интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Какие бывают изоляторы ВЛ и для чего они предназначены? Виды высоковольтные изоляторы


виды, назначение и область применения

Вы, наверное, замечали, что провода ЛЭП закреплены на опорах на гирляндах из фарфоровых или керамических тарелок. Эти тарелки называется изоляторами. Они несут как изолирующую, так и монтажную роль механического крепления. Изоляторы воздушных линий электропередач бывают разными, в зависимости от расположения, места применения и напряжения линии, которую они держат. В этой статье мы рассмотрим виды электрических изоляторов и их назначение.

Характеристики изоляторов

Ctil

Электрический изолятор – это изделие, предназначенное для крепления провода, кабеля или шины на несущей конструкции линии электропередач и предотвращения её пробоя на землю. Они бывают разных видов и изготавливаются из диэлектрических материалов – фарфора, стекла и полимеров.

Так как электрическое предназначение изоляторов – обеспечить изоляцию проводника от несущей конструкции, то основными характеристиками являются:

  • Сухоразрядное напряжение – напряжение, при котором наступает искровой разряд по поверхности в сухом её состоянии при нормальных условиях окружающей среды.
  • Мокроразрядное напряжение – то же самое, но под дождем, если его струи попадают на изолятор под углом в 45 градусов. Сила дождя при этом равна 5 мм/мин, удельное объемное сопротивление воды — 9500-10500 Ом*см (при 20°С). Так как вода проводит электрический ток – мокроразрядное напряжение всегда ниже сухоразрядного.
  • Пробивное напряжение – напряжение, при котором наступает пробой тела изолятора между стержнем и шапкой (для подвесных изделий). Стержень и шапка при этом являются электродами.

Конструкция

Конструктивно все электрические изоляторы различаются способами крепления к несущей конструкции и крепления кабеля. Главной задачей этого изделия является предотвращение электрических разрядов, для этого они выполняются в виде тарелок или стержней с ребрами. Эти ребра нужны для того, чтобы разряд развивался под углом к силовым линиям поля. На рисунке ниже вы видите примеры типовых изделий разных форм и конструкций:

Виды изоляторов

 

Различие по материалу исполнения

Чтобы рассмотреть классификацию видов и типов изоляторов нужно сначала разобраться, как их различают. Итак, в первую очередь они классифицируются по материалу изготовления:

  1. Фарфоровые.
  2. Стеклянные.
  3. Полимерные.

Фарфоровые можно назвать классикой, такие применялись раньше даже при наружной проводке в домах. Обычно они белого цвета, но могут быть и других цветов. Такие можно увидеть на разных электроустановках. Достоинством является то, что они выдерживают большие нагрузки на сжатие, обладают хорошими диэлектрическими свойствами.

Фарфоровые

Однако они бьются и ломаются. Отсюда возникает необходимость регулярной проверки их целостности, а часто для этого приходится отключать электроустановку и вытирать с них масло, пыль и другие загрязнения. Также проблемой является их большой вес.

Стеклянные, хоть и боятся ударов, но для контроля их целостности достаточно визуального осмотра, что можно провести и без отключения напряжения. В настоящее время в воздушных линиях электропередач, в качестве подвесных изоляторах они вытесняют керамику, в том числе и потому что меньше весят, а также в производстве дешевле.

Стеклянные

Полимерные используются в помещении, на улице редко, в качестве исключения. Можно иногда увидеть опорные изоляторы из полимеров на ВЛ 10 кВ или других напряжений средней величины, но редко, или на неответственных линиях. Это обусловлено тем, что с течением времени и под действием УФ-излучений они стареют, внутренняя структура распадается и ухудшаются их электрические и механические характеристики.

Полимерные

Однако для оборудования, которое доступно для регулярного обслуживания и ремонта они применяются часто. Например, это могут быть опорные изоляторы шин в трансформаторных подстанциях и распределителях.

Типы по конструкции и назначению

По конструкции выделяют три основных разновидности изоляторов ВЛ:

  • штыревые;
  • подвесные линейные;
  • опорные и проходные.

Штыревые относятся к линейным изоляторам. Используются в ЛЭП до 35 кВ. В том числе на линиях 0,4 кВ. Этот тип исполнения цельный, на нем есть канавка для закрепления провода и отверстия для установки на траверсы, крюки, штыри.

Штыревой

Интересно: на ВЛ от 6 до 10 кВ используют одноэлементные изоляторы, а на 20-35 – из двух элементов.

Подвесные используются на высоковольтных воздушных линиях напряжением 35 кВ и больше. Они бывают двух типов поддерживающими (стержневыми) и натяжными.

Подвесной

Натяжные тарельчатые изоляторы работают на растяжение и удерживают линию на опоре, монтируются под углом. Конструктивно они выполнены в виде фарфоровой или стеклянной тарелки. В нижней части обычно выступает стержень с расширяющейся шляпкой. Сверху расположена металлическая крышка с отверстием специальной формы, такой чтобы в ней можно было закрепить нижний стержень. Таким образом происходит унификация и вы можете набрать в гирлянду столько изоляторов, сколько нужно для достижения нужных номинальных напряжений пробоя. Такая гирлянда получается гибкой, она удерживает линии электропередач на опоре.

Натяжной

На промежуточных опорах устанавливают подвесные стержневые изоляторы. Они выполнены в виде опорного стержня, на его концах металлические части для крепления к опоре и проводам. Они устанавливаются вертикально и провод ложится на них – это и есть основное отличие от предыдущих. Также они отличаются тем, что натяжные изоляторы выдерживают больший вес, поэтому могут использоваться на опорах, расположенных дальше друг от друга.

Интересно: на ответственных участках и для повышения надежности монтажа ЛЭП могут использоваться сдвоенные гирлянды натяжных изоляторов.

Опорные и проходные изоляторы уже являются станционными, а не линейными. Этот вид так называется потому что используется внутри электростанций и трансформаторных подстанций. Изготовляются из полимеров или фарфора. Опорные используют для крепления токопроводящих шин к заземленным конструкциям, например, корпусу трансформаторов или внутри вводных и распределительных электрощитов.

Маркировка изоляторов всех разновидностей подобная, обычно она содержит сведения о типе изделия и номинального напряжения линии, например:

Маркировка

Для того чтобы провести кабель или шину через стену используются проходные изоляторы. Эта разновидность изделий с полым телом, в котором расположена токоведущая часть. Для повышения изолирующих свойств может иметь дополнительно масляный барьер или маслобумажную прокладку. Такой тип изоляторов позволяет прокладывать линию до 110 кВ. Бывают и другого типа – без токопровода внутри, просто диэлектрический полый цилиндр с отверстием, который надевается на кабель.

Проходной

На это мы и заканчиваем нашу статью. Теперь вы знаете, какие бывают изоляторы для воздушных линий электропередач и где применяется каждый вариант исполнения!

Материалы по теме:

Нравится(0)Не нравится(0)

samelectrik.ru

Высоковольтные изоляторы

Назначение

Основная и главная задача любого изолятора – предотвращение взаимодействия цепей электрических устройств различных потенциалов, либо заряженных частиц и незаряженных токопроводящих частей. Поэтому наличие надежной изоляции – обязательное условие устойчивого функционирования тех устройств, где сбой в работе вследствие короткого замыкания просто недопустим.

Высоковольтные керамические изоляторы повсеместно используются в таких жизненно важных узлах, как трансформаторные подстанции, линии электропередач, распределительных высоковольтные устройства, а также высокоточные приборы, применяемые в самых различных сферах человеческой деятельности – от авиации и автомобилестроения до медицины и металлургии. Наибольшая потребность в высоковольтной керамике традиционно сохраняется на различных электростанциях и производствах.

Виды изоляторов

До недавнего времени в большинстве случаев применялись исключительно фарфоровые изоляторы. Фарфор является прекрасным диэлектриком, что наряду с высокой прочностью и невосприимчивостью к внешним факторам, делает его незаменимым при сооружении контактных и токоведущих сетей самого различного назначения. Однако современные технологии не стоят на месте, и сегодня наряду с керамическими устройствами повсеместно встречаются и полимерные. Нередки также и комбинированные варианты – керамические трубы в них заполняются полимером, что позволяет им сочетать преимущества обоих решений.

В зависимости от назначения, высоковольтные изоляторы подразделяются на несколько типов:

1. Штыревые

Применяются при монтаже высоковольтных линий воздушной электропередачи с напряжением постоянного или переменного тока от 1 до 6 кВ частотой до 100 Гц, а также линий вещания и связи. Состоят из металлических штырей различной конструкции и фарфоровых изоляционных юбок, называемых телом либо корпусом изолятора.

2. Подвесные

Зачастую, полимерные или фарфоровые модели, не требующие крепления, применяются при монтаже высоковольтных линий с напряжением переменного тока от 6 до 10 кВ.

3. Опорные

Применяются в распределительных устройствах и трансформаторных системах с напряжением переменного или постоянного тока от 6 до 10 кВ. Чаще всего фарфоровые, идентичного строения со штыревыми моделями.

4. Стержневые

Наиболее распространены в системах контактных сетей, а также железнодорожном сообщении. Рассчитаны на напряжение порядка 25 кВ при переменном потенциале, либо 3 кВ при постоянном токе. Состоят из металлического грузонесущего стержня и керамической трубки в качестве изолятора.

5. Такелажные

Применяются при монтаже цепей связи, телефонных линий, антенных установок. Пригодны для установки в системах, где кабель испытывает растяжение. Рассчитаны на напряжение от 100 до 500 В.

Независимо от типа и назначения изолятора, все они, будь то керамические, полимерные либо комбинированные, уже на протяжении многих лет прекрасно зарекомендовали себя и продолжают исправно выполнять свои функции.

www.mzk-electro.ru

Типы изоляторов по конструкции и назначению

По своему назначению изоляторы делятся на опорные, подвесные и проходные. Опорные изоляторы, в свою очередь, подразделяются на стержневые и штыревые, а подвесные — на изоляторы тарельчатого типа и стержневые.

Конструкция и размеры изоляторов определяются прикладываемыми к ним механическими нагрузками, электрическим напряжением установок и условиями их эксплуатации. Изоляторы линий электропередачи и открытых распределительных устройств электрических станций и подстанций подвергаются воздействию атмосферных осадков, которые особенно опасны при сильном загрязнении окружающего воздуха. В таких изоляторах для увеличения напряжения перекрытия (электрического разряда по поверхности) наружная поверхность делается сложной формы, которая удлиняет путь перекрытия. На линиях электропередачи напряжением от 6 до 35 кВ применяют так называемые штыревые изоляторы, на линиях более высокого напряжения — гирлянды из подвесных изоляторов, число которых в гирлянде определяется номинальным напряжением линии. В открытых распределительных устройствах для крепления ошиновок или установки аппаратов, находящихся под напряжением, обычно используют опорные изоляторы штыревого типа, которые при очень высоких напряжениях (до 220 кВ) собирают в колонки, устанавливая один на другой. Для вывода высокого потенциала через заземленную поверхность (например, крышку бака трансформатора) служат проходные изоляторы.

Опорные изоляторы

Опорно-стержневые изоляторы применяют в закрытых и открытых распределительных устройствах для крепления на них токоведущих шин или контактных деталей. Изоляторы внутренней установки конструктивно представляют собой фарфоровое тело, армированное крепежными металлическими деталями. Арматура одновременно является внутренним экраном, с помощью которого снижается напряженность поля у края электрода, где она максимальна. Ребро на теле изолятора играет роль барьера, заставляя разряд развиваться под углом к силовым линиям поля, т. е. по пути с меньшей напряженностью. Внутренний экран и ребро существенно увеличивают разрядное напряжение изолятора. Изоляторы внутренней установки выпускаются на напряжения до 35 кВ. Обозначение, например, ОФ-10-6 расшифровывается следующим образом: опорный, фарфоровый на 10 кВ, с минимальной разрушающей силой на изгиб 6 даН.

Опорно-стержневые изоляторы наружной установки отличаются большим количеством ребер, чем изоляторы внутренней установки. Ребра служат для увеличения длины пути утечки с целью повышения разрядных напряжений изоляторов под дождем и в условиях увлажненных загрязнений. Изоляторы на напряжения 35-110 кВ состоят из сплошного фарфорового стержня, армированного чугунными фланцами. Обозначение, например, ИОС-35-2000 расшифровывается как изолятор опорный, стержневой на 35 кВ, с минимальной разрушающей силой 2000 даН.

Опорно-штыревые изоляторы применяют для наружных установок в тех случаях, когда требуется высокая механическая прочность и опорно-стержневые изоляторы применены быть не могут. Опорно-штыревой изолятор состоит из фарфоровой или стеклянной изолирующей детали, с которой при помощи цемента скрепляется металлическая арматура-штырь с фланцем и колпачок (шапка). Изолирующая деталь опорных штыревых изоляторов на напряжения 6–10 кВ выполняется одноэлементной, а на напряжение 35 кВ — двух или трехэлементной.

Штыревые линейные изоляторы на напряжение 6–10 кВ состоят из фарфоровой или стеклянной изолирующей детали, в которую ввертывается металлический крюк или штырь. Крюк служит для закрепления изолятора на опоре. Провод укладывается в бороздки на верхней или боковой поверхности изолятора и крепится посредством проволочной вязки или специальных зажимов. На напряжение 35 кВ изоляторы выполняются из двух склеенных между собой изолирующих деталей, что увеличивает их электрическую и механическую прочность. Обозначение штыревых линейных изоляторов, например ШС10, означает: штыревой стеклянный на 10 кВ.

Подвесные изоляторы

Подвесные тарельчатые изоляторы применяются на воздушных линиях электропередачи 35 кВ и выше. Они состоят из изолирующей детали (из стекла или фарфора), на которой при помощи цемента укрепляется металлическая арматура — шапка и стержень.

Требуемый уровень выдерживаемых напряжений достигается соединением необходимого количества изоляторов в гирлянду. Это осуществляется путем введения головки стержня в гнездо на шапке другого изолятора и закрепления его замком. Гирлянды благодаря шарнирному соединению изоляторов работают только на растяжение. Однако изоляторы сконструированы так, что внешнее растягивающее усилие создает в изоляционном теле в основном напряжение сжатия. Тем самым используется высокая прочность фарфора и стекла на сжатие.

У фарфорового изолятора наружная и внутренняя поверхности головки (средней части изолирующей детали) покрывают фарфоровой крошкой, которая при обжиге спекается с фарфором. Это обеспечивает прочное сцепление цементной связки с головкой. Для компенсации температурных расширений цементной связки применяют эластичные промазки, которыми покрывают все элементы изолятора соприкасающиеся с цементом. В стеклянных изоляторах внутренняя и наружная поверхности головки имеют опорные выступы, что обеспечивает лучшее распределение усилий в изоляторе.

Верхняя часть тарелки подвесного тарельчатого изолятора имеет гладкую поверхность, наклоненную под углом 5–10° к горизонтали, что обеспечивает стекание воды во время дождя. Нижняя поверхность тарелки для увеличения длины пути утечки выполняется ребристой.

Наиболее частой причиной выхода из строя тарельчатых изоляторов является пробой фарфора (стекла) между шапкой и стержнем, однако механическая прочность изолятора при этом не нарушается и падения провода на землю не происходит. Это является существенным достоинством тарельчатых изоляторов.

Обозначение изоляторов тарельчатого типа, например ПС-160 Б, означает: подвесной стеклянный, гарантированная электромеханическая прочность 160 кН, индекс Б означает вид конструктивного исполнения изолятора. Электромеханическая прочность изолятора — это величина разрушающей механической силы при приложении к изолятору напряжения, равного 75–80 % разрядного напряжения в сухом состоянии.

Подвесные изоляторы тарельчатого типа можно разделить на:

  • Изоляторы для районов с интенсивным загрязнением атмосферы. Грязестойкие изоляторы применяются в районах морских побережий, около горнодобывающих и промышленных предприятий и прочих районах интенсивного загрязнения атмосферы.
  • Изоляторы обычной конструкции. Подвесные изоляторы нормальной конструкции применяются повсеместно и имеют множество конструкций. Изоляторы обычного исполнения так же могут быть применены в районах интенсивного загрязнения при условии увеличения числа единиц в гирлянде.
  • Изоляторы с конической и сферической изоляционной деталью. Для применения в условиях пустыни, солончаков и в районах с трудными ветровыми условиями выпускают специальные изоляторы с конической и сферической изоляционной деталью, снижающей ветровую нагрузку на гирлянды и опору, а так же обеспечивающей лучшее очищение поверхности изолятора от пыли. Изоляторы такого типа имеют меньшую, по сравнению с аналогичными изоляторами обычного исполнения, строительную высоту и больший диаметр изоляционной детали.

Подвесные стержневые изоляторы представляют собой стержень из изолирующего материала с выступающими на нем ребрами, армированный с обоих концов металлическими шапками. Эти изоляторы, как правило, выполняются из электротехнического фарфора. Однако в последнее время начат выпуск стержневых полимерных изоляторов. Стержневые изоляторы из фарфора не имеют широкого применения вследствие сравнительно невысокой механической прочности, а также возможности полного разрушения с падением на землю.

Проходные изоляторы

Проходные изоляторы применяются для изоляции токоведущих частей при прохождении их через стены, потолки и другие элементы конструкций распределительных, устройств и аппаратов. Проходной изолятор в самом простом случае состоит из полого фарфорового элемента, внутри которого проходит токоведущий стержень (шина), и фланца, служащего для механического крепления изолятора к конструкции, через которую осуществляется ввод напряжения. Проходные изоляторы, предназначенные для наружной установки, имеют более развитую поверхность той части изолятора, которая располагается вне помещения.

Обозначение проходного изолятора содержит значение номинального тока, например ИП-35/1000-7,5 означает: изолятор проходной, шинный на напряжение 35 кВ и номинальный ток 1 кА с механической прочностью 7,5 кН.

Поделиться:

rernsk.ru

Изоляторы электрические: назначение, применение, монтаж

Содержание:

  1. Основные характеристики
  2. Назначение и свойства
  3. Применение аппаратных и станционных изоляторов
  4. Изоляторы для наружной и внутренней установки
  5. Монтажные работы
  6. Видео

В процессе монтажа линий электропередачи, различных электроустановок и прочей аппаратуры серьезное внимание уделяется надежной изоляции токоведущих частей между собой и от земли. Эту функцию выполняют электрические изоляторы, разделяющиеся на несколько основных типов, в зависимости от условий эксплуатации. Кроме того, эти изделия служат креплениями для проводов и других токоведущих частей, использующихся в электроустановках. В соответствии со своим назначением изоляторы могут быть станционными, аппаратными и линейными.

Основные характеристики

Ко всем изоляторам, независимо от их назначения, предъявляются общие требования. Они должны обеспечивать достаточный уровень электрической прочности. Этот показатель зависит от значения напряженности электрического поля, при котором изоляционный материал начинает терять свои диэлектрические свойства.

Каждый изолятор должен иметь достаточную механическую прочность, обеспечивающую устойчивость к динамическим воздействиям, возникающим при коротких замыканиях между токоведущими частями. Свойства изоляторов сохраняются неизменными, несмотря на дождь, снегопад и прочие агрессивные воздействия окружающей среды. Теплостойкость изолирующих устройств обеспечивает сохранение их свойств при перепадах температур в определенных пределах. Поверхность изоляторов должна быть устойчивой к действию электрических разрядов.

Основными электрическими характеристиками являются следующие:

  • Номинальное и пробивное напряжения. Пробивным считается минимальное значение напряжения, вызывающее пробой изолятора.
  • Значения разрядных и выдерживаемых напряжений, при которых изолятор сохраняет работоспособность в сухом и мокром состоянии.
  • Импульсные разрядные напряжения с различными полярностями.

Механическими характеристиками изоляторов считаются их вес и размеры, а также минимальное значение номинальной разрушающей нагрузки, измеряемой в ньютонах. Данная нагрузка воздействует на головку изолятора перпендикулярно оси.

Назначение и свойства

Основной функцией линейных изоляторов является крепление проводов воздушных ЛЭП и шин, устанавливаемых в открытые распределительные устройства электростанций и подстанций. Материалом для этих изделий служит закаленное стекло или фарфор. Конструкции таких изоляторов бывают штыревыми и подвесными.

Штыревые виды изоляторов применяются для воздушных линий электропередачи, напряжение которых составляет до 1 кВ, а также на воздушных ЛЭП, напряжением от 6 до 35 кВ. При напряжении 6-10 кВ используются одноэлементные изоляторы, а при 20-35 кВ – двухэлементные.

Крепление штыревых изоляторов на опорах осуществляется с помощью штырей или крюков. Для повышения надежности изоляции и крепления на одну анкерную опору может устанавливаться сразу 2-3 изолятора.

Среди подвесных изоляторов наибольшее распространение получили изделия тарельчатого типа. Как правило, они применяются на воздушных ЛЭП напряжением более 35 кВ. В их конструкцию входит стеклянная или фарфоровая изолирующая часть, а также стержень и головки, изготовленные из металла. Для соединения всех элементов между собой применяется цементная связка.

При сильном загрязнении атмосферы для воздушных ЛЭП разработаны специальные изоляторы, устойчивые к грязи, имеющие более высокие разрядные характеристики и увеличенную длину пути утечки.

Сборка подвесных устройств производится в гирлянды поддерживающего и натяжного типа. Для первого варианта используются промежуточные опоры, для второго – анкерные. Количество изоляторов в отдельной гирлянде устанавливается в зависимости от напряжения на данной линии. К примеру, воздушные ЛЭП напряжением 35 кВ в каждой гирлянде содержат 3 изолятора, при 110 кВ их будет уже 6-8 штук, а при 220 кВ – 10-14 и далее в такой же пропорции.

Применение аппаратных и станционных изоляторов

С помощью этих изолирующих устройств осуществляется изоляция и крепление шин распределительных устройств, находящихся в электростанциях и подстанциях. С их помощью изолируются токоведущие части различной электрической аппаратуры.

Большинство аппаратных и станционных изоляторов изготавливается из фарфора, максимально отвечающего всем требованиям, предъявляемым к этим изделиям. Для некоторых деталей аппаратуры, выполняющих изолирующие функции, применяется бакелит, гетинакс или текстолит. Данные элементы устанавливаются внутри приборов под защитными кожухами и при необходимости заливаются изоляционным маслом.

Различные виды креплений выполняются с помощью специальной металлической арматуры, закрепленной на фарфоровом основании. Для крепления используются специальные цементирующие замазки, у которых коэффициент объемного расширения приближен к фарфору. Качество изоляторов можно улучшить за счет покрытия глазурью наружной фарфоровой поверхности.

Сама арматура рассчитана на повышенные механические нагрузки. Конструкция этих элементов включает в себя квадратные или овальные фланцы. В нижней части расположены отверстия для болтов, а сверху предусмотрены металлические головки, к которым крепятся проводники. У изоляторов, рассчитанных на низкие механические нагрузки, фланцы и головки отсутствуют. Вместо них изделия оборудованы металлическими фасонными вкладышами, в которых предусмотрены резьбовые отверстия, закрепленные в глубине фарфорового основания. Такие конструкции обладают меньшими размерами и весом.

Изоляторы для наружной и внутренней установки

Каждое устройство определенного типа имеет специфические отличия. Изоляторы, предназначенные для наружной установки, обладают более развитой поверхностью с большей площадью, за счет которой микроразрядное напряжение увеличивается. Это позволяет устройству нормально работать не только в загрязненном состоянии, но и во влажных условиях, под дождем и другими осадками.

Изоляторы, рассчитанные на различные номинальные напряжения, можно отличить по активной высоте фарфора. Изделия с разными разрушающими механическими усилиями отличаются диаметром.

Типичными представителями наружных устройств являются опорно-штыревые изоляторы. Их фарфоровое тело отличают далеко выступающие ребра или крылья, защищающие от дождя. Крепление к основанию осуществляется чугунным штырем с фланцем. Верхняя часть закрыта чугунным колпаком, в котором нарезаны отверстия под крепление токоведущих частей.

У изоляторов, предназначенных для внутренней установки, фарфоровое тело имеет коническую форму. На корпусе установлено 1-2 ребра небольших размеров.

Следует отдельно остановиться на проходных изоляторах, устанавливаемых в стенах и перекрытиях внутри помещений для прохода шин. Также они применяются для выводов токоведущих частей из зданий и корпусов аппаратуры. Проходные изоляторы состоят из полого фарфорового корпуса с небольшими ребрами. Крепление в стене осуществляется с помощью фланца, установленного в средней части корпуса.

У проходных изоляторов номиналом в 2000 А стержни имеют прямоугольное сечение. При номинале свыше 2000 А изоляторы, называемые шинными, изготавливаются без стержней. На торцах у них установлены специальные колпаки для фиксации стальных планок с прямоугольными отверстиями, предназначенными для крепления токоведущих шин.

Конфигурация наружных и внутренних проходных изоляторов имеет существенные отличия. Например, фарфоровый корпус, находящийся на воздухе, оборудован более развитыми ребрами, делающими всю конструкцию несимметричной.

У проходных изолирующих устройств, рассчитанных 110 кВ и более, вводная часть, помимо фарфоровой, оборудуется маслобарьерной или бумажно-масляной изоляцией. В последнем варианте на токоведущий стержень накладывается кабельная бумага в несколько слоев. Между ними устанавливаются алюминиевая фольга, выполняющая функции проводящих прокладок. Образуется своеобразный герметичный конденсаторный ввод, равномерно распределяющий потенциал во всех направлениях.

Монтажные работы

Перед началом монтажа все изоляторы тщательно осматриваются и отбраковываются. Необходимо заранее проверить сопротивление фарфоровых конструкций с помощью мегаомметра на значение напряжения 2500 В. Стеклянные изделия не проверяются.

При наличии штыревых изделий, установка кронштейнов, траверс и других элементов выполняется заранее, до подъема опоры воздушной линии. Штыревая часть находится в строго вертикальном положении. Для деревянных опор используются стандартные крюки, без траверс. На все металлические детали заранее наносится защитное покрытие.

Закрепление изоляторов на штырях или крюках проводится разными способами. Чаще всего используются полиэтиленовые уплотнительные колпачки, насаживаемые на места креплений.

electric-220.ru

2. Высоковольтная изоляция

СФ-110/2,25:стержневой, фарфоровый, номинальное напряжение 110 кВ, минимальная разрушающая нагрузка – 2,25 тс.

2.1.2. Станционно-аппаратныеизоляторы

Опорные изоляторы предназначены для крепления шинопроводов, деталей аппаратов и изолирования их от заземленных конструкций и между собой. Изготавливают их для наружной и внутренней установки на напряжение до 110 кВ. На большее напряжение опорные изоляторы собирают в колонны.

Опорные изоляторы для наружной установки делятся на штыревые и стержневые. Штыревые изоляторы используются в тех случаях, когда требуется большая механическая прочность на изгиб, изготавливаются из электротехнического фарфора. Обозначение, например, ОНШ-35-2000:опорный, наружной установки, штыревой, номинальное напряжение – 35 кВ, минимальная разрушающая нагрузка – 2000 кгс.

Опорно-стержневыеизоляторы изготавливаются на напряжение 35…150 кВ из электротехнического фарфора. Концы изолятора армированы чугунными фланцами. Обозначение, напримерОНС-110-1000:опорный, наружной установки, стержневой, номинальное напряжение 110 кВ, минимальная механическая прочность – 1000 кгс.

Проходные изоляторы и вводы используются там, где токоведущие части проходят через стены, перекрытия зданий, ограждения электроустановок или вводятся внутрь металлических корпусов оборудования. Проходными изоляторами называют изоляторы на напряжение до 35 кВ, на напряжение 110 кВ и выше – вводы. Вводы имеют более сложную конструкцию изоляции и выполняются с маслобарьерной изоляцией (до

150кВ) или с бумажно-маслянойизоляцией (220 кВ и выше). Проходные изоляторы на высокие напряжения (до 35 кВ включи-

тельно) изготавливаются из электротехнического фарфора, стекла, бакелитовой бумаги. На рис. 2.2 приведена конструктивная схема проходного изолятора.

Для увеличения напряжения перекрытия Uпер на наружной поверхности изолятора делают ребра, а также увеличивают диаметр изолятора у заземленного фланца. Проходные изоляторы маркируются по напряжению, току и изгибающей механической нагрузке. Например,П-10/400-750,что означает: проходной изолятор,UН = 10 кВ,IН = 400 А,

Ризг = 750 кгс.

studfiles.net

Изоляторы воздушных линий электропередач опорные

Изоляторы

Главная » Продукция » Изоляторы

Основное назначение изоляторов воздушных линий — изолировать провода от опор и других несущих конструкций.

Этот тип защиты применяется при креплении токопроводов, грозозащитных тросов на воздушных линиях электропередачи , а так же в распределительных устройствах различных электростанций и подстанций.

Изоляторы воздушных линий изготовляют из не проводящих ток материалов, таких как фарфор, специальное стекло и полимерные композиты.

Компания "ЭнергоКомплект" ООО предлагает со своих складов широкий выбор изоляторов различных видов и типов. предназначены для изоляции проводов от опор. Опорные изоляторы работают на сжатие, растяжение или изгиб и подразделяеются на штыревые (насаживаемые на опорные штыри или крючки) и стержневые, которые прикрепляются у основания болтами или винтами.
ОПОРНЫЕ
ШТЫРЕВЫЕ СТЕРЖНЕВЫЕ
ФАРФОРОВЫЕ СТЕКЛЯННЫЕ ПОЛИМЕРНЫЕ ФАРФОРОВЫЕ СТЕКЛЯННЫЕ ПОЛИМЕРНЫЕ
ШФ 10Г, ШФ 20Г, ШФ 20Г1 ШС 10, ШС 20, ШТИЗ 10, ШТИЗ 20 ШПУ-10, ШПУ-20, ШПУ-35, НП-18, ТП-20, ОНШП-10-20, ОНШП-20-10, ОНШП-35-10, ОНШП-35-20 ИОР10-7,5-III-УХЛ, И4-80 УХЛ, Т2 ИШОС-10-8 (С4-80 II), ИШОС-10-20, ИШОС-20-10 ОСК 4-10, ОСК 6-10, ОСК 12,5-10, ОСК 8-35, ОСК 10-35, ОСК 12,5-35, ОСК 10-110 ОТК 20-110 СТАН-6-110, СТАН-10-110 ОНШП-10-20, ОНШП-20-10, ОНШП-35-20 ИОРП-10
Для крепления изоляторов, в качестве комплектующих изделий предлагаем:
КРЮКИ типа КН-16, КН-18, КН-22, КВ-22. КОЛПАЧКИ типа К-4, К-5, К-6, К-7, К-9, К-10, КП-16, КП-18, КП-22.
используются на ВЛ напряжением 35 кВ и выше. Они состоят из фарфоровой или стеклянной изолирующей части, шапки из ковкого чугуна, металлического стержня и цементной связки. Подвесные изоляторы собирают в гирлянды, которые бывают поддерживающими (на промежуточных опорах) и натяжными (на анкерных опорах). Число изоляторов в гирлянде определяется напряжением линии; 35 кВ – 3-4 изолятора, 110 кВ – 6-8. Изоляторы из полимерных материалов представляют собой стержневой элемент из стеклопластика, на котором размещено защитное покрытие с ребрами из фторопласта или кремнийорганической резины.
ПОДВЕСНЫЕ
нормального исполнения с увеличенным вылетом ребра с двойным ребром специального исполнения
ПС-40, ПС-40А, ПС-70Е, ПС-120Б, ПС-160Д, ПС-210В, ПС-300В ПСВ-40В, ПСВ-120Б, ПСВ-160А, ПСВ-210А ПСД-70Е ПСС 120Б, ПСС 210Б, ПСК 300А
получили свое название по более узкому предназначению. Данный тип обеспечивает прохождение токоведущих элементов линий электропередачи сквозь различные препятствия, подобные металлическим корпусам трансформаторов, стены КТП, КРУ, с изоляцией их от земли.
ПРОХОДНЫЕ
с токопроводом без токопровода полимерные
ИП-10/630, ИП-10/1000, ИП-10/1600, ИПУ-10/630, ИПУ-10/1000, ИПУ-10/1600, ИПУ-10/2000, ИПУ-10/3150 ПМА 10 1УХЛ 2 ИППУ-35/400, ИППУ-35/630, ИППУ-35/1000, ИППУ-35/1600, ИППУ-10/4000, ИППУ-20/2000, ИППУ-20/3150

Предлагаемые нами изоляторы допущены к применению во всех энергетических системах как продукция, прошедшая аттестацию, согласно требованиям ОАО «ФСК ЕЭС».

www.ekomplect.ru

Общие сведения, классификация и характеристики изоляторов высокого напряжения

⇐ ПредыдущаяСтр 2 из 7Следующая ⇒

Общие сведения

Изолятором называется законченная электромеханическая конструкция, предназначенная для электрической изоляции и механической связи частей электроустановок, находящихся под разными потенциалами.

В большинстве случаев в установках высокого напряжения (ВН) изоляторы используются для изоляции и механического крепления фаз по отношению к земле – шин распределительных устройств (РУ), проводов воздушных линий (ВЛ), токоведущих частей электрических аппаратов и др.; реже они используются в качестве междуфазовой изоляции (в основном в электрических аппаратах).

Все изоляторы изготовляются на определенные классы напряжения (Uн): 3; 6; 10; 15; 20; 35; 110; 150; 220; 330; 400; 500; 750 и 1150кВ. Чем выше Uн изоляторов, тем больше их габариты и масса, тем они сложнее в изготовлении, монтаже и эксплуатации.

 

нагрузкой 7,5кН (750кГс).

Требования, предъявляемые к изоляторам

 

Требования, предъявляемые к изоляторам, определяются условиями их эксплуатации [1]:

1. Изоляторы должны обладать достаточной электрической прочностью не только при рабочем напряжении, но и при воздействии перенапряжений, которым они могут подвергнуться в электроустановках.

2. Изоляторы должны обладать достаточной механической прочностью, т.е. не разрушаться как при нормальных нагрузках, так и при электродинамических усилиях, возникающих в результате действия токов короткого замыкания.

3. Изоляторы должны выдерживать без повреждения резкое изменение температуры при перепаде в 45 – 80ºС (в зависимости от размеров). Линейные изоляторы должны также выдерживать без повреждения медленное изменение температуры от -60 до +50ºС.

4. Изоляторы должны быть стойкими к действию влаги (дождь, снег) и поверхностным электрическим разрядам.

5. Форма изоляторов должна быть по возможности такой, чтобы электрическое поле как внутри изолятора, так и на его внешней поверхности было однородным или приближалось к однородному.

6. При температурном расширении или сжатии металлической арматуры и керамического, стеклянного или полимерного диэлектрика в изоляторах не должно быть признаков механического повреждения или пробоя.

 

1.3 Классификация изоляторов высокого напряжения (рис. 1.1)

По условиям работы разделяются на изоляторы наружной и внутренней установки. Изоляторы, работающие на открытом воздухе (наружная установка), имеют сильно развитую поверхность юбки, а изоляторы внутренней установки (для работы в помещениях) имеют гладкую поверхность или небольшие ребра (рис.1.1.).

 

Рис 1.1 Классификация изоляторов высокого напряжения

 

Изоляторы внутренней установки изготовляются на напряжения 35кВ и ниже; для закрытых РУ (ЗРУ) более высоких классов напряжения (110 и 220кВ) используются изоляторы наружной установки на соответствующие номинальные напряжения.

Изоляторы наружной остановки изготовляются на все классы напряжений.

По своему назначению изоляторы разделяются на линейные и станционные [1].

Линейные изоляторы разделяются на штыревые и подвесные. Штыревые изоляторы применяются для изоляции проводов ВЛ напряжением 35кВ и ниже, подвесные – для изоляции проводов ВЛ 35кВ и выше. Подвесные в свою очередь разделяются на тарельчатые и стержневые. Тарельчатые комплектуются в гирлянды на соответствующие номинальные напряжения, стержневые используются на напряжении 27кВ для изоляции (фиксации) контактной сети электрифицированных железных дорог, а на 35 и 110кВ – в основном для изоляционных растяжек в аппаратах высокого напряжения (хотя и принадлежат к классу линейных). Штыревые и тарельчатые изоляторы выполняются из фарфора и стекла, стержневые – из фарфора и полимеров.

Станционные изоляторы разделяются на опорные и проходные. Изоляторы, используемые в электрических аппаратах, называются аппаратными (электрические машины, трансформаторы, выключатели и т.п.). Конструкции последних отличаются большим многообразием и в настоящем пособии не рассматриваются.

Опорные изоляторы разделяются на штыревые и стержневые. Штыревые изоляторы применяются для наружной установки и выпускаются промышленностью на напряжения 35кВ и ниже. Для более высокого напряжения (110 и 220кВ) используются колонки из штыревых изоляторов 35кВ.

Стержневые изоляторы выпускаются на напряжения 220кВ и ниже на все напряжения, в том числе Uн ≤ 35кВ – для внутренней установки. Для более высоких напряжений (330кВ и выше) они комплектуются в «треноги» из колонок стержневых изоляторов на меньшее номинальное напряжение, обычно 35кВ.

Проходные изоляторы на все напряжения выполняются с фарфоровой покрышкой, которая является основной изоляцией для изоляторов напряжением 35кВ и ниже. Это – изоляторы с воздушной полостью.

В качестве основной изоляции, заполняющей воздушную полость, могут использоваться барьеры в масле (маслонаполненные или маслобарьерные изоляторы) или бумага с маслом (на напряжении 35кВ – бумага на бакелитовом лаке). Для выравнивания напряженностей поля в слоях бумаги применены прокладки из фольги, образующие ряд последовательно включенных конденсаторов, поэтому такие изоляторы называются конденсаторными.

Маслобарьерные проходные изоляторы выпускаются на напряжения 110 и 220кВ, а бумажно-масляные конденсаторные – на 110кВ и выше. На напряжение 330кВ и выше – это единственный тип проходного изолятора.

 

Характеристики изоляторов

Читайте также:

lektsia.com


Каталог товаров
    .