Содержание
Схема устройства плавного пуска двигателя
Время прочтения: 10 минут
Устройства плавного пуска двигателя (софтстартер, мягкий или плавный пускатель) – это прибор, позволяющий добиться плавного разгона или плавной остановки электродвигателя, скоординировать его крутящий момент и момент нагрузки, а также понизить уровень пускового тока, что способствует экономии электроэнергии.
Устройство плавного пуска двигателя также уменьшает вероятность перегрева электродвигателей, способствует повышению их срока службы, защищает от рывков в механической части привода двигателя.
Выделяют УПП двух типов:
- С открытым управлением – подача напряжения пуска происходит с задержкой во времени, вне зависимости от тока или скорости двигателя.
- С контролем замкнутого контура – контроль осуществляется над любыми параметрами выходного сигнала двигателя, например, над текущим током или скоростью.
Устройство плавного пуска серии «Спринт» производства «РУСЭЛТ»
Принцип работы
Стандартная схема УПП – это набор контактов. Их положение меняется, соответственно, изменяется и параметр входного напряжения. При этом сердечники устройств часто импульсного типа. Электрические катушки расположены за контактами.
Работает УПП следующим образом. Управление напряжением, подаваемым на двигатель, с целью его плавного разгона или остановки, происходит путем изменения угла открытия тиристоров. В самом устройстве установлено 2 встречно-включенных тиристора для положительного и отрицательного полупериодов.
Сила тока в оставшейся без управления третьей фазе формируется из токов фаз под управлением. После настройки координация крутящего момента при пуске доводится до предельно низкой величины пускового тока.
Показатель тока самого двигателя снижается параллельно показателю пускового напряжения на пуске. Величина пускового момента снижается в квадратичном отношении к напряжению. Уровень напряжения контролирует пусковой ток и крутящий момент двигателя при его запуске или остановке.
В устройстве плавного пуска есть байпасные контакты, осуществляющие шунтирование тиристорных выпрямителей. Это понижает тепловые потери в них, а также снижает нагрев всего устройства, что обеспечивает его безопасную эксплуатацию. Сами контакты защищены от повреждений из-за тех или иных рабочих сбоев встроенной электронной дугогасительной системой.
Рекомендации по выбору УПП
При подборе устройства в первую очередь нужно исходить из технических характеристик используемого электродвигателя и интенсивности нагрузки. В зависимости от этого выделяют следующие пусковые характеристики:
- Легкий режим – значение пускового тока не больше 4хIном
- Тяжелый режим – нагрузка с большим показателем инерционного момента и с необходимым значением пускового тока не менее 4,5хIном (при времени разгона до 30 сек.)
- Очень тяжелый режим – максимальное значение инерционного момента, со значением пускового тока более 6хIном и продолжительным временем разгона.
Для выбора модели софтстартера необходимо руководствоваться таблицей нагрузки в зависимости от применения. Посмотреть её вы можете здесь, в одном из наших материалов.
При выборе конкретной модели необходимо учитывать нагрузку на двигатель и частоту запусков. При невысоких нагрузках целесообразно приобретать приборы без обратной связи. При частых пусках и большой нагрузке рекомендуется купить устройство плавного пуска с обратной связью.
Возврат к списку
Устройство плавного пуска асинхронного двигателя
Интерес радиолюбителей к разработке устройств плавного пуска асинхронных электродвигателей не ослабевает. Появляются всё новые конструкции. Одна из них предлагается читателям.
Довольно большую популярность получили устройства плавного пуска на микросхеме КР1182ПМ1, например, описанное в [1]. Но этой микросхеме присущи особенности, не позволяющие достичь желаемых результатов без вынужденного усложнения схемы. Первая из них — максимальное напряжение сети не более 276 В. Для трёхфазного электродвигателя этого явно мало. Приходится занулять среднюю точку «звезды» его статора, чтобы ток протекал не между фазами, а между каждой фазой и нейтралью. Но в этом случае требуется регулировать ток всех трёх фаз, иначе через одну из обмоток в течение всего времени пуска будет протекать ток, многократно превышающий номинальный. А при включении обмоток «звездой» с изолированной средней точкой достаточно регулировать ток только в двух фазах.
Вторая особенность — необходимость внешней цепи для принудительной разрядки времязадающего конденсатора, так как ток его разрядки через саму микросхему КР1182ПМ1 весьма мал и устройство будет готово к повторному пуску двигателя только через довольно продолжительное время.
Недавно я решил разработать своё устройство плавного пуска. Сразу же решил не использовать в нём микроконтроллер, обойтись без узла определения прохождения тока через ноль (например, такого, как в [2]) и сделать его нечувствительным к порядку чередования фаз.
Рис. 1
Схема предлагаемого устройства показана на рис. 1. Оно состоит из трёх функциональных блоков. Два из них одинаковы и представляют собой симисторные регуляторы действующего значения напряжения на нагрузке, управляемые с помощью оптронов. Применение в них симметричных дини-сторов VS3 и VS4 (точнее, аналогов таких динисторов — микросхем КР1167КП1Б) позволило значительно упростить регуляторы.
Третий блок управляет одновременно обоими регуляторами, формируя в процессе пуска необходимый закон изменения эффективного значения приложенного к двигателю напряжения. Для этого он соответствующим образом изменяет ток, протекающий через излучающие диоды оптронов U1-U4, управляющих регуляторами.
Фотодиоды этих оптронов работают в фотовольтаическом режиме, генерируемое ими напряжение постепенно открывает транзисторы VT1 и VT2. При этом сопротивление транзисторов уменьшается, благодаря чему в каждом полупериоде сетевого напряжения конденсаторы C7 и C8 успевают заряжаться до напряжения открывания динисторов VS3 и VS4 за всё меньшее время. Соответственно симисторы VS1 и VS2 в каждом полупериоде открываются всё раньше и всё большие части полупериодов поступают на обмотки электродвигателя M1.
К сожалению, максимальное напряжение на обмотках электродвигателя при использовании таких регуляторов получается на 20…25 В меньше напряжения в сети. Поэтому предусмотрено реле K1, срабатывающее по окончании процесса пуска и соединяющее своими контактами электроды 1 и 2 симисторов VS1 и VS2. Этим достигается и уменьшение тепловыделения устройства плавного пуска в рабочем режиме двигателя.
Управляющий блок питается от одной из фаз трёхфазной сети через гасящий конденсатор C1 и выпрямитель на диодном мосте VD2-VD5. Учитывая, что напряжение на выходе моста незначительно по сравнению с сетевым напряжением, можно считать выпрямитель источником тока, значение которого около 20 мА задано реактивным сопротивлением конденсатора C1 и практически не зависит от нагрузки.
Резистор R5 ограничивает импульс тока зарядки конденсатора C1 в момент подключения устройства к сети. Рекомендую устанавливать этот резистор на высоте 5.7 мм над поверхностью монтажной платы, чтобы в случае его сгорания (например, в результате пробоя конденсатора Cl) плата не была повреждена. Резистор R6 необходим для разрядки конденсатора C1 после отключения от сети. Конденсатор C5 сглаживает пульсации.
Две цепи, состоящие из включённых последовательно излучающих диодов оптронов U1, U2 и U3, U4, соединены с плюсовым выводом этого конденсатора через постоянный резистор R2 и подстроечный R1. Ток через излучающие диоды зависит от сопротивления этих резисторов и значения выпрямленного диодным мостом VD2-VD5 напряжения, которое при неизменном выпрямленном токе зависит от сопротивления нагрузки выпрямителя. Первая часть этой нагрузки — цепь излучающих диодов. Вторая часть образована двумя включёнными последовательно параллельными интегральными стабилизаторами DA1 и DA2. Чем большая часть имеющихся 20 мА протекает через интегральные стабилизаторы, тем меньше остаётся на долю излучающих диодов.
Стабилизатор DA1 включён таким образом, что по мере зарядки конденсатора C4 сопротивление его участка катод-анод плавно увеличивается и ток через него уменьшается. При этом плавно увеличиваются выпрямленное напряжение и ток через излучающие диоды оптронов.
Стабилизатор DA2 задаёт начальное значение этого напряжения (устанавливают подстроечным резистором R9), которое достигается очень быстро после замыкания контактов выключателя SA1. Дальнейшее увеличение напряжения происходит плавно со скоростью, задаваемой сопротивлением подстроечного резистора R7 и ёмкостью конденсатора C4.
Для чего необходимо задавать начальное напряжение? Дело в том, что при слишком маленьком напряжении на обмотках электродвигателя ток через его обмотки уже течёт, а вал всё ещё остаётся неподвижным. При этом двигатель гудит, а обмотки нагреваются. Для предотвращения такого нежелательного режима и предусмотрена установка начального напряжения, обеспечивающего немедленное начало вращения вала. Необходимое значение этого напряжения сильно зависит от механической нагрузки на валу, поэтому его регулировку подстроечным резистором R9 следует производить в реальных условиях эксплуатации двигателя.
По завершении процесса пуска двигателя начинает действовать третья часть нагрузки выпрямителя на диодном мосте VD2-VD5 — соединённые последовательно стабилитрон VD1 и излучающий диод оптрона U5. Когда напряжение на выходе моста достигает напряжения стабилизации стабилитрона (24 В), сопротивление последнего резко уменьшается. Через него и излучающий диод оптрона U5 начинает течь ток. Фотодинистор оптрона открывается, и реле K1 срабатывает, шунтируя своими контактами симисторы VS1 и VS2. С этого момента на электродвигатель M1 поступает полное сетевое напряжение.
Оптроны 3ОД101В применены в качестве оптронов U1-U4 только потому, что они были у меня в наличии. Поскольку напряжение, создаваемое фотодиодом одного оптрона, оказалось недостаточным для открывания транзистора, число оптронов было удвоено. Как излучающие диоды, так и фотодиоды каждой их пары соединены последовательно. С другими диодными оптронами эксперименты не проводились. Вполне возможно, что они тоже подойдут. Существуют сдвоенные диодные оптроны (например, АОД134АС), а также такие, что содержат два фотодиода, освещаемых одним излучающим диодом (например, АОД176А). Возможно, стоит попробовать и их.
При подборе замены транзисторам 2SC4517 следует обратить внимание на максимальное напряжение коллектор- эмиттер. Оно не должно быть меньше 600 В. Это же касается и максимального напряжения в выключенном состоянии симисторов VS1 и VS2.
Транзисторы 2SC4517 в рассматриваемом устройстве можно применять без теплоотводов. Нужно ли отводить тепло от симисторов, зависит от мощности электродвигателя и от того, как часто планируется его включать.
Реле K1 — РП-64 [3] с катушкой на 220 В, 50 Гц. Его можно заменить, например, на реле R20-3022-96-5230 [4] c двумя группами нормально разомкнутых контактов и катушкой на 230 В переменного тока. Конденсаторы C2 и C3 — плёночные. Микросхемы КР1167КП1Б можно заменить импортными симметричными динисторами DB3.
Рис. 2
Налаживание устройства плавного пуска следует начать с балансировки двух регуляторов. Для этого нужно, как показано на рис. 2, подать на него однофазное напряжение 220 В, подключив вместо электродвигателя M1 две лампы накаливания на 220 В мощностью 40. 60 Вт. Выводы конденсатора C4 необходимо замкнуть перемычкой.
Подав питающее напряжение, установите подстроечным резистором R9 минимальную яркость свечения ламп, а подстроечным резистором R1 добейтесь одинаковой интенсивности их свечения. Отключив питание, удалите перемычку с конденсатора и снова включите устройство, контролируя напряжение на конденсаторе C5. Когда оно достигнет 25.26 В, должно сработать реле K1. Если с этим всё в порядке, можно проверить напряжение на лампах. Перед срабатыванием реле K1 оно должно быть не менее 190 В. Если напряжение на лампах меньше, можно уменьшить сопротивление резистора R2, но только так, чтобы не был превышен максимально допустимый ток управления оптронов U1-U4.
Теперь к устройству можно подключить электродвигатель и подать трёхфазное напряжение. На мой взгляд, подборку желательной продолжительности разгона лучше начинать с минимальной скорости нарастания напряжения на двигателе (движок подстроечно-го резистора R7 в верхнем по схеме положении) и минимального стартового напряжения (движок подстроечного резистора R9 в нижнем по схеме положении).
Хочу обратить внимание, что технически несложно отказаться от стабилизатора DA2, просто исключив его и относящиеся к нему элементы из схемы и соединив вместе провода, шедшие к аноду и катоду стабилизатора. Для регулировки стартового напряжения в этом случае устанавливают подстроеч-ные резисторы R1′ и R2′, показанные на схеме рис. 1 штриховыми линиями. Ноя бы не советовал так делать. Во-первых, это неудобно, поскольку оперировать придётся двумя подстроечными резисторами по очереди, стремясь не нарушать равенства значений напряжения на обмотках двигателя. Во-вторых, далеко не все подстроечные резисторы способны выдержать приложенное к ним напряжение около 400 В. В-третьих, в рассматриваемом устройстве резисторы R1′ и R2′, в отличие от других подстроечных резисторов, будут находиться под высоким напряжением относительно нейтрали трёхфазной сети, что может представлять опасность при случайном прикосновении к ним.
В заключение хочу сказать, что устройство плавного пуска не может заменить частотный регулятор скорости и продолжительное время поддерживать пониженную частоту вращения вала электродвигателя. С его помощью можно лишь увеличить время разгона до номинальных оборотов и снизить пусковой ток. Пребывание электродвигателя в режиме разгона дольше необходимого приведёт к перегреванию обмоток, потому что текущий через них в этом режиме ток хотя и значительно меньше стандартного пускового тока, но всё-таки превышает номинальный. В таком режиме двигатель очень чувствителен к нагрузке на валу и может остановиться при её незначительном повышении.
Некоторой аналогией устройства плавного пуска электродвигателя можно считать механизм сцепления в автомобиле. Постоянная работа асинхронного электродвигателя в режиме разгона подобна движению автомобиля с не полностью включённым сцеплением.
Литература
1. Аладышкин Б. Применение микросхемы КР1182ПМ1. Плавный пуск электродвигателя. — http://electrik.info/main/praktika/278-primenenie-mikrosxemy-kr1182pm1-plavnyj-pusk.html.
2. Плавный пуск трёхфазного асинхронни-ка. — http://kazus.ru/forums/showthread. php?t=12618.
3. Промежуточное реле РП-64. — http://www.rele.ru/d/d7323c0e96dc68ab5ffed6ea85cd1801.pdf.
4. R20 промышленные малогабаритные реле. — <www.relpol.pl/ru/Predlagat/My-predlagaem/Rele/promyshlennye-rele/Pele-R20
Автор: П. Галашевский, г. Херсон, Украина
Что означает плавный пуск?
Плавный пуск — это постепенное включение электронного источника питания, чтобы избежать нагрузки на компоненты из-за внезапных скачков тока или напряжения, связанных с первоначальной зарядкой конденсаторов и трансформаторов.
Функция плавного пуска в цепи питания сводит к минимуму протекание больших пусковых токов при первом включении входной мощности. Когда питание впервые подается в цепь, конденсаторы должны быть заряжены от нуля до их конечных значений, в то время как поток катушек индуктивности и трансформаторов должен быть стабилизирован. Точно так же интегральные схемы и другие активные компоненты должны переходить из неактивного состояния в активное состояние.
Эти действия приводят к тому, что входной импеданс схемы оказывается очень низким, что приводит к протеканию больших пусковых токов. Большие входные токи могут повредить компоненты схемы и вызвать короткие замыкания, которые также могут повлиять на питание от сети, поэтому необходимо контролировать поведение схемы при включении.
Схема плавного пуска постепенно увеличивает пусковой ток от нуля до конечного значения и позволяет выходному напряжению расти медленнее, что приводит к более низкому пиковому току, необходимому для пуска.
Плавный пуск с использованием схемы задержки в диапазоне от нескольких микросекунд до секунд гарантирует, что току и выходному напряжению дается время для нарастания без нагрузки на компоненты. Это позволяет конденсаторам заряжаться, трансформаторам и катушкам индуктивности достигать стабилизированного потока, а интегральным схемам безопасно переходить в активное состояние.
Существуют различные способы реализации плавного пуска с использованием дискретных компонентов или интегральных схем. Выбор зависит от номинальной мощности источника питания, конструкции схемы и желаемого периода плавного пуска, который варьируется от одной конструкции к другой.
Схема плавного пуска временно создает высокое сопротивление на входе в течение времени, определяемого желаемым периодом короткого пуска. Как только компоненты полностью заряжены, высокое сопротивление устраняется либо путем короткого замыкания резистивного устройства с помощью реле, либо переключающего устройства, такого как транзистор или тиристор.
Типичная схема плавного пуска имеет резистор, включенный последовательно с источником питания. Он работает в течение короткого периода в несколько секунд во время включения, после чего отключается таймером, который управляет переключающим устройством, таким как симистор или реле. Коммутационное устройство закорачивает резистор и остается в этом состоянии до отключения питания.
Существует два основных способа, которыми схема синхронизации управляет коммутационным устройством:
- Путем измерения периода времени
- Определение нарастания напряжения на защищаемых компонентах
Другой метод, хотя и не очень эффективный, заключается в использовании термистора NTC. Он имеет высокое сопротивление в холодном состоянии, а при прохождении тока он нагревается, и его сопротивление уменьшается. Это простое решение, не требующее короткого замыкания переключающим устройством. Однако устройство может быть нестабильным или вызывать проблемы, если произойдет сбой питания и питание вернется до того, как устройство остынет достаточно, чтобы достичь высокого сопротивления.
Рис. 1. Типичные схемы плавного пуска с использованием реле.
Реле в приведенных выше схемах можно заменить активными переключающими устройствами, такими как силовые транзисторы или тиристоры.
Время плавного пуска должно быть достаточным для зарядки конденсаторов и стабилизации трансформаторов и активных компонентов.
Помимо ограничения высоких пусковых токов, связанных с первоначальным включением питания, схемы плавного пуска также используются для последовательного включения питания, когда для питания нагрузки используется несколько источников питания.
Проводка устройства плавного пуска
Устройство плавного пуска имеет следующие соединения проводки:
Соединение главной цепи: Содержит проводку ввода 3-фазного источника питания, выход к двигателю и подключение обходного контактора.
Внешнее клеммное соединение: то есть провод идет от 12 внешних клемм, включая сигнал управления и аналоговый выходной сигнал.
Подключение внешних клемм устройства плавного пуска
- Клеммы ① ② являются байпасным выходом, используются для управления обходным контактором. Это нормально разомкнутые контакты, которые замыкаются при завершении пуска. Емкость клеммных контактов составляет 250 В переменного тока/5 А.
- Клеммы ③ ④ являются программируемыми релейными выходами: время задержки устанавливается кодом P4. Тип выходной команды задается кодом PJ. Это нормально открытые клеммы без питания, которые закрыты, когда выход действителен. Емкость контактов этой клеммы составляет AC250V/5A.
- Клемма ⑤ ⑥ является выходом неисправности, она будет замкнута при возникновении какой-либо неисправности устройства плавного пуска или отключения электроэнергии, в то время как в обычном случае они разомкнуты. Емкость этого клеммного контакта составляет 250 В переменного тока/0,3 А.
- Клемма ⑦ является входом мгновенного останова, эта клемма должна быть соединена с клеммой ⑩, когда пускатель работает нормально. Но если эти две клеммы разомкнуты, устройство плавного пуска остановится, и в это время пускатель двигателя находится в состоянии защиты от неисправности. Эта клемма ⑦ может управляться нормально замкнутыми выходными клеммами внешнего защитного устройства, и она бесполезна, когда код ПК установлен на 0 (базовая защита).
- Клемма ⑧ ⑨ ⑩ является входом для запуска или остановки. На ваш выбор есть два способа подключения; это 3-проводное соединение и 2-проводное соединение, см.:
- Клеммы ⑾ ⑿ представляют собой аналоговый выход постоянного тока 4~20 мА, они показывают текущее значение двигателя при работе в режиме реального времени. 20 мА является значением полной шкалы и в четыре раза превышает номинальный ток номинальной мощности устройства плавного пуска, и мы можем подключить амперметр 4~20 мА постоянного тока для проверки. Максимальное значение сопротивления выходной нагрузки составляет 300 Ом.
Примечание: Убедитесь, что внешние клеммы подключены правильно, в противном случае устройство плавного пуска может быть повреждено.
Проводка главной цепи устройства плавного пуска
Устройство плавного пуска устанавливается между сетью и кабелем двигателя. Если используется сетевой или разъединительный контактор, им лучше всего управлять с помощью устройства плавного пуска «Сетевое реле».
3-проводное / 6-проводное : Стандартное подключение электронного устройства плавного пуска — 3-проводное. Альтернативным подключением является 6-проводное подключение или подключение по схеме «внутри треугольника».