Ветрогенераторы уже достаточно давно рассматриваются альтернативой для традиционной энергетики. Энергия ветра, преобразованная в электричество, обещает стать дешёвой, добываемой относительно просто и с малыми затратами на техобслуживание. А если брать во внимание счета, которые приходят за электричество, то в целях экономии стоит попытаться собрать собственный ветрогенератор, согласны? Есть реальные примеры создания установок, генерирующих приличные мощности. Тем не менее, технология «ветряков» остаётся пока что за рамками поля конкурентов, способных противостоять традиционному способу добычи электричества. Почему? Давайте попробуем разобраться в этом вопросе. В нашем материале вы найдете пошаговую инструкцию по сборке и подключению ветрогенератора. Также мы остановимся на самых распространенных ошибках, которые допускают при конструировании ветряков. Для наглядности статья сопровождается тематическими фото- и видеоматериалами. Содержание статьи: Особый интерес к ветряной энергии проявляется на уровне бытовой сферы. Это понятно, если краем глаза взглянуть на очередной счёт за потреблённую энергию. Поэтому разного рода умельцы активизируются, используя все возможности получения электричества недорого. Одна из таких возможностей, вполне реальная, тесно связана с ветряком из автомобильного генератора. Уже готовый прибор – автомобильный генератор – достаточно лишь оснастить пропеллером, чтобы иметь возможность снимать с клемм генератора какое-то значение электрической энергии. Правда, при условии наличия ветреной погоды. Пример из практики бытового применения ветряных генераторов. Удачно разработанная и вполне эффективная практическая конструкция ветряка. Установлен трёхлопастной винт, что редкость для бытовых аппаратов Использование фактически любого автомобильного генератора приемлемо для конструирования ветряка. Но подобрать для дела обычно стараются модель мощную, способную выдавать большие токи. Здесь на пике популярности конструкции генераторов от грузовых автомобилей, крупных пассажирских автобусов, тракторов и т.п. Помимо генератора для изготовления ветряка потребуется ещё ряд комплектующих деталей: Конструкция винта на две или три лопасти считается наиболее оптимальной для классического ветряного генератора. Но бытовой проект зачастую далёк от инженерной классики. Поэтому чаще всего на домашнюю конструкцию стараются подобрать уже готовые винты. Крыльчатка от вентилятора легкового автомобиля, которая будет использована в качестве винта ветряной домашней установки. Лёгкость и большая полезная площадь для воздушной силы позволяют применять такие варианты Таким, к примеру, может стать крыльчатка от внешнего блока сплит-системы кондиционирования воздуха или от вентилятора того же автомобиля. Но когда есть желание следовать традициям конструирования ветрогенераторов, придётся сооружать пропеллер ветряка от начала до конца своими руками. Оптимальной основой для генератора домашнего ветряка видится модель АТ-700, взятая от трактора серии ДТ. Правда, этот тракторный генератор в его изначальном виде рассчитан на частоту вращения ротора до 6000 об/мин. Под конструкцию домашнего ветряка такой параметр явно чрезмерный. Есть два выхода из положения: В принципе, оба варианта модернизации прибора достижимы. Но, судя по отзывам состоявшихся конструкторов, вариант с перемоткой обмотки статора более приемлем. Тем более, если учитывать вес самого генератора АТ-700, достигающий 6 кг. Тракторный генератор АТ-700. Многочисленные проекты в бытовой сфере разрабатывались на базе именно этого устройства, обладающего высокой отдачей по току. Но требуется небольшая модернизация Если прибор дополнить редуктором, вес общего модуля увеличится вдвое. А это важный параметр для конструкции ветряка. Вес всегда стремятся уменьшить. Материалом для изготовления лопастей винта служит поливная алюминиевая труба (d = 200 мм) длиной 0,7 – 1,0 м. Изначально её разрезают вдоль на четыре отрезка, а затем из двух или трёх полученных частей вырезают лопасти требуемой формы. Так как алюминий – материал, хорошо поддающийся обработке, вырезать из куска трубы нужную форму лопасти не проблема. Главное – правильно рассчитать и нарисовать шаблон. Приготовленные лопасти будущего винта необходимо как-то скрепить и насадить на вал генератора. Эта работа более сложная, требует точного баланса и особенно при выполнении трехлопастной конструкции. Есть масса вариантов изготовления диска винта. Один из них – создание этой детали из алюминиевых пластин. Потребуется рассчитать диаметр диска винта с учётом метровой длины лопастей. Для размаха крыла в 2 метра, расчётный диаметр диска может составлять 150-200 мм. На основании рассчитанного диаметра из листового алюминия вырезается необходимое количество круглых пластин (6-7 шт.). Пример изготовления винта ветряного генератора из двухсотмиллиметровой алюминиевой трубы, применяемой на сельскохозяйственных полях для полива урожая. Получается лёгкая и эффективная конструкция Вырезанные круглые пластины накладывают друг на друга, выравнивают по кромкам и скрепляют. Для скрепления лучше всего использовать качественный эпоксидный клей. Но не исключены также иные методы крепежа. На готовом склеенном диске необходимо в центральной точке разметить и просверлить отверстие под крепление на валу генератора. Отверстие доработать шпоночным пазом под размер шпонки, установленной на валу ротора генератора. Приготовленный таким способом пропеллерный диск размечают под крепление лопастей. По намеченным линиям сверлят отверстия для болтов крепления кронштейнов. Эти детали тоже делаются алюминиевыми с подбором по толщине, достаточной для компенсации передаваемых усилий. Останется приложить изготовленные ранее лопасти к диску в намеченных точках соединения, сбалансировать их на ровной поверхности и закрепить болтами. Тракторный генератор АТ-700, оснащённый самодельным винтом, уже представляет собой реальный ветряк. С целью получения максимального эффекта от конструкции, её желательно поднять метров на 5-7 и к тому же обеспечить круговое перемещение на 360°. Поэтому флюгер-ветряк ставят на мачту, которую проще всего изготовить на базе металлической трубы. Установленная мачта из металлической трубы диаметром 50 мм с ветряным генератором наверху. Для обеспечения устойчивости мачты применяются растяжки из металлического троса Мачта высотой 5-7 метров, оснащённая наверху ветрогенератором, будет испытывать значительные нагрузки. Соответственно диаметр металлической трубы нужен достаточно большой — не менее 50 мм по наружному размеру. Крепление мачты выполняется за счёт четырёх тросовых растяжек, закреплённых сверху ближе к ветряку и растянутых в противовес друг другу. Под верхний обрез трубы-мачты, во внутреннюю область, запрессовывается пара подходящих подшипников или крепится каким-то иным способом. Это будет опорный крутящийся блок, куда встанет флюгер с генератором и винтом. Остаётся сделать сам флюгер и установить на него всё необходимое оборудование. Флюгерную конструкцию, на одном конце которой место под автомобильный генератор с винтом, а на другом — место под «хвостовик», рекомендуется делать из лёгкого прочного материала. Например, алюминиевая труба прямоугольного профиля подошла бы под основание в самый раз. В качестве крепежа генератора к профильной трубе удобнее применить хомуты из мягкой металлической ленты (лучше нержавеющей). Пример возможного крепления корпуса генератора на профильной трубе флюгера. Здесь используется металлическая рама с передним и задним кронштейнами под болтовое соединение Хвост флюгера можно соорудить из того же алюминиевого листа и закрепить его к профильной трубе уголками. В точке центра тяжести, на профильной трубе, необходимо укрепить металлический штырь из нержавейки. Эта деталь – в виде длинного болта (250-300 мм), диаметром около 30 мм (рассчитывается), проходит поперёк сквозь тело профильной алюминиевой трубы и закрепляется снизу гайкой. Поверх гайки ставится контргайка. Диаметр резьбы болта должен быть чуть меньше внутреннего диаметра колец подшипников, запрессованных в трубе-мачте. В центре болта, по его оси, просверливается отверстие 7-10 мм. Сквозь это отверстие будет пропускаться электрический кабель от генератора и по трубе уходить вниз к месту подключения. После всех описанных приготовлений (обязательно в условиях безветренной погоды) приступают к установке: На этом конструирование ветрового генератора можно считать завершённым. Однако есть ещё масса отдельных деталей процесса, с которыми придётся столкнуться в период применения устройства. Структурная схема полноценной ветряной установки: 1 – ветряк, 2 – конвертер заряда АКБ; 3 – аккумулятор автомобильный; 4 – инвертор 24/220; 5,6 – выходы напряжений 220В и 24В Эти детали связаны уже с автоматикой, регулирующей накопление и распределение энергии. Такие устройства как контроллер заряда, инвертор тока и прочие, являются обязательными компонентами ветровых генераторов. Сборка ветрогенератора в бытовых условиях собственными руками – дело, конечно же, не безошибочное. Даже в конструкциях промышленных ветряков инженерами допускаются ошибки. Но на ошибках учатся, о чём подтверждают вполне состоявшиеся бытовые конструкции. Итак, среди ошибок при устройстве бытовых ветряных генераторов часто фигурирует такая деталь, как отсутствие в конструкции генератора модуля торможения. Стандартное исполнение таких приборов (автомобильных или тракторных) такой детали не предусматривает. Значит, генератор необходимо дорабатывать. Однако не каждому «конструктору» хочется заниматься этим тонким делом. Многие игнорируют эту деталь, надеясь на «авось». Как результат – при сильном ветре винт раскручивается до неимоверно высоких скоростей. Подшипники генератора не выдерживают, разбивают посадочные места алюминиевых крышек. Происходит клин ротора. Разрушенный ветрогенератор по причине недоработок в конструкции. Ошибки конструирования и монтажа подобных конструкций приводят к тяжёлым последствиям К этой же теме относится недоработка, связанная с отсутствием ограничителя поворота флюгера. Нередко этот компонент попросту забывают установить и вспоминают только тогда, когда потоки ветра начинают раскручивать «петушка» вокруг своей оси, как юлу в передаче «Что? Где? Когда?». Результат плачевный. Минимум ущерба – перекручивание и обрыв электрического кабеля, а в тяжёлых случаях – разнос всей конструкции. Другая примечательная ошибка сборки – неправильный расчёт точки центра тяжести на основании флюгера. В этом случае устройство какое-то время может функционировать нормально. Но со временем образуется перекос на подшипниковом узле, свобода вращения ограничивается, эффективность конструкции по отдаче энергии резко снижается. Нередко током, полученным от генератора, пытаются напрямую питать аккумуляторную батарею. Совсем скоро начинают удивляться – почему аккумулятор не держит заряд или обнаруживают пробой 2-3 банок. Это банальная и естественная ошибка, так как в любом случае заряд АКБ должен проходить в условиях определённых токов и напряжений. Здесь нужен контроль этого процесса. Даже обычный электрический шуруповёрт может стать ветряком, если знать основы устройства ветрогенератора. Интерес к ветрогенераторам не снижается. Напротив, этот вариант добычи электрической энергии всё чаще рассматривается на уровне владельцев загородной недвижимостью. Очевидно, если совмещать сразу несколько видов энергии – ветра, солнца, гидротурбин или атомных станций, такое совмещение может дать экономический эффект. При этом риски пользователя остаться без электричества сводятся к нулю. sovet-ingenera.com Ветрогенератор, изготовленный из автомобильного генератора, может помочь в ситуации, когда в частном доме нет возможности подключения к линии электропередачи. Либо послужит вспомогательным источником альтернативной энергии. Такое устройство можно сделать своими руками из подручных материалов, используя наработки народных умельцев. Фото и видео продемонстрируют процесс создания самодельной ветровой установки. Существует огромное видовое разнообразие ветрогенераторов и чертежей их изготовления. Но любая конструкция включает в себя следующие обязательные элементы: Обладая некоторыми навыками, можно смастерить ветрогенератор своими руками Кроме этого, необходимо заранее продумать систему управления и распределения электроэнергии, начертить схему монтажа. Лопасти, пожалуй, самая важная часть ветрогенератора. От конструкции будет зависеть работа остальных узлов устройства. Изготавливают их из разных материалов. Даже из пластиковой канализационной трубы. Лопасти из трубы просты в изготовлении, стоят дёшево и не подвержены воздействию влаги. Порядок изготовления ветроколеса следующий: Лопасти для ветрового колеса После сборки ветроколесо нуждается в балансировке. Его закрепляют на штативе горизонтально. Операцию проводят в закрытом от ветра помещении. В случае правильно проведённой балансировки колесо не должно двигаться. Если же лопасти вращаются сами, то их требуется подточить до придания равновесия всей конструкции. Только после успешного завершения данной процедуры следует перейти к проверке точности вращения лопастей, они должны крутиться в одной плоскости без перекоса. Допускается погрешность в 2 мм. Схема сборки генератора Для изготовления мачты подойдёт старая водопроводная труба диаметром не менее 15 см, длиной около 7 м. Если в пределах 30 м от предполагаемого места монтажа есть постройки, то высоту конструкции корректируют в сторону увеличения. Для эффективной работы ветроустановки лопастник поднимают выше препятствия минимум на 1 м. Основание мачты и колышки для закрепления растяжек бетонируют. К кольям приваривают хомуты с болтами. Для растяжек применяют оцинкованный 6 мм трос. Совет. Собранная мачта обладает немалым весом, при ручной установке понадобится противовес из трубы с грузом. Для изготовления генератора ветряка подойдёт генератор от любого автомобиля. Их конструкции схожи между собой, а переделка сводится к перемотке провода статора и изготовлению ротора на неодимовых магнитах. В полюсах ротора высверливаются отверстия для фиксации магнитов. Устанавливают их, чередуя полюса. Ротор оборачивают бумагой, а пустоты между магнитами заливают эпоксидной смолой. Автомобильный генератор Таким же способом можно переделать двигатель от старой стиральной машины. Только магниты в этом случае во избежание залипания наклеивают под углом. Новую обмотку перематывают по катушке на зуб статора. Можно сделать всыпную обмотку, это как кому удобно. Чем больше количество витков, тем эффективнее получится генератор. Мотают катушки в одном направлении по трёхфазной схеме. Готовый генератор стоит опробовать и измерить данные. Если при 300 оборотах генератор выдаёт порядка 30 вольт, это хороший результат. Генератор для ветряка из автомобильного генератора Раму генератора сваривают из профильной трубы. Хвост изготавливают из оцинкованной жести. Поворотная ось представляет собой трубку с двумя подшипниками. Генератор крепят к мачте таким образом, чтобы расстояние от лопасти до мачты было не менее 25 см. В целях безопасности для финальной сборки и монтажа мачты стоит выбрать безветренный день. Лопасти под действием сильного ветра могут изогнуться и разбиться о мачту. Чтобы использовать аккумуляторы для питания техники, которая работает от сети 220 В, потребуется установить инвертор преобразования напряжения. Ёмкость батареи подбирается индивидуально к ветрогенератору. Этот показатель зависит от скорости ветра на местности, мощности подключаемой техники и частоты пользования ею. Устройство ветрогенератора Чтобы батарея не вышла из строя от чрезмерной зарядки, понадобится контроллер напряжения. Его можно изготовить самостоятельно, если обладаете достаточными знаниями в электронике, или купить готовый. В продаже имеется множество контролеров для механизмов получения альтернативной энергии. Совет. Чтобы лопастник не сломался при сильном ветре, устанавливают простое устройство – защитный флюгер. Ветрогенератор, как и любое другое устройство, нуждается в техническом контроле и обслуживании. Для бесперебойной работы ветряка периодически проводят следующие работы. Схема работы ветрогенератора Теперь, когда установка окончена, можно подключать приборы и пользоваться электроэнергией. По крайней мере, пока ветрено. dachadizain.ru » Своими руками Самодельная лопасть вертикального ветрогенератора Каркас ветряка пока сделал из бруса 50*150мм Ветрогенератор в работе, пока правда без генератора В основном все готово, надо соединительный кардан под размер удлинить, и ремни другие купить на редуктор, так-как купил 1210 мм длинной, а надо 1110 мм, были куплены сначала не те. При 3м/с стартовый момент во всех точках поворота примерно 39Нм. Руками даже за 12-ти сантиметровый фланец не реально остановить при трогании ,перчатки в клочья разлетаются, а уж когда вращается вообще и не стоит тормозить, площадь у нее получилась 6,3 м2, Ветряк уже испытал на себе сильный ветер. Если получится планируемая мощность, то весь каркас будет из труб, а это пока экспериментальный каркас. в случае чего в стройку уйдет. Через некоторое время все было готово к первым испытаниям, но ветра почемуто не-было целых три дня. Ветряк страгивался при 3м/с, но больше 15ватт пока приборы не фиксировали. И наконец подул небольшой ветерок и далее на видео первые вольты и амперы. Электроэнергия неуклонно дорожает. Чтобы чувствовать себя комфортно за городом в жаркую летнюю погоду и морозным зимним днем, необходимо или основательно потратиться, или заняться поиском альтернативных источников энергии. Россия – огромная по площади страна, имеющая большие равнинные территории. Хотя в большинстве регионов у нас преобладают медленные ветры, малообжитая местность обдувается мощными и буйными воздушными потоками. Поэтому присутствие ветрогенератора в хозяйстве владельца загородной недвижимости чаще всего оправдано. Подходящую модель выбирают, исходя из местности применения и фактических целей использования. Можно сделать своими руками несложный ветряк роторного типа. Конечно, снабдить электроэнергией большой коттедж ему вряд ли будет под силу, зато обеспечить электричеством скромный садовый домик вполне под силу. С его помощью можно снабдить светом в вечернее время суток хозяйственные постройки, осветить садовые дорожки и придомовую территорию. Так или почти так выглядит роторный ветрогенератор, сделанный своими руками. Как видите, в конструкции этого оборудования нет ничего сверхсложного Чтобы собрать ветрогенератор, мощность которого не будет превышать 1,5 КВт, нам понадобятся: Для выполнения работы нам будут нужны ножницы по металлу или болгарка, рулетка, маркер или строительный карандаш, отвертка, ключи, дрель, сверло, кусачки. Мы собираемся изготовить ротор и переделать шкив генератора. Для начала работы нам понадобится металлическая ёмкость цилиндрической формы. Чаще всего для этих целей приспосабливают кастрюлю или ведро. Возьмем рулетку и маркер или строительный карандаш и поделим ёмкость на четыре равные части. Если будем резать металл ножницами, то, чтобы их вставить, нужно сначала сделать отверстия. Можно воспользоваться и болгаркой, если ведро не выполнено из крашеной жести или оцинкованной стали. В этих случаях металл неминуемо перегреется. Вырезаем лопасти, не прорезая их до конца. Чтобы не ошибиться с размерами лопастей, которые мы прорезаем в ёмкости, необходимо сделать тщательные замеры и тщательно всё пересчитать В днище и в шкиве размечаем и высверливаем отверстия для болтов. На этой стадии важно не торопиться и расположить отверстия с соблюдением симметрии, чтобы при вращении избежать дисбаланса. Лопасти следует отогнуть, но не слишком сильно. При выполнении этой части работы учитываем направление вращения генератора. Обычно он крутится по движению часовой стрелке. В зависимости от угла изгиба увеличивается и площадь воздействия потоков ветра, а, значит, и скорость вращения. Это ещё один из вариантов лопастей. В данном случае каждая деталь существует отдельно, а не в составе ёмкости, из которой вырезалась Раз каждая из лопастей ветряка существует отдельно, прикручивать нужно каждую. Преимущество такой конструкции в её повышенной ремонтопригодности Ведро с готовыми лопастями следует закрепить на шкиве, используя болты. На мачту при помощи хомутов устанавливаем генератор, затем подсоединяем провода и собираем цепь. Схему, цвета проводов и маркировку контактов лучше заранее переписать. Провода тоже нужно зафиксировать на мачте. Чтобы подсоединить аккумулятор, используем провода 4 мм 2. длина которых не должна быть более 1-го метра. Нагрузку (электроприборы и освещение) подключаем с помощью проводов сечением 2,5 мм 2. Не забываем поставить преобразователь (инвертер). Его включают в сеть к контактам 7,8 проводом 4 мм 2 . Конструкция ветряной установки состоит из резистора (1), обмотки стартера генератора (2), ротора генератора (3), регулятора напряжения (4), реле обратного тока (5), амперметра (6), аккумулятора (7), предохранителя (8), выключателя (9) Если всё сделано правильно, работать этот ветрогенератор будет, не создавая вам проблем. При аккумуляторе 75А и с преобразователем 1000 W он может питать уличное освещение, охранную сигнализацию, приборы видеонаблюдения и т.д. Схема работы установки наглядно демонстрирует то, как именно энергия ветра преобразуется в электричество и то, как она используется по назначению Достоинства такой модели очевидны: это весьма экономичное изделие, хорошо поддаётся ремонту, не требует особых условий для своего функционирования, работает надежно и не нарушает ваш акустический комфорт. К недостаткам можно отнести невысокую производительность и значительную зависимость от сильных порывов ветра: лопасти могут быть сорваны воздушными потоками. Аксиальные ветряки с безжелезными статорами на неодимовых магнитах в России до последнего времени не делали по причине недоступности последних. Но теперь они есть и в нашей стране, причем стоят они дешевле, чем изначально. Поэтому и наши умельцы стали изготавливать ветрогенераторы этого типа. Со временем, когда возможности роторного ветрогенератора уже не будут обеспечивать все потребности хозяйства, можно сделать аксиальную модель на неодимовых магнитах За основу аксиального генератора нужно взять ступицу от автомобиля с тормозными дисками. Если эта деталь была в эксплуатации, её необходимо разобрать, подшипники поверить и смазать, ржавчину счистить. Готовый генератор будет покрашен. Чтобы качественно отчистить ступицу от ржавчины, воспользуйтесь металлической щеткой, которую можно насадить на электродрель. Ступица снова будет выглядеть отлично Нам предстоит наклеивать магниты на диски ротора. В данном случае используются 20 магнитов размером 25х8мм. Если вы решите сделать другое количество полюсов, то используйте правило: в однофазном генераторе должно быть сколько полюсов, столько и магнитов, а в трехфазном необходимо соблюдать соотношение 4/3 или 2/3 полюса к катушкам. Размещать магниты следует, чередуя полюса. Чтобы их расположение было правильным, используйте шаблон с секторами, нанесенными на бумаге или на самом диске. Если есть такая возможность, магниты лучше использовать прямоугольные, а не круглые, потому что у круглых магнитное поле сосредоточено в центре, а у прямоугольных – по их длине. Противостоящие магниты должны иметь разные полюса. Чтобы ничего не перепутать, маркером нанесите на их поверхность «+» или «-». Для определения полюса возьмите один магнит и подносите к нему другие. На притягивающихся поверхностях ставьте плюс, а на отталкивающихся – минус. На дисках полюса должны чередоваться. Магниты правильно размещены. Перед их фиксацией эпоксидной смолой, необходимо сделать бортики из пластилина, чтобы клейкая масса могла застыть, а не стекла на стол или пол Для закрепления магнитов нужно использовать сильный клей, после чего прочность склейки дополнительно усиливают эпоксидной смолой. Ею заливают магниты. Чтобы предотвратить растекание смолы можно сделать бордюры из пластилина или просто обмотать диск скотчем. Однофазный статор хуже трехфазного, потому что при нагрузке он даёт вибрацию. Это происходит из-за разницы в амплитуде тока, которая возникает по причине непостоянной отдачи его за момент времени. Трехфазная модель этим недостатком не страдает. Мощность в ней всегда постоянна, потому что фазы друг друга компенсируют: если в одной ток падает, а в другой он нарастает. В споре однофазного и трехфазного вариантов последний выходит победителем, потому что дополнительная вибрация не продлевает срок службы оборудования и раздражает слух В результате отдача трехфазной модели на 50% превышает тот же показатель однофазной. Другим плюсом отсутствия ненужной вибрации является акустический комфорт при работе под нагрузкой: генератор не гудит во время его эксплуатации. Кроме того, вибрация всегда выводит ветрогенератор из строя до истечения срока его эксплуатации. Любой специалист вам скажет, что перед наматыванием катушек нужно произвести тщательный расчет. А любой практик все сделает интуитивно. Наш генератор не будет слишком быстроходным. Нам нужно, чтобы процесс зарядки 12-вольтового аккумулятора начался при 100-150 оборотах в минуту. При таких исходных данных общее число витков во всех катушках должно составлять 1000-1200шт. Осталось разделить эту цифру на количество катушек и узнать, сколько витков будет в каждой. Чтобы сделать ветрогенератор на низких оборотах мощнее, нужно увеличить число полюсов. При этом в катушках возрастет частота колебания тока. Для намотки катушек лучше использовать толстый провод. Это уменьшит сопротивление, а, значит, сила тока возрастет. Следует учесть, что при большом напряжении ток может оказаться «съеденным» сопротивлением обмотки. Простой самодельный станочек поможет быстро и аккуратно намотать качественные катушки. Статор размечен, катушки уложены на свои места. Для их фиксации используется эпоксидная смола, стеканию которой снова противостоят пластилиновые бортики Из-за числа и толщины магнитов, расположенных на дисках, генераторы могут значительно различаться по своим рабочим параметрам. Чтобы узнать, какую мощность ждать в результате, можно намотать одну катушку и прокрутить её в генераторе. Для определения будущей мощности, следует измерить напряжение на определенных оборотах без нагрузки. Например, при 200 оборотах в минуту получается 30 вольт при сопротивлении 3 Ом. Отнимаем от 30 вольт напряжение аккумулятора в 12 вольт, а получившиеся 18 вольт делим на 3 Ом. Результат – 6 ампер. Это тот объём, который отправится на аккумулятор. Хотя практически, конечно, выходит меньше из-за потерь на диодном мосту и в проводах. Чаще всего катушки делают круглыми, но лучше их чуть вытянуть. При этом меди в секторе получается больше, а витки катушек оказываются прямее. Диаметр внутреннего отверстия катушки должен соответствовать размеру магнита или быть немногим больше его. Проводятся предварительные испытания получившегося оборудования, которые подтверждают его отличную работоспособность. Со временем и эту модель можно будет усовершенствовать Делая статор, учтите, что его толщина должна соответствовать толще магнитов. Если число витков в катушках увеличить и сделать статор толще, междисковое пространство увеличится, а магнитопоток уменьшится. В результате может образоваться то же напряжение, но меньший ток из-за возросшего сопротивления катушек. В качестве формы для статора используют фанеру, но можно на бумаге разметить сектора для катушек, а бордюры сделать из пластилина. Прочность изделия увеличит стеклоткань, помещенная на дно формы и поверх катушек. Эпоксидная смола не должна прилипать к форме. Для этого её смазывают воском или вазелином. Для тех же целей можно использовать пленку или скотч. Катушки закрепляют между собой неподвижно, концы фаз выводят наружу. Потом все шесть проводов соединяют треугольником или звездой. Генератор в сборе тестируют, используя вращение рукой. Получившееся напряжение составляет 40 вольт, сила тока при этом составляет примерно 10 Ампер. Фактическая высота готовой мачты составила 6 метров, но лучше было бы сделать её 10-12 метров. Основание для неё нуждается в бетонировании. Необходимо сделать такое крепление, чтобы трубу можно было поднимать и опускать при помощи ручной лебедки. На верхнюю часть трубы крепится винт. Труба ПВХ – надежный и достаточно легкий материал, используя который можно сделать винт ветряка с заранее предусмотренным изгибом Для изготовления винта нужна ПВХ труба, диаметр которой составляет 160 мм. Из неё предстоит вырезать шестилопастной двухметровый винт. С формой лопастей имеет смысл поэкспериментировать, чтобы усилить крутящий момент на низких оборотах. От сильного ветра винт нужно уводить. Эта функция выполняется с помощью складывающегося хвоста. Выработанная энергия копится в аккумуляторах. Мачта должна подниматься и опускаться с помощью ручной лебедки. Дополнительную устойчивость конструкции можно придать, используя натяжные тросы Вашему вниманию предоставлены два варианта ветрогенераторов, которые чаще всего используются дачниками и владельцами загородной недвижимости. Каждый из них по-своему эффективен. Особенно результат применения такого оборудования проявляется в местности с сильными ветрами. В любом случае, такой помощник в хозяйстве не помешает никогда. 24 полюса, постоянные магниты Владимир Алексеевич и его единомышленники из России уже не первый год изготавливают альтернативные источники энергии. В основном это ветрогенераторы роторного типа. Начиналось все, как обычно с простых моделей разрезанной бочки. Затем двойной ротор савониуса, но этим все не закончилось Поворотным моментом, стал расчет и изготовление ветрогенератора роторного типа мощностью 3 кВт. Параллельно велись разработки генераторов для этих моделей за остову были взяты асинхронники вместо беличьего колеса использовались неодимовые магниты встроенные в проточенный ротор. Получены мощности, заявленные на бирках асинхронников. Удалось вплотную приблизится к заводским характеристикам, хочется заметить, что это фантастический результат для обращения электрических машин такого типа. По мнению Владимира, это перспективное направление, для генераторов типа ежик . Но как все электические машины этого типа высокооборотные, то они не согласовывались без редуктора. Проводились также разработки и более чем успешные по изготовлению импульсных генераторов. Вообще не могу признать во Владимире человеческое качество доводить практически все свои модели до нужного результата. Изучив формулу мощности воздушного потока: P = r V 3 S / 2, [B т] гд е r — плотность воздуха (при нормальных условиях = 1,225 кг / м 3) V — скорость воздушного потока, м / с S = R 2 = D 2/4 — площадь ветрового потока, м 2. Так как никакая турбина не может использовать 100% энергии ветра, то для расчета мощности ветрового генератора необходимо в формулу ввести коэффициент эффективности турбины к который может иметь значение 0,2-0,5:в нашем случае 0,3 P * = к r V 3 S / 2, [B т] Из формулы видно, что мощность ветрового потока пропорциональна кубу скорости ветра и квадрату диаметра колеса турбины. Это означает, что при увеличении скорости ветра вдвое, мощность потока возрастет в 8 раз, а при увеличении длины лопастей вдвое, мощность ветрогенератора возрастет в 4 раза. Эти расчёты легли в основу разработки и унификации вертушек паук , которые были созданы. Эти конструкции прорабатыв алать не один год. Был рассчитан и собран генератор на неодимовых магнитах практически полностью удовлетворяющий оборотам и крутящему моменту роторных вертушек, который, к слову очень хорошо согласуется с ветрогнераторами с горизонтальной осью вращения большой мощности 3-5 кВт. Статор в средней части, роторы вращаясь на общем приводе создают индукцию в катушках. От руки получаем напряжение 220 вольт и дрель 400 ватт начинает сама крутиться. На сегодня разработки проводятся в сторону увеличения мощности самого генератора с использова нием дополнител ьных магнитных материалов при изготовлен ии статора. На фото Трех кВт-ный ветряк. Ветрогенератор увеличенной мощности 5 кВт. Переделки коснулись и увеличения скорости вращения роторов. В настоящее время - это две рабочие модели. Достигнуты отличные практические результаты работы 3х кило ватного Ветрогенератора . С одной стороны совершенству нет предела и это процесс бесконечный. Во первых снижен а себестоимост ь генератора минимум в два раза. Во вторых уверенная работа на ветре 2м/с так далее На данный момент прошла, все необходимые тесты и испытания новая конструкция роторного ветрогенератора мощностью 3кВт и у вас уважаемый посетитель сайта, на сегодняшний день есть уникальная возможность выбора или заказать готовую конструкцию непосредственно на фирме разработчике и изготовителе этой конструкции или же заказать курс от фирмы по изготовлению данной модели. Заказывая готовый ветрогенератор или информационный продукт по изготовлению Ветрогенератора роторного типа мощностью 3 кВт. Вы избавляете себя от мытарств в поисках энергонезависимости вашего жилища. Это фирма не однодневка, а фирма с многолетним опытом в области проектирования и монтажа альтернативных источников. Это слаженная команда которая постоянно работает над усовершенствованием своих изделий от проектирования до конечного результата на всех этапах производства: начиная формулами расчетов и заканчивая способами изготовления и реальными испытаниями готовых конструкций. Источники: http://e-veterok.ru/vetryak-6-3.php, http://aqua-rmnt.com/otoplenie/alt_otoplenie/vetrogenerator-svoimi-rukami.html, http://svoy-vetrogenerator.ru/index/vetrogenerator_rotornyj_5_kvt/0-108 restart24.ru После окончания надо испытать сxему первого блока. Для этого подключаем любой стабилизированный источник питания от 8 до 14 вольт и к выxодным отмоткам (по сxеме под цифой 3) подключаем лампочку накаливания 6,3 вольт, если лампа загорелась - идем дальше, если конструкция работает ненормально - то к базам транзистора подключаем резисторы 1,2 - 2 килоом так, как показано по сxеме. Теперь надо мотать второй трансформатор Т2. 1- мотаем из двуx жил проводом 1мм по 5 витков, то есть у нас получиться 10 витков с отводом от середины. Изолируем обмотку изолентой и мотаем повышающую отмотку. Мотаем проводом 0,35 мм от 500 до 700 витков, через каждые 100 витков ставим изоляцию из конденсаторной бумаги. Трансформатор Т2 Ш-образный из импульсного блока питания советского цветного телевизора, в крайнем случае можно использовать Ш-образный трансформатор который есть в блоке питания компьютера, разбирая блок питания компьютера там можно найти несколько Ш-образныx трансформаторов - берите самый большой из ниx. После окончания намотки Т2 собираем сxему и включаем через сопротивление 10 ом 5 ватт или побольше ваттов. Транзисторы лучше ставить кт818 по две штуки на каждое плечо. Подключают так - берем два транзистора кт818 с одинаковыми буквами и подключаем паралельно ноги и ставим на радиатор, такие заготовки нам нужно 2 штуки, то есть надо иметь 4 транзистора - по два на плечо. После подключения к выxоду Т2 подсоединяем лампу накаливания 220 вольт на мощность от 25 до 150 ватт. Лампа должна ярко светится, если конечно у вас все по сxеме подключено правильно. В случае если транзисторы КТ818 сильно греются, меняйте местами выводы первичной отмотки Т2. Теперь смело можно подключать преобразователь к аккумуляторам ветрогенератора но не забудьте поставить к преобразователю выключатель. Вот и вся конструкция, удачи, АКА. Обсудить статью САМОДЕЛЬНЫЙ ВЕТРОГЕНЕРАТОР radioskot.ru 1-й этап: начало сборки. Как генератор используем беспроводную дрель, предварительно разобрав ее. Для за-крепления в зажимном патроне, который крепится к электродвигателю через основной меха-низм, подготавливаем большой, легкий диск, на котором будут размещены лопасти таким образом, чтобы вращение было по часовой стрелке. Взять трубу, у которой наружный диаметр немного больше основания и разрезать ее (рис.2). Это необходимо для надежного крепежа всей конструкции.Механизм целиком закрепим на платформу из пластика (рис 8). С противоположной стороны главного механизма к зажимному патрону крепим кофейную банку.Лопасти, предварительно сделанные из ПВХ-трубы, закрепляем на диске (рис.9). К длинной трубе крепим небольшой кусок деревянной доски. Устанавливаем впереди генератор, металлический диск крепим на другом конце. (рис.2 и 3). Для лучшей сохранности и лучшего вида при желании красим трубу и дощечку. Цвет ЛКМ можно подобрать, что бы конструкция вписалась в дизайн участка, на котором будем устанавливать ветровой генератор. 3-й этап: подходящая погода Устанавливаем нашу установку и ожидаем появления ветра. 4-й этап: увеличение мощности Для замены электродвигателя с меньшей мощности на большую, снимаем кофейную банку. В данном случае применяется двигатель 12 В с частотой вращения 3000 об/мин (рис. 1). В связи с этим конструкцию придется существенно доработать.Всю установку помещаем в алюминиевую банку большего размера (рис.3). 5-й этап: анализ результатовЗамена двигателя, не особо увеличила объем полученного электричества. Немаловаж-ное значение имеет место, где собираемся установить ветровую установку. Деревня именно то, что нужно. 6-й этап: испытания Присоединяем систему освещения дома в деревне к нашему изобретению, при появле-нии ветра. Электроэнергии, что вырабатывалась, хватало, но ее количество было небольшое. Большим недостатком является возможность обрыва провода между домом и установ-кой при очень сильном ветре. 7-й этап: 2-й вариант установки Принцип тот же, но сделаем все по другому. В этой модели применялись:1. Старая дрель фирмы Dewalt на аккумуляторах;2. Как вспомогательные детали, бруски из дерева (2шт.)3. Лопасти длинной 7.6 см из ПВХ трубы (6шт.)4. Трубу из металла длинной 46 см5. Для руля лист металла. 8-й этап: Подбор лопастей Для увеличения мощности установки проведем эксперимент с подбором лопастей, взяв их с первой модели. Правда у нас мощность существенно не изменилась. 9-й этап: Совершенству нет предела! Используя две пружины, два куска доски и платформу из металла получаем показатели еще лучше, в случае вдруг вы решите использовать у себя такую установку ее стоить доработать таким образом. Ниже на видео можно посмотреть, как такой механизм работает на практике. usamodelkina.ru Воздушные массы обладают неисчерпаемыми запасами энергии, которую человечество использовало еще в давние времена. В основном сила ветра обеспечивала движение судов под парусами и работу ветряных мельниц. После изобретения паровых двигателей данный вид энергии потерял свою актуальность. Лишь в современных условиях ветровая энергия вновь стала востребованной в качестве движущей силы, прикладываемой к электрическим генераторам. Они еще не получили широкого распространения в промышленных масштабах, но становятся все более популярными в частном секторе. Иногда бывает просто невозможно подключиться к линии электропередачи. В таких ситуациях многие хозяева конструируют и изготавливают ветрогенератор для частного дома своими руками из подручных материалов. В дальнейшем они используются в качестве основных или вспомогательных источников электроэнергии. Данная теория разрабатывалась в разное время учеными и специалистами в области механики. Впервые она была разработана В.П. Ветчинкиным в 1914 году, а в качестве основы использовалась теория идеального гребного винта. В этих исследованиях был впервые выведен коэффициент использования ветряной энергии идеальным ветряком. Работы в этой области были продолжены Н.Е. Жуковским, который вывел максимальное значение данного коэффициента, равное 0,593. В более поздних работах другого профессора – Сабинина Г.Х. уточненное значение коэффициента составило 0,687. В соответствии с разработанными теориями, идеальное ветряное колесо должно обладать следующими параметрами: Выбирая модель ветрогенератор для частного дома следует учитывать необходимую мощность, обеспечивающую работу приборов и оборудования с учетом графика и периодичности включения. Она определяется путем ежемесячного учета потребляемой электроэнергии. Дополнительно значение мощности может определяться в соответствии с техническими характеристиками потребителей. Следует учитывать и тот фактор, что питание всех электроприборов осуществляется не напрямую от ветрогенератора, а от инвертора и комплекта аккумуляторных батарей. Таким образом, генератор мощностью в 1 кВт способен обеспечить нормальное функционирование аккумуляторов, питающих четырехкиловаттный инвертор. В результате, бытовые приборы с аналогичной мощностью обеспечиваются электроэнергией в полном объеме. Большое значение имеет правильный выбор батарей. Особое внимание следует обратить на такие параметры, как емкость и ток зарядки. При выборе конструкции ветряного двигателя учитываются следующие факторы: Кроме того, необходимо учесть среднегодовую скорость ветра для конкретной местности, уточненную в метеослужбе. Уточнять направление ветра не требуется, поскольку современные конструкции ветрогенераторов самостоятельно поворачиваются в другую сторону. Для большинства местностей Российской Федерации наиболее оптимальным вариантом будет горизонтальная ориентация оси вращения, поверхность лопаток криволинейная вогнутая, которую воздушный поток обтекает под острым углом. На величину мощности, забираемой от ветра, влияет площадь лопасти. Для обычного дома вполне достаточно площади 1,25 м2. Число оборотов ветряка зависит от количества лопастей. Быстрее всего вращаются ветрогенераторы с одной лопастью. В таких конструкциях для уравновешивания используется противовес. Следует учитывать и тот факт, что при низкой скорости ветра, ниже 3 м/с, ветряные установки становятся неспособными забирать энергию. Для того чтобы агрегат воспринимал слабый ветер, площадь его лопастей должна быть увеличена как минимум до 2 м2. Для того чтобы правильно рассчитать номинальную мощность ветряного генератора, необходимо соблюдать определенные правила. Перед выбором ветрогенератора необходимо определить скорость и направление ветра, наиболее характерные в месте предполагаемого монтажа. Следует помнить, что вращение лопастей начинается при минимальной скорости ветра 2 м/с. Максимального КПД удается достичь, когда этот показатель достигает значения от 9 до 12 м/с. То есть, для того чтобы обеспечить электричеством небольшой загородный дом, потребуется генератор с минимальной мощностью 1 кВт/ч и ветер со скоростью не менее 8 м/с. Скорость ветра и диаметр винта оказывают непосредственное влияние на мощность, вырабатываемую ветряной электроустановкой. Точно рассчитать эксплуатационные характеристики той или иной модели возможно с помощью следующих формул: Таким образом, электроэнергия, производимая ветрогенератором, возрастает количественно в кубическом соотношении с повышающейся скоростью ветрового потока. Например, при повышении скорости ветра в 2 раза, выработка ротором кинетической энергии возрастет в 8 раз. При выборе места установки ветрогенератора необходимо отдавать предпочтение участкам без больших построек и высоких деревьев, которые создают преграду для ветра. Минимальное расстояние от жилых домов составляет от 25 до 30 метров, в противном случае шум во время работы будет создавать неудобства и дискомфорт. Ротор ветряка должен быть расположен на высоте, превышающей ближайшие постройки не менее чем на 3-5 м. Если подключение загородного дома к общей сети не планируется, в этом случае можно воспользоваться вариантами комбинированных систем. Работа ветряной установки будет значительно эффективнее при использовании ее совместно с дизель-генератором или солнечной батареей. Независимо от типа и конструкции ветрогенератора, каждое устройство в качестве основы, оборудуется похожими элементами. Во всех моделях имеются генераторы, лопасти из различных материалов, подъемники, обеспечивающие нужный уровень установки, а также дополнительные аккумуляторы и система электронного управления. Наиболее простыми для изготовления считаются агрегаты роторного типа либо аксиальные конструкции с использованием магнитов. Вариант 1. Роторная конструкция ветрогенератора. В конструкции роторного ветряного генератора используется две, четыре или более лопастей. Подобные ветрогенераторы не в состоянии полностью обеспечить электроэнергией большие загородные дома. Они используются преимущественно в качестве вспомогательного источника электричества. В зависимости от расчетной мощности ветряка, подбираются необходимые материалы и комплектующие: В первую очередь выполняется подготовка ротора из имеющейся металлической емкости – кастрюли или ведра. Она размечается на четыре равные части, на концах линий проделываются отверстия, чтобы облегчить разделение на составные части. Затем емкость разрезается ножницами по металлу или болгаркой. Из получившихся заготовок вырезаются лопасти ротора. Все замеры должны тщательно проверяться на соответствие размерам, в противном случае конструкция будет работать неправильно. Далее определяется сторона вращения шкива генератора. Как правило, он вращается по часовой стрелке, но лучше это проверить. После этого роторная часть соединяется с генератором. Во избежание дисбаланса в движении ротора, отверстия для креплений в обеих конструкциях должны располагаться симметрично. Чтобы увеличить скорость вращения края лопастей следует немного выгнуть. С возрастанием угла изгиба, потоки воздуха будут более эффективно восприниматься роторной установкой. В качестве лопастей используются не только элементы разрезанной емкости, но и отдельные детали, соединяемые с металлической заготовкой, имеющей форму окружности. После крепления емкости к генератору, всю полученную конструкцию нужно целиком установить на мачте с помощью металлических хомутов. Затем монтируется проводка и собирается замкнутая электрическая цепь. Каждый контакт должен включаться в собственный разъем. После подключения проводка крепится к мачте проволокой. По окончании сборки осуществляется подключение инвертора, аккумулятора и нагрузки. Аккумулятор подключается кабелем с сечением 3 мм2, для всех остальных подключений вполне достаточно сечения 2 мм2. После этого ветрогенератор можно эксплуатировать. Вариант 2. Аксиальная конструкция ветрогенератора с применением магнитов. Аксиальные ветряки для дома представляют собой конструкцию, одним из основных элементов которой являются неодимовые магниты. По своим эксплуатационным качествам они значительно опережают обычные роторные агрегаты. Ротор является основным элементом всей конструкции ветрогенератора. Для его изготовления лучше всего подойдет ступица автомобильного колеса в комплекте с тормозными дисками. Деталь, находившуюся в эксплуатации, следует подготовить – очистить от грязи и ржавчины, смазать подшипники. Далее необходимо правильно распределить и закрепить магниты. Всего их понадобится 20 штук, размером 25 х 8 мм. Магнитное поле в них расположено по длине. Четные магниты будут полюсами, они располагаются по всей плоскости диска, с чередованием через один. Затем определяются плюсы и минусы. Один магнит поочередно касается других магнитов на диске. Если они притягиваются, значит полюс положительный. При увеличенном количестве полюсов, необходимо соблюдать определенные правила. В однофазных генераторах число полюсов совпадает с количеством магнитов. В трехфазных генераторах соблюдается пропорция 4/3 между магнитами и полюсами, а также соотношение 2/3 между полюсами и катушками. Установка магнитов выполняется перпендикулярно окружности диска. Для их равномерного распределения используется бумажный шаблон. Вначале магниты закрепляются сильным клеем, а потом окончательно фиксируются эпоксидной смолой. Если сравнивать однофазные и трехфазные генераторы, то эксплуатационные качества первых будут несколько хуже по сравнению со вторыми. Это связано с высокими амплитудными колебаниями в сети из-за нестабильной отдачи тока. Поэтому в однофазных устройствах возникает вибрация. В трехфазных конструкциях этот недостаток компенсируется нагрузками тока из одной фазы в другую. За счет этого в сети всегда обеспечивается постоянное значение мощности. Из-за вибрации срок эксплуатации однофазных систем значительно ниже, чем у трехфазных. Кроме того, у трехфазных моделей во время работы отсутствует шум. Высота мачты составляет примерно 6-12 м. Она устанавливается в центр опалубки и заливается бетоном. Затем на мачту устанавливается готовая конструкция, на которую крепится винт. Крепление самой мачты осуществляется с помощью тросов. Эффективность работы ветровых электроустановок во многом зависит от конструкции лопастей. Прежде всего, это их количество и размеры, а также материал, из которого будут изготовлены лопасти для ветрогенератора. Факторы, влияющие на конструкцию лопастей: Количество лопастей должно сочетаться с местом установки всей конструкции. В наиболее оптимальных условиях правильно подобранные лопасти способны обеспечить максимальную отдачу ветрогенератора. Существуют общие рекомендации, позволяющие максимально эффективно использовать ветрогенераторы. Прежде всего, нужно заранее определить необходимую мощность и функциональность устройства. Чтобы правильно изготовить ветрогенератор, нужно изучить возможные конструкции, а также климатические условия, в которых он будут эксплуатироваться. Кроме общей мощности рекомендуется определить значение выходной мощности, известной еще как пиковая нагрузка. Она представляет собой общее количество приборов и оборудования, которые будут включаться одновременно с работой ветрогенератора. При необходимости увеличить этот показатель, рекомендуется использовать сразу несколько инверторов. electric-220.ru Пожалуй, ни один дачник не будет спорить с тем, что сегодня необходимо иметь какой-либо альтернативный источник электроэнергии, ведь свет могут отключить в любую минуту. Большую популярность, как источник бесплатной энергии, сегодня получили самодельные ветрогенераторы. Разнообразные модели таких устройств предлагаются на рынке, а в интернете можно увидеть схемы, чертежи и видео, позволяющие собрать их своими руками. Стоит отметить, что самодельный ветрогенератор будет очень полезен даже при его небольшой мощности. Уже одно то, что среди кромешной тьмы дача будет освещена, и можно будет без проблем посмотреть телевизор или зарядить мобильное устройство, подстрахует от неприятностей и поднимет престиж перед соседями. Первый секрет заключается в том, на какую высоту будет установлен самодельный ветрогенератор. Понятно, что проще смонтировать его на высоте нескольких метров от земли, но и толку от него тогда будет не особенно много. Следует учитывать, что чем выше ветрогенератор, тем сильнее ветер, быстрее крутятся его лопасти, и тем больше энергии можно получить от сделанной своими руками электростанции. Второй секрет заключается в выборе АКБ. В интернете советуют не мудрить и ставить автомобильный аккумулятор. Да, это проще и, на первый взгляд, дешевле. Но, необходимо знать, что автомобильные аккумуляторы следует устанавливать в хорошо проветриваемом помещении, они требуют ухода, а их срок службы не превышает 3-х лет. Будет лучше приобрести специальный аккумулятор. Хотя он и стоит дороже, но это себя оправдает. Третий секрет, какой ветрогенератор лучше подходит для изготовления своими руками — горизонтальный или вертикальный? У каждого варианта свои достоинства и недостатки. Мы рассмотрим ветрогенераторы вертикального типа, принцип работы которых показан на рис.2. Сначала о недостатках: вертикальный ветрогенератор имеет низкий КПД по сравнению с горизонтальными моделями, на его сборку уходит больше материалов, что, соответственно, ведёт к удорожанию конструкции. С другой стороны, вертикальные ветряки могут работать при более слабом ветре, чем их горизонтальные аналоги, что компенсирует их невысокий КПД. Их не требуется поднимать на слишком большую высоту, они проще и дешевле при монтаже и установке, что сводит на нет разницу в стоимости материалов. Немаловажным фактором является и то, что вертикальный ветрогенератор надёжнее при резких порывах ветра и ураганах, так как его устойчивость растёт с повышением скорости вращения. Кроме того, вертикальные конструкции практически бесшумны, что позволяет устанавливать их в любом месте, вплоть до крыши жилого дома. Всё вышеперечисленное ведёт к тому, что эти установки пользуются растущим спросом и выпускаются в различных модификациях, применительно к требуемой мощности и ветрам, преобладающим в определённых регионах, с чем, кстати, можно ознакомиться на видео ниже. Маломощный вертикальный ветрогенератор нетрудно собрать своими руками из, без преувеличения, бросовых материалов: большой пластиковой бутылки или жестяной банки, стальной оси и старого электромотора. Достаточно пополам разрезать банку или бутылку и закрепить эти половины на связанной с генератором оси вращения (рис.3). Такой вертикальный ветряк несложно сделать разборным и брать его с собой на рыбалку или в поход, где он не только осветит место ночлега, но и позволит подзарядить телефон или другое мобильное устройство. А вот изготовление более мощного ветрогенератора придётся начать с покупки ведра и это не розыгрыш. Да, для начала, придётся купить обычное оцинкованное ведро. Это, конечно, в том случае, если такое прохудившееся ведро не завалялось где-либо в сарае. Размечаем его на четыре части и делаем ножницами по металлу прорези, так, как это показано на рис.4. Ведро крепится за днище к шкиву генератора. Крепить следует четырьмя болтами, расположив их строго симметрично и на одном расстоянии от оси вращения, что позволит избежать дисбаланса. Итак, практически всё готово, осталось выполнить следующие действия: Всё. Изготовленный своими руками ветрогенератор готов к работе. Рассмотрим подробнее электрическую схему. Понятно, что ветер может в любую минуту прекратиться. Поэтому ветрогенераторы не подключают напрямую к бытовым приборам, а вначале заряжают от них аккумуляторные батареи, для обеспечения сохранности которых, применяется контроллер заряда. Далее, учитывая то, что АКБ дают постоянный ток малого напряжения, в то время как практически все бытовые приборы потребляют переменный ток напряжением 220 вольт, устанавливается преобразователь напряжения или, как его ещё называют, инвертор и только потом подключают всех потребителей. Для того чтобы ветрогенератор обеспечивал работу персонального компьютера, телевизора, сигнализации и нескольких энергосберегающих ламп достаточно установить аккумулятор ёмкостью 75 ампер/час, преобразователь напряжения (инвертор) мощностью 1,0 кВт, плюс генератор соответствующей мощности. А что ещё нужно, когда отдыхаешь на даче? Вертикальный ветрогенератор, который можно сделать по приведённым выше инструкциям, может работать при довольно слабом ветре и независимо от его направления. Его конструкция упрощается за счёт того, что в ней отсутствует флюгер, разворачивающий по ветру винт горизонтального ветрогенератора. Основным недостатком вертикально-осевых ветряных турбин является небольшой КПД, но это искупается рядом других преимуществ: Конечно, сделанный своими руками ветряк может не выдержать излишне сильного ветра, который окажется способным сорвать ведро. Но это не проблема, просто придётся купить новое или приберечь где-либо в сарае отслужившее свой срок старое. На видео ниже можно посмотреть как запитываются бытовые приборы на даче. Правда, ветрогенератор здесь сделан не из ведра, но тоже своими руками. mirenergii.ruТихоходный ветрогенератор своими руками из автомобильного генератора. Ветрогенератор 220 вольт своими руками
Ветрогенератор из автомобильного генератора своими руками
О самодельных ветряках для дома
Технология сборки ветрогенератора
Шаг #1. Винт ветряной электростанции
Шаг #2. Изготовление мачты из трубы
Шаг #3. Как сделать алюминиевый флюгер
Шаг #4. Установка и подключение ветрогенератора
Разбор ошибок конструирования
Полезное видео по теме
Тихоходный ветрогенератор своими руками из автомобильного генератора
Конструкция ветрогенератора
Ветровое колесо
Мачта
Переделка генератора
Финальная сборка
Обслуживание ветрогенератора
Генератор для ветряка своими руками: видео
Ветрогенератор для частного дома: фото
Ветряки своими руками 5 квт | Своими руками
Привод ротора
Лопасть вертикального ветряка
Вертикальный ветряк
Как смастерить ветрогенератор своими руками: обзор технологии сборки 2-х различных конструкций
Содержание
Ветряк #1 конструкция роторного типа
Подготовка деталей и расходников
Ход конструкторских работ
Достоинства и недостатки такой модели
Ветряк #2 аксиальная конструкция на магнитах
Что необходимо подготовить?
Распределение и закрепление магнитов
Трехфазные и однофазные генераторы
Процесс наматывания катушек
Заключительный этап мачта и винт
Ветрогенератор роторный 5 кВт.
САМОДЕЛЬНЫЙ ВЕТРОГЕНЕРАТОР
Собрали ветрогенератор, все работает нормально, но тут возникает одна маленькая проблема - ветростанция способна дать постоянное напряжение 8 - 12 вольт, а если нужно использовать сетевой прибор или какое то устройство которое питается от 220 вольт? Решение есть - преобразователь который повышает 12 вольт в до сетевого напряжения 220 вольт и с частотой 50 - 60 герц. Eмкость аккумуляторов у нас не велика, но преобразователь у нас достаточно мощный. Была выбрана достаточно сложная сxема преобразователя для ветрогенератора и не просто так, ведь это один из самыx лучшиx и стабильныx вариантов преобразователей на котором почти не наблюдал скачков и падений напряжении и частоты. Преобразователь двуxтактный. Поговорим о сборке первой части преобразования, она нам нужна для открывания более мощныx транзисторов окончательного каскада. Трансформатор Т1 намотан на ферритовом кольце от компьютерного блока питания (если под рукой есть кольцо побольше то используйте), можно взять ш-образный трансформатор подxодящиx размеров. Сначала мотаем 1 - по рисунку, мотаем по 12 витков проводом ПЭВ-2 с диаметром от 0,35 до 0,6 мм, затем мотаем 2-ые, по 54 витка проводом ПЭВ-2 с диаметром 0,4 -0,6 мм, и в конце мотаем 3-ю по сxеме - по 20 витков проводом 0,4 мм. Транзисторы типа П213, П214, П217. Клонечно можно заменить и на современные, в том числе импортные. Резисторы подбираем от 20 до 100 ом. Маломощный ветрогенератор на основе дрели своими руками
Люди давно научились использовать энергию ветра в ветряных мельницах. Сейчас ветровую энергию используют для получения электроэнергии. Любой человек, который хорошо разбирается в механике и электроприборах может сделать ветровой генератор из подручных средств собственноручно.Ветрогенераторы для частного дома своими руками
Содержание: Теория идеального ветряка
Выбор ветроустановки
Расчет ветрогенератора
Как сделать ветрогенератор своими руками
Лопасти для ветрогенератора
Рекомендации по ветрогенераторам
Ветряной генератор своими руками 24в - 2500ватт
Делаем для дачи вертикальный ветрогенератор своими руками
Три маленьких секрета
Простейшая конструкция
Собственная электростанция для дачи
Электрическая схема
Подведём итоги
Поделиться с друзьями: