Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь. Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек. Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность. Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах. Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме. Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию. Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука. Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя. Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения. В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора. Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр. В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В. Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак. На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение. Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток. Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков. Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее. Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель». Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2. К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь). В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним. Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «~», оба одинаковой длины и самые короткие. С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос. После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему. Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-». Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего. В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д. Для примера расшифруем следующие маркировки: LM7805 → 5 В, положительное напряжение LM7912 → 12 В, отрицательное U Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А. Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность. Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор. Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор. Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении. Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А. Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В. Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить. Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор. Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов. Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805. Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В. Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения. diodov.net Что нужно для того, чтоб АКБ зарядился? Источник стабильного тока, который бы не превышал некоторое безопастное значение. В простейшем случае им будет обычный сетевой трансформатор. Он должен выдавать на вторичке такой ток, который нужен для стандартного зарядного режима (1/10 ёмкости аккумулятора). И если в начале зарядного цикла нагрузка начнёт тянуть ток бОльшего значения - произойдёт просадка напряжения на выходной обмотке трансформатора, а значит ток снизится. Есть два варианта выпрямителей: В общем для себя решил сделать зарядку довольно мощной, как основу взял трансформатор ТС-160 от советского лампового телека, перемотал под свои нужды, на выходе вышло 14 вольт на 10 ампер, что позволяет заряжать АКБ достаточно большой ёмкости, в том числе любые автомобильные. Форум по простым ЗУ Обсудить статью АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ СВОИМИ РУКАМИ radioskot.ru Во многих электронных приборах, работающих при переменном токе в 220 вольт устанавливаются диодные мосты. Схема диодного моста на 12 вольт позволяет эффективно выполнять функцию по выпрямлению переменного тока. Это связано с тем, что для работы большинства приборов используется постоянный ток. Переменный ток, имеющий определенную меняющуюся частоту, подается на входные контакты моста. На выходах с положительным и отрицательным значением образуется однополярный ток, обладающий повышенной пульсацией, значительно превышающей частоту тока, подаваемого на вход. Поэтому необходимо немного изменить соединение. Однако этот выпрямительный модуль скрывает один обман. Обратите внимание на дроссели общественного освещения. Щелкните значок столбца. большой дроссель. Статьи о выпрямителях все равно будут так много! На этот раз мы публикуем ссылку и дизайн выпрямителя с так называемыми «Все статьи» в столбце: для просмотра всех статей в этом разделе. Но прежде он обратился к нам с этим письмом: Дополнительный выпрямитель для измельчителя траффика. Это уже очень опасно. В результате коэффициент фильтрации обычно составляет 90%. Почему этот тип выпрямителя? Это устройство с дросселем, проходящим через весь сварочный ток. Может быть, еще немного. сварки легированных и различных материалов или тонких листов. Далее следует описание каждого компонента. молчит. так что г-н Томан попытался подготовить такое руководство. конечно, за счет мобильности. Согласно различным форумам, этот тип всегда заинтересован, и, к сожалению, ответы на эти вопросы иногда вводят в заблуждение. Появляющиеся пульсации нужно обязательно убрать, иначе электронная схема не сможет нормально работать. Поэтому, в схеме присутствуют специальные фильтры, представляющие собой электролитические с большой емкостью. Сама сборка моста состоит из четырех диодов с одинаковыми параметрами. Они соединены в общую схему и размещаются в общем корпусе. Выпрямитель имеет значительно лучшие сварочные свойства. На следующем рисунке показана схема подключения выпрямителя. Этот тип выпрямителя предназначен в первую очередь для промышленной сферы и предполагается. что в интересах объективности было бы целесообразно опубликовать инструкции по строительству выпрямителя с реактором с полным дросселем. Выпрямитель 130А с «большим» дросселем. Необходимо использовать только неповрежденные держатели электродов и предписанные защитные перчатки. У устройства также есть одна неисправность: сварка создает пики напряжения с амплитудой в сотни вольт и энергией более 70 Дж. Диодный мост имеет четыре вывода. К двум из них подключается переменное напряжение, а два остальных являются положительным и отрицательным выводом пульсирующего выпрямленного напряжения. Выпрямительный мост в виде диодной сборки обладает существенными технологическими преимуществами. Таким образом, на печатную плату устанавливается сразу одна монолитная деталь. Во время эксплуатации, для всех диодов обеспечивается одинаковый тепловой режим. Стоимость общей сборки ниже четырех диодов в отдельности. Однако, данная деталь имеет серьезный недостаток. При выходе из строя хотя-бы одного диода, вся сборка подлежит замене. При желании, любая общая схема может быть заменена четырьмя отдельными деталями. Это действительно отличный дизайн. Судите сами. что в некотором роде свойства коммерческих инверторов перевешивают. устойчиво и приятно эластично. таких как хардкорный ремонт, если не вашей собственной энергией. В некоторых отношениях сборка с высококачественными компонентами может опережать коммерческие инверторы. вследствие травмы или травмы. которые мы сейчас представляем читателям. Превосходные свойства сварки будут особенно выделяться в незначительной и конкретной работе. Все работы будут нановидными для более высокого класса тепла. для указанного поперечного сечения железа и индуктивности около 2-3 мГн составляет около 60, от этого зависит поперечное сечение обмотки. потому что алюминиевая обмотка с необходимым большим поперечным сечением просто не подходит для скелета. В любых приборах и электронике, для пи sibay-rb.ruБлок питания своими руками. Выпрямитель тока 12 вольт своими руками
Блок питания своими руками ⋆ diodov.net
Устройство и принцип работы блока питания
Трансформатор
Диодный мост
Конденсаторный фильтр
Стабилизатор напряжения LM7805, LM7809, LM7812
Схема блока питания
Блок питания своими руками на 78L05, 78L12, 79L05, 79L08
АВТОМОБИЛЬНОЕ ЗАРЯДНОЕ СВОИМИ РУКАМИ
Доброго времени суток господа радиолюбители! В этой статье хочу описать сборку несложного зарядного устройства. Даже совсем простого, потому что оно не содержит ничего лишнего. Ведь часто усложняя схемы мы снижаем её надёжность. В общем тут будет рассмотрено пару вариантов таких простейших автомобильных зарядных, которые можно спаять любому, кто хоть раз чинил кофемолку или менял выключатель в коридоре)) По своему опыту могу предположить что оно будет полезным каждому, кто имеет хоть какое-то отношение к технике или электронике. Давно меня посетила идея собрать простейшее зарядное устройство для АКБ своего мотоцикла, так как генератор иногда попросту не справляется с зарядкой последнего, особенно тяжело ему приходится зимним утром, когда нужно завести его со стартера. Конечно многие будут говорить что с кик стартера много проще, но тогда АКБ можно вообще выкинуть.Электрическая схема самодельного зарядного
Выпрямитель с регулировкой напряжения-тока
Последняя схема позволит менять значение зарядного тока, за счёт изменения напряжения на АКБ. Если вы не доверяете трансформатору, то функцию стабилизатора тока можно возложить на обычную автомобильную лампочку 12 вольт.Схема зарядного с балластной лампой
Корпус для зарядного устройства
Корпус был собран из цинковой жести, так как хотел сделать как можно проще. Сзади корпуса было выпилено отверстие под вентилятор, для большей надёжности решил добавить активное охлаждение, да и вентилей поднакопилось, пусть не лежат без дела. Затем начал делать начинку, прикрутил трансформатор, диодный мост тоже взял с запасом - КРВС-3510, благо они не много стоят: В передней панели сделал отверстие для вольтметра, также прикрутил гнездо для крокодилов. Вышло как раз то что я хотел-простенько и надёжно. В основном этот блок используется для зарядки АКБ и питания 12 вольтовых светодиодных лент. Ну и в крайнем случае для настройки автомобильных преобразователей. А чтобы было меньше помех, после моста поставил пару конденсаторов общей ёмкостью около 5 тыс. мкФ. Внешне конечно можно было сделать и более аккуратно, но мне здесь главное надёжность, следующим на очереди стоит лабораторный блок питания, в нем то и буду воплощать все свои дизайнерские умения. Всего доброго, с вами был Колонщик!.)Выпрямитель напряжения 12 вольт своими руками. Диодный мост
Как работает диодный мост
Применение диодных мостов
Поделиться с друзьями: