Разница в 100-200Ом, на яркости светодиода, практически не скажется, по крайней мере, заметить ее будет очень сложно.Так как сопротивление резистора нам уже известно, пора рассчитать его мощность. Дело в том, что у резистора, как я уже упоминал выше, есть, так же, такой параметр, как мощность. Есть несколько стандартных значений мощности резистора: 0,125Вт, 0,25Вт, 0,5Вт, 1Вт, 2Вт, 3Вт. Чем больше мощность резистора, тем он толще. Если поставить в цепь резистор с мощностью меньшей, чем через него проходит, то он начнет очень сильно нагреваться и, в конце концов, просто сгорит, потребуется его замена. Чтобы этого избежать, надо заранее определиться с мощностью нужного резистора. Считается это очень легко, по приведенной ниже формуле. Значения которые нужно знать - это ток светодиода (в нашем случае 0,01А), существующее напряжение (у нас 13В) и напряжение падения (2,5В).
Полученное значение очень близкое к стандартному 0,125Вт, это самое "слабое" стандартное значение. Чем больше мощностные характеристики рассчитанного резистора, тем меньше он будет нагреваться. Итак, с помощью нехитрых расчетов, мы вычислили, что для подключения светодиода L-132XYD (10мА; 2,5В) к автомобильной электросети, потребуется резистор номиналом 1,5кОм и мощностью 0,125Вт.
ПОСЛЕДОВАТЕЛЬНОЕ СОЕДИНЕНИЕ СВЕТОДИОДОВ
При последовательном соединении, в принципе, особо не меняется ничего. Ток в цепи останется постоянным, а напряжение будет падать на каждом из светодиодов.Для примера, можно взять все тот же светодиод L-132XYD (10мА; 2,5В), только не один, а, допустим три. А подключить их можно все к тому же автомобильному аккумулятору. Формулы расчета резистора и его мощности те же. Разница будет только в расчете напряжения.
Uпад.1,Uпад.2, Uпад.3 - это падение напряжение на каждом светодиоде. Как я уже говорил, ток, в последовательной цепи, не изменяется. А раз это так, то можно сразу посчитать искомый резистор. Для данной задачи, берем выше приведенные цифры:
Номинал резистора подбирается из стандартных точно также, как и в предыдущем случае, ближайший = 750Ом.Мощность резистора рассчитывается по аналогии:
Мощность, в данном случае, получилась маленькая, поэтому подойдет любой резистор. ПАРАЛЛЕЛЬНОЕ ПОДКЛЮЧЕНИЕ СВЕТОДИОДОВ На картинке показано два изображения.Одно перечеркнуто красной чертой - это не правильный метод подключения. Другой в зелёной рамке - это правильный метод подключения.Первый способ, настоятельно не рекомендуется к использованию, т.к. номиналы двух и более светодиодов, с очень малой долей вероятности, будут абсолютно идентичные. А следовательно, через каждый из светодиодов будет проходить ток отличный от того, который нужен. Такие действия могут вывести светодиод из строя раньше времени.Приведенный, на этой же картинке, второй способ является абсолютно верным. Его использование сводится к подключению одного светодиода, которое описано в начале этой статьи "Расчет резистора и его мощности для одного светодиода". |
www.cavr.ru
Резистор - это что такое? Резистор
В электротехнике, электронике, физике встречается такое понятие, как резистор. Это довольно распространенный элемент электронных схем. Тем, кто не сталкивался с принципами радиотехники, тяжело разобраться в большом количестве составляющих систем любого прибора. Для начала следует понять принцип работы такого простого и широко распространенного элемента, как резистор. Без него не функционирует практически ни одна электросхема.
Что такое резистор
Это название берет свое начало от англ. resist, что переводится как «сопротивляться». Поэтому резистор еще называют сопротивлением.
Электрический ток, поступающий к различным приборам, в силу разных причин испытывает сдерживающий эффект. Его величина зависит от типа проводника и внешних условий.
Величина такого влияния на электроток измеряется в омах. Чем лучше резистор способен рассеять мощность в тепловую энергию, тем он больше. Его работа не должна мешать соседним деталям схемы, поэтому учитывается тот нагрев, который выделяется при уменьшении силы тока.
Роль, которую играет в цепи этот элемент, переоценить трудно. Резистор позволяет обеспечить стабильность работы системы и контролирует напряжение.
Другие составляющие схемы также несколько рассеивают силу тока, однако у него это главная задача. Вот почему резистор - это сопротивление.
Это пассивный элемент электронной схемы. Но его роль тяжело переоценить.
Виды
Продвигаясь по пути изучения вопроса о том, что такое резистор, следует рассмотреть их разновидности. Эти элементы бывают переменными, постоянными и подстроечными.
Постоянные резисторы не меняют своего сопротивления (внизу на схеме: I - американское обозначение; II - европейское).
Переменные их разновидности бывают потенциометрами (манипулируют напряжением) и реостатами (манипулируют силой тока).
Подстроечный резистор – это проводник, который относится к классу переменных элементов схемы, но его настройку производят вручную при помощи отвертки или шестигранника.
Чтобы понять, является резистор материалом или оборудованием, следует рассмотреть его подвиды.
Встречаются фоторезисторы, термисторы, варисторы. Они различны по своему устройству и области применения.
Термисторы производят на основе полупроводников. Их функции находятся в зависимости от температуры кружащей среды.
Варисторы резко изменяют сопротивление при увеличении напряжения. Такое свойство просто незаменимо в цепях, подвергающихся скачкам напряжения.
Фоторезисторы, соответственно, меняют сопротивление при попадании на них солнечных лучей.
Опираясь на все перечисленные качества, можно смело ответить на вопрос о том, резистор - это материал или оборудование. В электросхеме это прибор сопротивления.
Идеальный резистор
Существует понятие того, каким должен быть идеальный резистор. В действительности его не существует, но некоторые элементы схемы могут быть приближенно похожи на безупречный вариант.
Идеальный резистор является проводником со строго обозначенным, не меняющимся сопротивлением, надписанным на корпусе. Данная функция оборудования не зависит в этом случае от силы тока и окружающих условий. Такой прибор не имеет внутренней емкости, но при этом он отличается идеальной технологией полного отвода тепла при работе.
Размеры его должны быть нулевыми, чтобы не занимать место на электросхеме. Идеальный резистор является электротехническим элементом, имеющим систему бесшумной работы.
Но в реальности такие приборы не соответствуют подобному образу.
Реальный резистор
Резонно возникает следующий вопрос: "Реальный резистор – это что?" В жизни это оборудование, стремясь к идеальному, предполагает наличие всего нескольких совершенных качеств.
В зависимости от типа оборудования применяются соответствующие разновидности резисторов. Они выполняют строго определенные функции, которые обеспечат правильную работу в конкретно взятых условиях.
Для этого разработчикам резисторов приходится либо жертвовать площадью, которую оборудование занимает на схеме, либо учитывать влияния окружения, а также предусматривать дополнительные внутренние емкости и т. д.
Реальные резисторы имеют сопротивление, отличное от указанного на корпусе, что связано с влиянием разных внешних условий.
Показатели, влияющие на тип резистора
Любой резистор постоянного сопротивления включает ряд характеристик, обозначенных на корпусе при его производстве. Основными из них являются сопротивление, класс точности, а также мощность рассеивания.
Существуют и другие характеристики, но они разнятся в зависимости от типа оборудования.
Резистор – это источник тока, величина которого зависит от таких факторов, как длина и площадь поперечного сечения проводника, температура. Имеет значение напряжение, которое было приложено к концам проводника. Величина резистора также зависит от силы тока и материала, из которого выполнен проводник.
Электронные конструкции используют разные резисторы. В соответствии с определенными условиями применяют соответствующие разновидности приборов.
Сопротивление
В электротехнике применяют резисторы, имеющие различное сопротивление. Приборы, у которых оно меньше 1000 Ом, имеют на корпусе букву R. Встречаются экземпляры, на которых вообще не указывают никакой буквы. Однако они все равно относятся к подобной разновидности оборудования.
Если прибор имеет сопротивление больше 1000 Ом, применяют для обозначения величины килоомы, мегаомы.
Резистор – это электротехнический элемент, имеющий довольно маленькие размеры. Поэтому, даже написав на их корпусе маркировку, производители понимают, что прочесть ее будет сложно. Широко используется цветовая маркировка резисторов, которую можно рассмотреть на фото ниже.
Класс точности
Большинство резисторов изготавливается из особого материала. Но даже в условиях промышленного производства практически нереально сделать их абсолютно идентичными.
В силу разных обстоятельств происходит разброс параметров оборудования для электросхем. Производитель рассчитывает величину отклонения от номинального значения и указывает его в процентах. Допустимая погрешность может находиться в указанном диапазоне, который резистор не превышает.
Для определенного типа устройств необходимо соблюдать более точные показатели сопротивления. Поэтому резистор имеет неодинаковые показатели погрешности для каждого типа электроприборов.
Указанная в процентах величина отклонения подразумевает, что погрешность может быть как в положительную, так и в отрицательную сторону.
Мощность рассеивания
Резистор – это прибор, применяющийся в цепях с различной силой тока. Для маломощных схем подойдут резисторы любой мощности. Их работа будет стабильной и не приведет к негативным последствиям.
Совсем другая картина наблюдается в цепи, по которой осуществляется течение тока значительной силы. Если резистор будет иметь недостаточную мощность, он перегреется, выйдет из строя, а то и может стать причиной пожара.
Расчет мощности рассеивания для подобных систем является обязательным действием. Это обеспечит страховку в процессе эксплуатации техники и позволит подобрать подходящий прибор сопротивления.
На маломощных резисторах производители обычно не указывают величину рассеивания. На более крупных экземплярах этот показатель указан в обязательном порядке и может быть обозначен римскими или арабскими цифрами.
Опираясь на такие обозначения, а также на расчет мощности цепи, подбирают требуемое оборудование.
Крепление резисторов
Резистор – это электротехнический элемент, который чаще всего имеет два выхода для подсоединения к схеме. Существуют также разновидности оборудования с тремя выводами. Их можно встретить среди переменных и подстроечных резисторов.
Используются также специальные их разновидности, имеющие отводы. Обычно их несколько.
В современной электронике все чаще применяются резисторы, предназначенные для поверхностного монтажа. Они выглядят как крохотные детали прямоугольной формы и не имеют привычных проволочных выводов. Вместо этого для подключения подобной детали предназначены две полоски из металла, расположенные по краям резистора.
Поверхностный монтаж производится путем припаивания элемента сопротивления на печатные проводники, находящиеся на плате.
Популярность подобных деталей объясняется их минимальными размерами, что соответствует современным требованиям электротехнического оборудования. Их маркировка имеет отличную от проволочных резисторов систему.
Роль резисторов в схеме
Резистор – это элемент, который может выполнять в электросхеме различные функции. Самыми распространенными являются токоограничивающая, стягивающая и разделительная роль.
Токоограничивающий резистор представляет собой прибор, предназначенный для обеспечения требуемой силы тока, при которой компонент оборудования будет функционировать бесперебойно.
Стягивающий (растягивающий) резистор применяют на входе логических компонентов схемы, которым важно знать только наличие или отсутствие напряжения (логическая единица или ноль). Резистор в подобной схеме нужен для обеспечения нормальной работы системы, чтобы она не оставалась в подвешенном состоянии. Нежелательный ток, поступающий извне на вход, будет при помощи стягивающего резистора уходить в землю. Это гарантирует определение входом позиции "логический ноль".
Делитель напряжения требуется для взятия только определенной части тока, необходимой для правильной работы электрокомпонента.
Маркировка
Существует определенный принцип выделения основных качеств резисторов. Его широко применяют во всем мире.
Резистор – это (фото представлено ниже) небольшая деталь, имеющая цветовую или знаковую маркировку. Главной характеристикой детали электросхемы является ее сопротивление, поэтому именно данный показатель определен на корпусе. Буквенные обозначения характеризуют систему измерений: R – омы, К – килоомы, М – мегаомы.
В последнее время многие производители переходят на другой тип маркировки – цветовой. Он проще в нанесении при больших объемах производства.
Самые точные резисторы имеют до 6 цветов на корпусе. Две первые полосы соответствуют номиналу напряжения.
Рассмотрев, что собой представляет элемент сопротивления в схеме приборов различной техники, следует сделать вывод, что резистор – это оборудование, обеспечивающее всю систему необходимой для работы силой тока.
www.syl.ru
Мощность рассеяния резистора - Справочник химика 21
Номинальной мощностью рассеяния резисторов называют максимально допустимую мощность, которую резистор может рассеивать при непрерывной электрической нагрузке и определенной температуре окружающей среды без изменения своих параметров. [c.316]Основные параметры резисторов СП приведены в табл. 2.13. Резисторы СП выпускаются с допустимым отклонением от номинального сопротивления 10 и 20%, номинальная мощность рассеяния резисторов СП указывается для 25 °С, с увеличением температуры окружающего воздуха необходимо снижать нагрузку в соответствии с графи- [c.103]
При определении переходного сопротивления покрытий используют источник постоянного напряжения (напряжение на выходе 30 В и более), вольтамперметр М 253 (класс точности 0,4) микроамперметр М 95 (класс точности 1,5) переменный резистор (нормальное сопротивление до 1,5 кОм, мощность рассеяния 1 Вт) электрический провод типа ПГВ сечением 0,75 мм , металлический электрод-бандаж шириной не менее [c.212]НИЯ ДО 10 Вт, миниатюрные резисторы с номинальным значением сопротивления до 5-10 Ом и малой мощностью рассеяния в пределах 0,01—0,125 Вт, высокочастотные резисторы и т. д. [c.8]
Другим важным параметром резистора является номинальная мощность рассеяния. Это — максимальная допустимая мощность, рассеиваемая резистором при [c.9]
Варисторы — нелинейные полупроводниковые резисторы объемного типа, сопротивление которых изменяется в зависимости от приложенного напряжения. Основной характеристикой является вольт-амперная, основными параметрами — коэффициент нелинейности, классификационные ток и напряжение, номинальная мощность рассеяния, температурный коэффициент тока (приводятся в справочниках). Варисторы имеют различное конструктивное оформление стержни, диски и т. д.), выполняются на основе карбида кремния или селена, покрываются защитными лаками. [c.13]
Фоторезисторы — полупроводниковые резисторы, изменение электрического сопротивления которых происходит под действием электромагнитного излучения. Светочувствительный элемент фоторезистора выполняется из полупроводниковых материалов на основе сернистого или селенистого свинца и кадмия в виде тонкой пленки на стеклянной подложке или прессованной таблетки. Основными характеристиками фоторезистора являются спектральная, люкс-амперная, вольт-амперная и частотная. К основным параметрам относятся кратность изменения сопротивления, темповой и световой фототок, номинальная мощность рассеяния, рабочее напряжение, постоянная времени и др. Фоторезисторы выпускаются в пластмассовых и металлических корпусах, а конструктивное исполнение некоторых типов позволяет устанавливать их в стандартные ламповые панели. [c.13]
Резисторы С5-7 (рис. 62, 63) — постоянные. Изготавливаются в металлических корпусах номинальная мощность рассеяния 25 и 50 Вт. Габаритные размеры резисторов С5-7 в сравнении с равноценными по мощности остеклованными резисторами ПЭВ меньше примерно в 2 раза, а вес в 3 раза. Резисторы имеют повышенную мощность рассеяния с единицы объема. Например, удельная мощность рассеяния с единицы объема у резисторов С5-7 мощностью 25 Вт составляет 5.7 Вт/см , а у резисторов ПЭВ [c.145]
По второму способу эмалируемое изделие нагревают до высокой температуры и посыпают порошком эмали, который, оплавляясь, прилипает к поверхности изделия. В радиопромышленности стеклоэмали употребляют главным образом для покрытия проволочных резисторов типа ПЭВ больших номиналов мощности рассеяния. Однако употреблять эмали можно шире, особенно ссли применять метод вихревого напыления. Эмаль надежно защищает от коррозии металлические части аппаратуры. [c.226]
В аппаратуре связи применяют разнообразные резисторы с номинальными значениями сопротивления от нескольких ом до 10 ом, с номинальной мощностью рассеяния от десятых долей до 500 вт. [c.315]
Коэффициентом нагрузки К называют величину, характеризующую электрическую нагрузку резистора, которая находится из отношения мощности рассеяния реальной (Р) к мощности рассеяния номинальной [c.318]
Гнп резистора Предельные значения мощности рассеяния, вт Пределы сопротивления, ом [c.321]
Резисторы типа УЛИ имеют следующие данные мощность рассеяния Р = 0,1-т-1 ст, R = ол -г- 1 Мом [c.325]
Резисторы типа УНУ-Ш — углеродистые, незащищенные, ультравысокочастотные, шайбовые. Предназначены для работы в высокочастотных цепях, при температурах от —60 до 70° С. Выпускаются на номинальную мощность рассеяния от 0,1 до 0,25 ет и на пределы сопротивления от 4,5 до 75 ом, на импульсное напряжение от 25 до 120 в. [c.325]
Тип резистора Мощность рассеяния, вт Пределы сопротивления раб, предельное рабочее напряжение при 33 тор [c.326]
Промышленностью СССР изготовляют резисторы типа МОУ (металлоокисные ультравысокочастотные) и типа МОН (металлоокисные, низкоомные). Первые применяют в качестве поглотительных омических элементов, с номинальной мощностью рассеяния от 0,1 до 200 вт. Пределы номинальных сопротивлений резисторов от 4,3 до 150 ом. Резисторы типа МОУ-Ш выпускают с мощностью рассеяния 0,15 и 0,5 ет. ТК у сопротивлений МОУ не превышает 0,0005 град- , а у МОУ-Ш — не более 0,0015 грс . [c.327]
Номинальная мощность рассеяния этих резисторов — [c.327]
Мощность рассеяния указывается только для резисторов типа КИМ (КИМ-0,125 КИМ-0,05), а для резисторов КЛМ и КВМ не указывается. Параметры для композиционных резисторов указаны в табл. 8.6. [c.330]
В последнее время все шире применяют рениевые тонкопленочные резисторы. Основным преимуществом рения перед другими материалами, используемыми для изготовления тонкопленочных резисторов, являются устойчивость при высоких температурах, что позволяет изготовлять резисторы с высокой мощностью рассеяния при высокой температуре высокая стабильность пленок невысокий температурный коэффициент сопротивления незначительное изменение сопротивления от толщины, что облегчает изготовление высокоомных резисторов с малым разбросом сопротивления. В том случае, когда необходимо получить высокостабильные пленки с большим поверхностным сопротивлением (порядка нескольких тысяч ом на квадрат) и низким температурным коэффициентом сопротивления, применяют тантал, вольфрам и рений. [c.49]
Миллиамперметр А и резистор / 1 подбираются с -учетом величины тока в лампе, допускаемой техническими условиями. Напряжение источника питания [/в должно быть на несколько десятков вольт больше напряжения зажигания лампы в качестве источника питания можно использовать как гальваническую батарею, так и выпрямитель с фильтром. Напряжение на лампу подают через потенциометр. Можно использовать как высокоомный лабораторный потенциометр, так и переменные резисторы типа СП с допустимой мощностью рассеяния 2 вт. [c.40]
Несмотря на то, что наличие более чем одного компонента на подложке еще более усложняет задачу, однако и в этом случае были сделаны попытки предсказать, хотя бы приблизительно, распределение температуры на подложках с тонкопленочными схемами. Для решения данной пробле.мы Пик [76] воспользовался сведением всех резисторов в один эквивалентный прибор. Его модель не дает температур отдельных резисторов, а определяет положение и температуру самой горячей точки. На основании своих исследований он заключил, что наиболее эффективное рассеяние мощности происходит на меньших по размерам резисторах. [c.532]
По некоторым своим параметрам эти резисторы превосходят практически все остальные выпускающиеся типы. Они имеют меньшую плотность тока в проводящем слое, лучшие условия рассеяния выделяющейся мощности, выдерживают большие эксплуатационные электрические и механические перегрузки, обладают большей влагоустойчивостью. Однако требуется значительно расширить температурный диапазон их работы, шкалу номинальных значений сопротивлений, увеличить удельные нагрузки, срок службы, надежность. Количественное сопоставление требований и существующих в настоящее время возможностей выпускающихся резисторов типа ТВО и СПО приведено в таблице. Как следует из этих данных, по многим параметрам объемные резисторы далеки от предъявляемых требований, о объясняется ограниченными возможностями токопроводящей фазы объемных резисторов, которой все еще является сажа. Например, для получения высоких номиналов в токопроводящую композицию вводится менее 1 % сажи, что приводит к плохому ее распределению и, как следствие, к невысокому выходу готовых изделий в заданный номинал. Так, выход годных резисторов СПО с плавностью по омметру на крайних номиналах составляет всего 5—8%, тогда как на средних — около 70%. [c.170]
Р — допускаемая мощность электрической нагрузки, Вт — номинальная мощность рассеяния, Вт 1 — для резистора типа МТ i — для резисторов типов ОМЛТ, МЛТ, МУН и МГП. [c.8]
Резисторы С5-10 (рис. 61) — нагружаемые. Изготавливаются с мощностью рассеяния 160, 250 и 500 Вт. Удельная мощность рассеяния составляет 0.7 Вт/см . Габаритные размеры резистороя С5-10 приведены в табл. 42. [c.144]Мощность катодной станции на выходе, Вт, Wk. = Iw.Mk. - Мощность рассеяния регулировочных резисторов, Вт, с учетом возможных отклонений фактических сопротивлений в цепях УКЗ от расчетных следует выбирать по току наиболее нагруженного анода W pj = /LmaxZpi. Если максимальное падение напряжения в цепи УКЗ больше стандартного напряжения катодной станции при соответствующем номинальном токе, необходимо в зависимости от конкретных условий и с учетом экономических соображений увеличить площадь сечения дренажных кабелей, уменьшить сопротивление растеканию анодов, либо выбрать катодную станцию с меньшим номинальным током и соответственно изменить расстояния между УКЗ. [c.137]
I Отношение номинальной мощности рассеяния Р к величине теплоотдающей поверхности 8 называется удельной нагрузкой резистора, вт1см . [c.317]
Резисторы типа УНУ — углеродистые, незащищенные, ультравысокочастотные. Предназначены для работы при температурах от —60 до +125° С, а также в условиях тропического влажного климата. Выпускают мощностью рассеяния от 0,1 до 100 вт на номинальные сопротивления 7,5-ь100 ом на импульсные напряжения при атмосферном давлении 64 тор и 5 тор, соответственно, от 70 до 12 500 в и от 70 до 8750 в. [c.325]
Тип резистора Номинальная мощность рассеяния ном- в Номинальное сопротивле- ном т ном С . 1 Интервал рабочих температур, °С Предельное рабочее напряжение, в Начальный скачок со-противле- ния % Уровень собстрен-ных шумов, мкВ/В, не более Диаметр корпуса, мм [c.104]
Отечественной промышленностью выпускается серия высоковольтных резисторов на основе электропроводящих полимерных материалов—это резисторы типов КЭВ, СЗ-5, СЗ-6, СЗ-9, СЗ-12, СЗ-14 (Рнбы=0,5 и 1 Вт). Резисторы типов КЭВ, СЗ-6, СЗ-12, СЗ-14 Рвом — =0,5 и 1 Вт) предназначены для работы в цепях постоянного и переменного токов, а резисторы СЗ-5 и СЗ-9, кроме того, могут эксплуатироваться в цепях импульсного тока. Конструкции высоковольтных резисторов приведены на рис. 2.33, основные характеристики резисторов- приведены на рис. 2,34,а —в. Основные габаритные размеры резисторов Ь и В определяются номинальной мощностью рассеяния, номинальная мощность определяет также и предельные рабо- чие напряжения, так, для резисторов КЭВ с Рвом от 0,5 до 40 Вт предельные напряжения составляют 2,5—60 кВ. Минимальная наработка для различных видов высоковольтных резисторов лежит в диапазоне от 5000 до 15 000 ч, срок сохраняемости резисторов—12 лет. [c.117]
Из проведенных исследований может быть выведен ряд критериев для выбора подложек и конструирования микросхем. Они сводятся к следующему поскольку главное значение имеет высокая теплопроводность желательными материалами для подложек являются очень плотные окиси алюминия и бериллия. Предпочтительными являются металлические пластины, изолированные окисными эмалевыми или форфоровыми слоями. Применимы также очень тонкие стеклянные пластины, смонтированные на эффективных теплоотводах. Элементы, рассеивающие мощность, должны быть размещены как можно ближе к теплоотводам и равномерно распределены по всей подложке. В случае тонкопленочных резисторов с отношением размеров металлические контакты большой площади, помогающие рассеивать мощность, В общем, проводники должны иметь высокую теплопроводность, а соединения — низкое тепловое сопротивление. Это означает, что для тонкопленочных внутрисхемных соединений они должны быть как можно шире и толще. Наконец, необходимо предупреждать образование промежуточных (межслойных) окислов. Хотя эти выводы и были сделаны в основном для квазистационарного рассеяния мощности, однако они справедливы также для импульсного режима работы. Переходные апряжения, накладывающиеся на нормальное рабочее напряжение, являются дополнительным осложняющим фактором. Тонкопленочные приборы часто имеют малые времена нарастания сигнала и не могут достаточно быстро рассеять внезапный пик мощности. Во избежание разрушения цепи рекоме.чдуется конструировать схему из расчета не на среднюю мощность, а на предполагаемую пиковую мощность, [c.533]
chem21.info
Резистор
Резистор – пассивный элемент электрической цепи главное свойство которого – сопротивление. В идеале резистор обладает линейной вольт - амперной характеристикой, а его полное сопротивление равно активному. Но это в идеале, на практике же существуют различные паразитные емкости и индуктивности, которые нарушают линейный характер резистора.
Основные характеристики
Номинальное сопротивление резисторов указывают на их корпусе в виде цветных полос или чисел.
Чтобы расшифровать штриховку в виде полос, нужно расположить резистор так чтобы все полосы были ближе к левому краю, или только широкая полоса была слева. В этой статье мы не будем рассказывать, как сделать расшифровку вручную, вместо этого мы предоставим программу, которая сама выполнит расчет.
Сопротивление это не единственная характеристика резистора, он также обладает такими параметрами как предельное рабочее напряжение, температурный коэффициент сопротивления и номинальная мощность.
Предельное рабочее напряжение – максимальное напряжение, при котором резистор работает стабильно.
Температурный коэффициент сопротивления показывает, как изменяется сопротивление резистора при изменении температуры окружающей среды на 1. Этот коэффициент зависит от материала, из которого резистор изготовлен, если с увеличением температуры сопротивление возрастает, то ТКС положительный, если уменьшается, то ТКС отрицательный.
Номинальная мощность – это мощность рассеяния, создаваемая протекающим через резистор током, при которой он может работать длительное время, не выходя из строя. В основном применяют резисторы мощностью от 0,05 Вт до 2 Вт.
Виды резисторов
Различают два вида резисторов: постоянные и переменные (подстроечные).
Постоянные резисторы делятся на проволочные и непроволочные. Проволочные резисторы представляют из себя стержень на который намотана проволока из металла с высоким удельным сопротивлением. Непроволочные резисторы бывают углеродистые, металлизированные, лакированные эмалью, теплостойкие и другие.
Регулируемые резисторы это радиоэлементы, сопротивление которых можно изменить от нуля до номинальной величины. Они также бывают проволочными и непроволочными.
Резистор, сопротивление которого можно изменить называется реостатом (потенциометром). Обычно реостат это стержень на который намотана проволока, сопротивление изменяется благодаря ползунку, который перемещается вдоль стержня.
Также существуют полупроводниковые резисторы. Принцип действия таких резисторов основан на свойствах полупроводников, изменять свое сопротивление под воздействием внешней среды.
Терморезисторы – это полупроводниковые резисторы, сопротивление которых зависит от температуры. ТКС таких резисторов отрицательный, это значит, что при увеличении температуры сопротивление термистора уменьшается. Терморезисторы у которых сопротивление увеличивается с увеличением температуры (то есть положительным ТКС) называются позисторами.
Варисторами называются полупроводниковые резисторы, сопротивление которых уменьшается при увеличении приложенного напряжения. В основном варисторы применяются для защиты от перенапряжений контактов и для стабилизации и регулирования электрических величин.
Фоторезистор – это полупроводниковый резистор, сопротивление которого меняется от светового или проникающего электромагнитного поля. В основном используются фоторезисторы с положительным фотоэффектом, при попадании электромагнитных волн на их поверхность, сопротивление уменьшается. Фоторезисторы применяются в фотореле, счетчиках, датчиках и т.д.
Рекомендуем к прочтению - делитель напряжения
electroandi.ru
Поделиться с друзьями: