Линия электропередачи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока. Также электрическая линия в составе такой системы, выходящая за пределы электростанции или подстанции.[1] Различают воздушные и кабельные линии электропередачи. По ЛЭП также передают информацию при помощи высокочастотных сигналов (по оценкам[каким?], в СНГ используется порядка 60 тысяч ВЧ-каналов по ЛЭП) и ВОЛС. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики. Воздушная линия электропередачи (ВЛ) — устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам). Конструкция ВЛ, её проектирование и строительство регулируются Правилами устройства электроустановок (ПУЭ) и Строительными нормами и правилами (СНиП). В основном, ВЛ служат для передачи переменного тока и лишь в отдельных случаях (например, для связи энергосистем, питания контактной сети и другие) используются линии постоянного тока. Линии постоянного тока имеют меньшие потери на емкостную и индуктивную составляющие. Так, в Ростовской области была построена экспериментальная линия постоянного тока на 500 кВ. Однако широкого распространения такие линии не получили. Эти группы существенно различаются, в основном — требованиями в части расчётных условий и конструкций. В сетях СНГ общего назначения переменного тока 50 Гц, согласно ГОСТ 721-77, должны использоваться следующие номинальные междуфазные напряжения: 380 В; (6)[2], 10, 20, 35, 110, 220, 330, 500, 750 и 1150 кВ. Могут также существовать сети, построенные по устаревшим стандартам с номинальными межфазными напряжениями: 220 В, 3 и 150 кВ. Самой высоковольтной ЛЭП в мире является линия Экибастуз-Кокчетав, номинальное напряжение — 1150 кВ. Однако, в настоящее время линия эксплуатируется под вдвое меньшим напряжением — 500 кВ. Номинальное напряжение для линий постоянного тока не регламентировано, чаще всего используются напряжения: 150, 400 (Выборгская ПС — Финляндия) и 800 кВ. В специальных сетях могут использоваться и другие классы напряжений, в основном это касается тяговых сетей железных дорог (27,5 кВ, 50 Гц переменного тока и 3,3 кВ постоянного тока), метрополитена (825 В постоянного тока), трамваев и троллейбусов (600 В постоянного тока). Кабельная линия электропередачи (КЛ) — линия для передачи электроэнергии или отдельных её импульсов, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепёжными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла. По классификации кабельные линии аналогичны воздушным линиям. Основная статья: Пожары в электроустановках При пожарах в кабельных помещениях в начальный период происходит медленное развитие горения и только спустя некоторое время скорость распространения горения существенно увеличивается. Практика свидетельствует, что при реальных пожарах в кабельных туннелях наблюдаются температуры до 600 °C и выше. Это объясняется тем, что в реальных условиях горят кабели, которые длительное время находятся под токовой нагрузкой и изоляция которых прoгревается изнутри до температуры 80 °C и выше. Может возникнуть одновременное воспламенение кабелей в нескольких местах и на значительной длине. Связано это с тем, что кабель находится под нагрузкой и eгo изоляция нагревается до температуры, близкой к температуре самовоспламенения[3]. Кабель состоит из множества конструктивных элементов, для изготовления которых используют широкий спектр горючих материалов, в число которых входят материалы, имеющие низкую температуру воспламенения, материалы склонные к тлению. Также в конструкцию кабеля и кабельных конструкций входят металлические элементы. В случае пожара или токовой перегрузки происходит прогрев этих элементов до температуры порядка 500—600 ˚C, которая превышает температуру воспламенения (250–350 ˚C) многих полимерных материалов, входящих в конструкцию кабеля, в связи с чем возможно их повторное воспламенение от прогретых металлических элементов после прекращения подачи огнетушащего вещества. В связи с этим необходимо выбирать нормативные показатели подачи огнетушащих веществ, чтобы обеспечивать ликвидацию пламенного горения, а также исключить возможность повторного воспламенения[4]. Длительное время в кабельных помещениях применялись установки пенного тушения. Однако опыт эксплуатации выявил ряд недостатков: Исследования показали, что распыленная вода обладает большей огнетушащей способностью по сравнению с воздушно-механической пеной, так как она хорошо смачивает и охлаждает горящие кабели и строительные конструкции[5]. Линейная скорость распространения пламени для кабельных сооружений (горение кабелей) составляет 1,1 м/мин[6]. Изоляция кабельных линий делится на два основных типа: Здесь не указана изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи. Технология высокотемпературной сверхпроводимости (HTS), разработанная «Sumitomo Electric», применяется в демонстрационной системе силовой сети, запущенной в эксплуатацию в июле 2006 в США (Лонг-Айленд). При напряжении 138 кВ передаётся мощность в 574 МВА на длину 600 метров. Потери электроэнергии в проводах зависят от силы тока, поэтому при передаче её на дальние расстояния, напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора, что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различные разрядные явления. В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону (коронный разряд). Коронный разряд возникает, когда напряжённость электрического поля E у поверхности провода превысит пороговую величину Eкр, которую можно вычислить по эмпирической формуле Пика: МВ/м, где r - радиус провода в метрах, β - отношение плотности воздуха к нормальной.[7] Напряженность электрического поля прямо пропорциональна напряжению на проводе и обратно пропорциональна его радиусу, поэтому бороться с потерями на корону можно, увеличивая радиус проводов, а также (в меньшей степени) - применяя расщепление фаз, т.е. используя в каждой фазе несколько проводов, удерживаемых специальными распорками на расстоянии 40-50 см. Потери на корону приблизительно пропорциональны произведению U(U-Uкр). Потери на корону резко возрастают с ростом напряжения, среднегодовые потери на ЛЭП напряжением 500 кВ составляют около 12 кВт/км, при напряжении 750 кВ - 37 кВт/км, при 1150 кВ - 80 кВт/км. Потери также резко возрастают при осадках, особенно изморози, и могут достигать 1200 кВт/км[8]. Важной величиной, влияющей на экономичность ЛЭП переменного тока, является величина, характеризующая соотношение между активной и реактивной мощностями в линии — cos φ. Активная мощность — часть полной мощности, прошедшей по проводам и переданной в нагрузку; Реактивная мощность — это мощность, которая генерируется линией, её зарядной мощностью (ёмкостью между линией и землёй), а также самим генератором, и потребляется реактивной нагрузкой(индуктивной нагрузкой). Потери активной мощности в линии зависят и от передаваемой реактивной мощности. Чем больше переток реактивной мощности - тем больше потери активной. При длине ЛЭП переменного тока более нескольких тысяч километров наблюдается ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц, провод работает как антенна. brokgauz.academic.ru Линия электропередачи (ЛЭП) — один из компонентов электрической сети, система энергетического оборудования, предназначенная для передачи электроэнергии посредством электрического тока. Также электрическая линия в составе такой системы, выходящая за пределы электростанции или подстанции[1]. Различают воздушные и кабельные линии электропередачи. В последнее время приобретают популярность газоизолированные линии — ГИЛ. По ЛЭП также передают информацию при помощи высокочастотных сигналов (по оценкам специалистов, в СНГ используется порядка 60 тысяч ВЧ-каналов по ЛЭП) и ВОЛС[2]. Используются они для диспетчерского управления, передачи телеметрических данных, сигналов релейной защиты и противоаварийной автоматики. Строительство ЛЭП — сложная задача, которая включает в себя проектирование, производственные работы, монтаж, пуско-наладку, обслуживание. Крупнейшим строителем магистральных подстанций и линий электропередачи России является ОАО «Энергостройинвест-холдинг»[3](доля в общем объёме подрядов ФСК — 26 %). Воздушная линия электропередачи (ВЛ) — устройство, предназначенное для передачи или распределения электрической энергии по проводам, находящимся на открытом воздухе и прикреплённым с помощью траверс (кронштейнов), изоляторов и арматуры к опорам или другим сооружениям (мостам, путепроводам). Конструкция ВЛ, её проектирование и строительство регулируются Правилами устройства электроустановок (ПУЭ) и Строительными нормами и правилами (СНиП). В основном, ВЛ служат для передачи переменного тока и лишь в отдельных случаях (например, для связи энергосистем, питания контактной сети и другие) используются линии постоянного тока. Линии постоянного тока имеют меньшие потери на ёмкостную и индуктивную составляющие. В СССР было построено несколько линий электропередачи постоянного тока: Широкого распространения такие линии не получили. Эти группы существенно различаются, в основном — требованиями в части расчётных условий и конструкций. В сетях СНГ общего назначения переменного тока 50 Гц, согласно ГОСТ 721-77, должны использоваться следующие номинальные междуфазные напряжения: 380 В; (6)[4], 10, 20, 35, 110, 220, 330, 500, 750 и 1150 кВ. Могут также существовать сети, построенные по устаревшим стандартам с номинальными межфазными напряжениями: 220 В, 3 и 150 кВ. Самой высоковольтной ЛЭП в мире является линия Экибастуз-Кокчетав, номинальное напряжение — 1150 кВ. Однако, в настоящее время линия эксплуатируется под вдвое меньшим напряжением — 500 кВ. Номинальное напряжение для линий постоянного тока не регламентировано, чаще всего используются напряжения: 150, 400 (Выборгская ПС — Финляндия) и 800 кВ. В специальных сетях могут использоваться и другие классы напряжений, в основном это касается тяговых сетей железных дорог (27,5 кВ, 50 Гц переменного тока и 3,3 кВ постоянного тока), метрополитена (825 В постоянного тока), трамваев и троллейбусов (600 В постоянного тока). Монтаж линий электропередачи осуществляется Методом монтажа «под тяжением». Это особенно актуально в случае сложного рельефа местности. При подборе оборудования для монтажа ЛЭП необходимо учитывать количество проводов в фазе, их диаметр и максимальное расстояние между опорами ЛЭП. Кабельная линия электропередачи (КЛ) — линия для передачи электроэнергии или отдельных её импульсов, состоящая из одного или нескольких параллельных кабелей с соединительными, стопорными и концевыми муфтами (заделками) и крепёжными деталями, а для маслонаполненных линий, кроме того, с подпитывающими аппаратами и системой сигнализации давления масла. По классификации кабельные линии аналогичны воздушным линиям. Температура внутри кабельных каналов (тоннелей) в летнее время должна быть не более чем на 10 градусов Цельсия выше температуры наружного воздуха. При пожарах в кабельных помещениях в начальный период происходит медленное развитие горения и только спустя некоторое время скорость распространения горения существенно увеличивается. Практика свидетельствует, что при реальных пожарах в кабельных туннелях наблюдаются температуры до 600 °C и выше. Это объясняется тем, что в реальных условиях горят кабели, которые длительное время находятся под токовой нагрузкой и изоляция которых прогревается изнутри до температуры 80 °C и выше. Может возникнуть одновременное воспламенение кабелей в нескольких местах и на значительной длине. Связано это с тем, что кабель находится под нагрузкой и eгo изоляция нагревается до температуры, близкой к температуре самовоспламенения[5]. Кабель состоит из множества конструктивных элементов, для изготовления которых используют широкий спектр горючих материалов, в число которых входят материалы, имеющие низкую температуру воспламенения, материалы склонные к тлению. Также в конструкцию кабеля и кабельных конструкций входят металлические элементы. В случае пожара или токовой перегрузки происходит прогрев этих элементов до температуры порядка 500—600 ˚C, которая превышает температуру воспламенения (250—350 ˚C) многих полимерных материалов, входящих в конструкцию кабеля, в связи с чем возможно их повторное воспламенение от прогретых металлических элементов после прекращения подачи огнетушащего вещества. В связи с этим необходимо выбирать нормативные показатели подачи огнетушащих веществ, чтобы обеспечивать ликвидацию пламенного горения, а также исключить возможность повторного воспламенения[6]. Длительное время в кабельных помещениях применялись установки пенного тушения. Однако опыт эксплуатации выявил ряд недостатков: Исследования показали, что распылённая вода обладает большей огнетушащей способностью по сравнению с воздушно-механической пеной, так как она хорошо смачивает и охлаждает горящие кабели и строительные конструкции[7]. Линейная скорость распространения пламени для кабельных сооружений (горение кабелей) составляет 1,1 м/мин[8]. Изоляция кабельных линий делится на два основных типа: Здесь не указана изоляция газообразными веществами и некоторые виды жидкостной и твёрдой изоляции из-за их относительно редкого применения в момент написания статьи. Провода на основе высокотемпературных сверхпроводников (ВТСП), сверхпроводимость позволяет передавать электрический ток без потерь, а также достичь высокой плотности токов. Большим недостатком в применение ВТСП-проводов является необходимость в постоянном охлаждении, что ограничивает применение ВТСП-проводов на практике. Несмотря на сложности в производстве и эксплуатации ВТСП-проводов, делаются постоянные попытки применения их на практике, так в демонстрационной системе силовой сети, запущенной в эксплуатацию в июле 2006 в США, при напряжении 138 кВ передаётся мощность в 574 МВА на длину 600 метров. Первая коммерческая сверхпроводящая линия электропередачи была запущена в эксплуатацию фирмой American Superconductor на Лонг-Айленде в Нью-Йорке в конце июня 2008 года[9]. Энергосистемы Южной Кореи собираются создать к 2015 году сверхпроводящие линии электропередачи общей длиной в 20 км[10][11]. Потери электроэнергии в проводах зависят от силы тока, поэтому при передаче её на дальние расстояния, напряжение многократно повышают (во столько же раз уменьшая силу тока) с помощью трансформатора, что при передаче той же мощности позволяет значительно снизить потери. Однако с ростом напряжения начинают происходить различные разрядные явления. В воздушных линиях сверхвысокого напряжения присутствуют потери активной мощности на корону (коронный разряд). Коронный разряд возникает, когда напряжённость электрического поля E у поверхности провода превысит пороговую величину Eкр, которую можно вычислить по эмпирической формуле Пика: кВ/см,где r — радиус провода в метрах, β — отношение плотности воздуха к нормальной[12]. Напряжённость электрического поля прямо пропорциональна напряжению на проводе и обратно пропорциональна его радиусу, поэтому бороться с потерями на корону можно, увеличивая радиус проводов, а также (в меньшей степени) — применяя расщепление фаз, то есть используя в каждой фазе несколько проводов, удерживаемых специальными распорками на расстоянии 40-50 см. Потери на корону приблизительно пропорциональны произведению U(U-Uкр). Потери на корону резко возрастают с ростом напряжения, среднегодовые потери на ЛЭП напряжением 500 кВ составляют около 12 кВт/км, при напряжении 750 кВ — 37 кВт/км, при 1150 кВ — 80 кВт/км. Потери также резко возрастают при осадках, особенно изморози, и могут достигать 1200 кВт/км[13]. Важной величиной, влияющей на экономичность ЛЭП переменного тока, является величина, характеризующая соотношение между активной и реактивной мощностями в линии — cos φ. Активная мощность — часть полной мощности, прошедшей по проводам и переданной в нагрузку; Реактивная мощность — это мощность, которая генерируется линией, её зарядной мощностью (ёмкостью между линией и землёй), а также самим генератором, и потребляется реактивной нагрузкой (индуктивной нагрузкой). Потери активной мощности в линии зависят и от передаваемой реактивной мощности. Чем больше переток реактивной мощности, тем больше потери активной. При длине ЛЭП переменного тока более нескольких тысяч километров наблюдается ещё один вид потерь — радиоизлучение. Так как такая длина уже сравнима с длиной электромагнитной волны частотой 50 Гц (6000 км, длина четвертьволнового вибратора 1500 км), провод работает как излучающая антенна. ЛЭП обладает индуктивностью и ёмкостью. Емкостная мощность пропорциональна квадрату напряжения, и не зависит от мощности, передаваемой по линии. Индуктивная же мощность линии пропорциональна квадрату тока, а значит и мощности линии. При определенной нагрузке индуктивная и емкостная мощности линии становятся равными, и они компенсируют друг друга. Линия становится «идеальной», потребляющей столько реактивной мощности, сколько её вырабатывает. Такая мощность называется натуральной мощностью. Она определяется только погонными индуктивностью и емкостью, и не зависит от длины линии. По величине натуральной мощности можно ориентировочно судить о пропускной способности линии электропередачи. При передаче такой мощности на линии имеет место минимальные потери мощности, режим её работы является оптимальным. При расщеплении фаз, за счет уменьшения индуктивного сопротивления и увеличения емкостной проводимости линии, натуральная мощность увеличивается. При увеличении расстояния между проводами натуральная мощность уменьшается, и наоборот, для повышения натуральной мощности необходимо уменьшать расстояние между проводами. Наибольшей натуральной мощностью обладают кабельные линии, имеющие большую емкостную проводимость и малую индуктивность.[14] Под пропускной способностью электропередачи понимается наибольшая активная мощность трех фаз электропередачи, которую можно передать в длительном установившемся режиме с учетом режимно-технических ограничений. Наибольшая передаваемая активная мощность электропередачи ограничена условиями статической устойчивости генераторов электрических станций, передающей и приемной части электроэнергетической системы, и допустимой мощностью по нагреву проводов линии с допустимым током. Из практики эксплуатации электроэнергетических систем следует, что пропускная способность электропередач 500 кВ и выше обычно определяется фактором статической устойчивости, для электропередач 220—330 кВ ограничения могут наступать как по условию устойчивости, так и по допустимому нагреву, 110 кВ и ниже — только по нагреву. Характеристика пропускной способности воздушных линий электропередачи[15][16] кВ линии, км длина при кпд = 0.9 сечения проводов, мм2 мощность Р нат МВт Рнат Рнат www.wikiznanie.ru В 60-х годах XX века было обнаружено опасное воздействие электромагнитных полей ЛЭП на человеческий организм. Состояние здоровья людей, близко контактирующих с линиями электропередач в условиях производства или проживающие рядом примерно одинаковы. Люди жалуются на повышенную утомляемость, раздражительность, нарушения памяти, нарушение сна, депрессию, мигрень, дезориентацию в пространстве, мышечную слабость, проблемы с сердечнососудистой системой, гипотонию, нарушения зрения, атрофию цветового восприятия, снижение иммунитета, потенции, изменение состава крови. Этот список можно продолжить ещё целым рядом физиологических расстройств и всевозможных заболеваний. Доказано что у людей, живущих поблизости ЛЭП, наблюдаются онкологические заболевания, серьёзные нарушения репродуктивной функции, а также так называемый синдром электромагнитной сверхчувствительности. Довольно страшно слышать отчеты об исследованиях некоторых иностранных ученных на предмет влияния высоковольтных линий электропередач на здоровье детей. Обнаружено, что дети, проживающие на расстоянии до 150 метров от ЛЭП, подстанций, в два раза чаще болеют лейкемией, а практически у каждого из них встречаются расстройства нервной системы. В некоторых странах существует такой медицинский термин, как электромагнитная аллергия. Люди, страдающие ей, имеют возможность бесплатно поменять место проживания на другое, находящееся как можно дальше от источников электромагнитного излучения. Всё это официально спонсируется правительством! Как же комментирую энергетики возможную опасность, исходящую от ЛЭП? В первую очередь, они настаивают на том, что напряжение электрического тока в линиях электропередач может быть разным, а поэтому следует различать безопасное и опасное напряжение. Дальность воздействия магнитного поля, создаваемого ЛЭП, прямо пропорциональна мощности самой линии. Профессионал определяет класс напряжения ЛЭП по количеству проводов в связке не на самой опоре: — 2 провода – 330 кВ; — 3 провода – 500 кВ; — 4 провода – 750 кВ. Меньший класс напряжения ЛЭП определяется по количеству изоляторов:— 3-5 изоляторов – 35 кВ; — 6-8 изоляторов – 110 кВ; — 15 изоляторов – 220 кВ. Для того чтобы защитить население от вредного воздействия линий электропередач, существуют специальные нормативы, определяющие некую санитарную зону, условно начинающуюся от крайнего провода ЛЭП, спроецированного на землю: — Напряжение менее 20 кВ – 10 м; — Напряжение менее 35 кВ – 15 м; — Напряжение менее 110 кВ – 20 м; — Напряжение менее 150-220 кВ – 25 м; — Напряжение менее 330 – 500 кВ – 30 м; — Напряжение менее 750 кВ – 40 м. Эти нормы относятся к Москве и Московской области, в соответствии с ними и выделяются и участки под застройку. Эти нормативы не учитывают вредного воздействия электромагнитного излучения, а ведь именно оно подчас в десятки, а иногда и в сотни раз опаснее для здоровья! Чтобы магнитное поле не оказывало влияние на состояние здоровья, умножьте каждый из перечисленных показателей на 10. Получается, что маломощная ЛЭП безвредна лишь на расстоянии в 100 метров! Провода ЛЭП таят в себе напряжение, максимально соприкасающееся с порогом коронного разряда. В условиях непогоды этот разряд сбрасывает в атмосферу облако противоположно заряженных ионов. Электрическое поле, создаваемое ими, даже на большом удалении от ЛЭП может быть гораздо больше допустимых безвредных величин. Новый проект московского правительства о переносе некоторых участков высоковольтных линий электропередач под землю. Освободившуюся площадь мэрия планирует пустить под застройку. Вот тут то и возникает закономерный вопрос – а так ли будут безопасны подземные ЛЭП для проживающих над ними людей? Станут ли застройщики вызывать специалистов-энергетиков на местность, планируемую под строительство жилья? Электромагнитное излучение подземных ЛЭП и его воздействие на человеческий организм, к сожалению, ещё малоизучено. Первыми в подземелье уйдут линии электропередач, расположенные в районах – Ленинский проспект, проспект Мира и Щёлковское шоссе. Далее планируется убрать под землю ЛЭП Северо-Восточного административного округа, а именно в Северном и Южном Медведкове, а также в Бибирево и Алтуфьево. Эти территории уже выставлены на продажу и ждут своих инвесторов. Всего же в столице насчитывается больше сотни ЛЭП и электроподстанций открытого типа. Потенциальные застройщики земель из под ЛЭП, а вместе с ними и московское правительство, утверждают, что современные технологии позволят полностью изолировать электромагнитное излучение. Для этого планируется использовать коаксиальные кабели, прокладываемые в специальных экранирующих коллекторах. Перенос ЛЭП под землю процедура дорогостоящая (примерно 1 млн. евро за 1 км прокладываемого кабеля), а поэтому нет никакой гарантии, что девелоперы не будут «экономить». Следовательно, нет уверенности что жилье, возведенное над ЛЭП, станет безопасным по всем параметрам. Самое правильное решение — покупка жилья, находящегося в безопасной зоне – где нет вреда здоровью! ♌ Ловим Золотую рыбку в Интернете fatpurse.ruЛиния электропередачи. Высоковольтные лэп
Линия электропередачи - это... Что такое Линия электропередачи?
Линии электропередачи Линии электропередачи (Шарья) Воздушные линии электропередачи
Линия электропередачи 500 кВ Состав ВЛ
Документы, регулирующие ВЛ
Классификация ВЛ
По роду тока
По назначению
По напряжению
По режиму работы нейтралей в электроустановках
По режиму работы в зависимости от механического состояния
Основные элементы ВЛ
Кабельные линии электропередачи
Кабельные линии делят по условиям прохождения
К кабельным сооружениям относятся
Пожарная безопасность кабельных сооружений
По типу изоляции
Высокотемпературные сверхпроводники
HTS кабель
Потери в ЛЭП
Потери в ЛЭП переменного тока
См. также
Литература
Ссылки
Примечания
Линия электропередачи — Википедия
Линии электропередачи (Шарья, Россия) Воздушные линии электропередачи[править]
Линия электропередачи на напряжение 500 кВ Состав ВЛ[править]
Документы, регулирующие ВЛ[править]
Классификация ВЛ[править]
По роду тока[править]
Линия электропередачи постоянного тока Волгоград-Донбасс (Ростовская и Волгоградская область) По назначению[править]
По напряжению[править]
ЛЭП на 10 кВ, получившая широкое распространение в странах бывшего СССР По режиму работы нейтралей в электроустановках[править]
По режиму работы в зависимости от механического состояния[править]
Основные элементы ВЛ[править]
Монтаж воздушных линий электропередачи[править]
Кабельные линии электропередачи[править]
Кабельные линии делят по условиям прохождения[править]
К кабельным сооружениям относятся[править]
Пожарная безопасность кабельных сооружений[править]
По типу изоляции[править]
Высокотемпературные сверхпроводники[править]
ВТСП-провод[править]
Потери в ЛЭП переменного тока[править]
Натуральная мощность и пропускная способность ЛЭП[править]
Натуральная мощность[править]
Пропускная способность[править]
Uном, По устойчивости По нагреву МВт в долях 10(6) 5 1 2,1 20 8 1 7,5 35 20 1 15 110 80 1 30 50 1,67 220 150-250 400 1х300 120-135 350 2,9 280 2,3 330 200-300 700 2х300 350-360 800 2,3 760 2,2 500 300-400 1200 3х300 900 1350 1,5 1740 1,9 750 400-500 2200 5х300 2100 2500 1,2 4600 2,1 1150 400-500 3000 8х300 5300 4500 0,85 11000 2,1 Линий электропередач ЛЭП %%
Вред от линий электропередач ЛЭП
Поделиться с друзьями: