интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

МГТУ / Электротехника и электроника-Крайний / Лекции электроника / 11. Триггеры. Триггер схема на транзисторах


11. Триггеры

11.ТРИГГЕРЫ

  1. Симметричные триггеры

Триггеры относятся к элементам дискретной (цифровой) схемотехники. Эти схемы строятся на основе электронных ключей с применением положительной обратной связи. Триггеры имеют два состояния устойчивого равновесия.

  1. Симметричные триггеры на биполярных транзисторах

+UП

Rк Rк

Uкэ1 R1 R1 Uкэ2

VT1 VT2

R2 R2

–Eсм

Если выход последовательно соединенных двух инверторов соединить со входом первого из них, состояние инверторов подтвердится и будет устойчивым, причем возможны два варианта. В каждом из них один из инверторов будет открыт, а другой закрыт. Электронные схемы, имеющие два устойчивых состояния, называются бистабильными ячейками. Схема триггера имеет симметричную конфигурацию и перекрестные связи. Благодаря этим связям закрытый транзистор обеспечивает условие насыщения другого транзистора, а насыщенный транзистор – условие запирания первого. При использовании германиевых транзисторов (в основном в 50–60 гг.) для надежного запирания делителиR1R2подключались к источнику отрицательного напряжения –Есм, так как остаточное напряжениеUкэ.насна насыщенном транзисторе (0,2 ... 0,5В) не обеспечивало закрытие другого транзистора. При использовании кремниевых транзисторов, у которыхUбэ.обольше 0,6В, источник –Есмне требуется.

Электрически симметричное состояние схемы невозможно:

  1. Оба транзистора не могут быть закрыты, так как при этом в обеих базовых цепях существовали бы отпирающие токи.

  2. Невозможно и насыщение обоих транзисторов, так как низкие потенциалы Uкэ.насбыли бы недостаточны для отпирания транзисторов.

  3. Невозможно устойчивое состояние схемы, в котором оба транзистора были бы в активной области. Любое изменение тока базы, например, VT1Iб.1вызовет приращение тока коллектораIк..1=Iб.1, что, в свою очередь, по цепи связи – пропорциональное изменение тока базыVT2 Iб.2=–кIк.1=–к Iб.1. Следствием этого будет приращение тока коллектораIк..2=Iб.2=– 2к Iб.1. В итоге по цепи обратной связи вернется приращение тока базыVT1, равноеI’б.1= 22к Iб.1.

Здесь к =– коэффициент передачи тока из цепи коллектора в цепь базы. Если дополнительное приращениеI’б.1больше, чем первоначальное значениеIб.1, возникает лавинообразный процесс нарастания тока в одном транзисторе и убывания – в другом. Этот процесс называетсярегенерацией. Регенерация заканчивается запиранием одного из транзисторов и насыщением другого.

Условие регенерации к1.

При включении питания направление регенеративного процесса случайно, и бистабильная ячейка устанавливается в одно из состояний устойчивого равновесия. Условие насыщения открытого транзистора Iб.о  Iб.гр:

.

Это эквивалентно условию регенерации

  1. Способы управления триггером

  1. Режим раздельного переключения

+UП

Rк Rк

Rб Rб

VT3 VT1 VT2 VT4

Iвх.1 Iвх.2

Триггер переключается поочередной подачей отпирающих (или запирающих) сигналов на два раздельных входа.

В данной схеме параллельно транзисторам VT1 и VT2, входящим в состав БЯ, подключены управляющие транзисторыVT3 и VT4. Эти ключи управляются отпирающими импульсами токаIвх.1иIвх.2соответственно. В отсутствие управляющих токов транзисторыVT3 и VT4 закрыты и не влияют на состояние триггера. Это режим хранения. При подаче токаIвх.1открывается и входит в насыщениеVT3, что приводит к запираниюVT2низким потенциалом коллекторовVT1 и VT3. При этом откроется и войдет в насыщениеVT1. После окончания импульса токаIвх.1триггер останется в новом состоянии: на выходе левого плеча низкий уровень напряжения, а на выходе правого – высокий уровень.

Повторные импульсы тока Iвх.1не влияют на состояние триггера. Переключение триггера в другое устойчивое состояние произойдет при поступлении на второй вход импульса токаIвх.2. Недопустима подача отпирающих импульсов токаIвх.1иIвх.2одновременно на оба входа. Во время их действия откроются оба транзистораVT3 и VT4, и после окончания импульсовIвх.1иIвх.2откроются транзисторыVT1 и VT2и окажутся в активной области. В результате регенеративного процесса триггер с равными вероятностями может оказаться в любом из устойчивых состояний, т.е. результат будет неопределенным. Рассмотренный вариант схемы называется триггеромRS–типа: входS(set) – установка “1”, входR(reset) – установка “0”.

  1. Режим общего входа

Управляющий сигнал (импульс тока) подается на оба соединенных вместе входа триггера, и по каждому очередному сигналу триггер переключается в противоположное состояние. Для того, чтобы устойчивые состояния менялись регулярно после каждого входного импульса, схема должна иметь внутреннюю память. Функция этой памяти состоит в том, чтобы хранить информацию о предыдущем состоянии триггера в течение всего времени действия очередного управляющего сигнала, а после его окончания обеспечить принудительный переход БЯ в новое состояние, противоположное предыдущему.

Схема триггера с емкостной памятью

+UП

Rк + – С1 С2 Rк

Rб Rб

VT3 VT1 VT2 VT4

Iвх

Пусть в исходном состоянииVT1закрыт, аVT2насыщен. КонденсаторС1заряжен:UC1=

аС2разряжен:UС2 =0.

При по-даче управля-ющего сигнала ключи VT3 и VT4отпираются до насыщения, потенциалы их коллекторов падают до нуля, и потенциал базыVT2оказывается отрицательным:Uб.2 =–UС1, а базыVT1– нулевым. Во время действия входного сигнала транзисторVT1 остается закрытым, аVT2выходит из насыщения и закрывается. Если длительность входного импульса меньше постоянной времени разряда конденсатораС1, напряжениеUC1до конца этого сигнала сохранится.

По окончании сигнала в базы VT1 иVT2поступают неодинаковые отпирающие токи:

Так как Iб.1  Iб.2 , ток коллектораVT1 нарастает с большей скоростью, чем в VT2.Поэтому токIк.1будет подавлять ток базыIб.2. В результате регенеративного процессаVT2окажется закрытым, аVT1через некоторое время войдет в насыщение. Таким образом, триггер изменил свое первоначальное состояние.

  1. Несимметричные триггеры

Несимметричные триггеры – это регенеративные устройства, у которых выходное напряжение может принимать два значения: высокого и низкого уровня. В отличие от симметричного, несимметричный триггер не обладает свойством запоминания предыдущего состояния. То или иное состояние несимметричного триггера поддерживается присутствующим входным сигналом и зависит от его значения. Переход от низкого уровня выходного напряжения к высокому происходит при определенном значении входного сигнала, превышающего порог срабатывания Uсрб, а переход от высокого уровня к низкому происходит при другом входном напряжении, которое ниже порога отпусканияUотп. По модулюUотпменьшеUсрб.

Несимметричный триггер строится на основе усилителя постоянного тока, охваченного положительной О.С.

Uвых

Uвых.max

Uвх.дф

0

Uвых.min

Передаточная характеристика УПТ, охваченного положительной О.С., имеет очень высокую крутизну на активном участке. Если петлевое усиление, то состояние УПТ в пределах линейного участка становится неустойчивым, возникает регенера-тивный процесс и схема переключается в одно из устойчивых состояний:

Uвых.= Uвых.maxлибоUвых.= Uвых.min.

  1. Триггеры Шмитта на биполярных транзисторах

  1. Схема триггера на ненасыщенных транзисторах

+UП1

Rк Rк

Выход

R1

Вход VT1 VT2

R2

I0

–UП2

В основе схемы триггера Шмитта – переключатель тока (дифференциальный каскад), охваченный положительной О.С. Потенциал базы VT2создается делителемR1,R2, подключенным к коллекторуVT1. Для упрощения полагаем, что делительR1,R2не потребляет тока и не влияет на потенциал коллектораVT1. Тогда

Если Uвхмало иVT1закрыт, аVT2открыт (через него течет весь токI0), то

При этом, если у открытого VT2потенциал коллектора выше потенциала базы, т.е.

,

то он находится в активной области, в противном случае – в насыщении.

Такое состояние триггера сохраняется, пока . Таким образом, напряжение срабатывания. КогдаUвх превысит Uсрб, оба транзистора окажутся в активной области и, благодаря положительной О.С., начнется регенеративный процесс переключения, который закончится запираниемVT2. При этом весь токI0переключится вVT1.После срабатывания триггера потенциал коллектораVT1 опустится до уровня, а потенциал базыVT2соответственно до. ТранзисторVT1будет в активной области при.

Чтобы триггер переключить в первоначальное состояние, нужно понизить Uвхдо уровня порога отпускания. Как толькоUвхстанет меньшеUотп, транзисторVT1начнет запираться, аVT2– открываться, и произойдет регенеративный процесс обратного переключения. Как видно, напряжение отпускания меньше напряжения срабатывания. Это соотношение принципиально для триггера Шмитта.

Выходной сигнал снимается с коллектора VT2, свободного от внутренних связей, и по этой причине, а так же вследствие активного режима транзисторов, длительность переходных процессов и фронтов выходного напряжения оказывается предельно короткой.

Uвых=Uк.2

U1вых=UП1

Uвых=Uвх

U0вых

0 Uотп Uсрб Uвх

Передаточная характеристика

Наличие двух пороговых напряжений приводит к появлению на характеристике “петли гистерезиса”.

Ширина петли

.

Чем меньше коэффициент О.С. , тем уже петля и ближе пороги переключения. Однако значениене может быть меньше критического, при котором обеспечивается условие регенерации.

  1. Схема триггера Шмитта на насыщенных транзисторах

+UП

R1 Rк.1 Rк.2

R3 Uвых

C VT1 VT2

R2 R4 Rэ Uэ.0 (Uэ.1)

Исходное состояние:

VT1 закрыт,VT2 насыщен.

Условие запирания VT1:

Условие насыщения VT2:

Iб.2  Iб.2гр.

Отсюда

После переключения VT1 насыщен,VT2 закрыт. При этомдолжно быть меньшеUэ.0, т.е.Rк.1  Rк.2. Условие запиранияVT2 выполняется всегда:

Условие насыщения VT1:Iб.1  Iб.1гробеспечивается при

Совместное решение приведенных выражений дает значения сопротивлений R1, R2, R3и R4.

  1. Несимметричный триггер на основе операционного усилителя

Uвых

U1

Uвых

R1 Uотп Uсрб U1

U2 0

R2

Uсм

Несимметричный триггер на основе ОУ – это регенеративное устройство с положительной О.С. По сравнению с транзисторными триггерами Шмитта триггер на ОУ имеет более стабильные пороги срабатывания и уровни выходного напряжения. Эти триггеры широко используются в качестве формирователей напряжения прямоугольной формы, а также как схемы сравнения (компараторы).

Амплитудная характеристика ОУ, вследствие большого усиления, близка к релейной: если U1  U2, то Uвых = Uвых.min, а еслиU1  U2, тоUвых = Uвых.max. При достаточно глубокой положительной О.С., когда петлевое усилениеKu 1, состояние ОУ на линейном участке амплитудной характеристики (приU1  U2) неустойчиво, возникает регенеративный процесс, и выходное напряжение скачкообразно переключается от одного предельного значения к другому:Uвых.max илиUвых.min.

Коэффициент О.С. задается резисторным делителем: .

Напряжение U2определяется выходным напряжением и может принимать два значения:

;

.

Переключение триггера происходит при увеличении U1  Uсрбили уменьшенииU1  Uотп . Выбором источника напряжения смещенияUсм можно сдвигать пороги переключения, не меняя ширины петли гистерезиса, которая зависит от коэффициента О.С.:. УменьшениеUограничивается условием регенерации.

  1. Применение несимметричных триггеров

  1. В качестве порогового устройства – амплитудного дискриминатора с двумя, близкими по величине, порогами переключения.

  2. В качестве формирователя прямоугольных импульсов напряжения при произвольной форме колебаний входного напряжения.

Компаратор напряжений

Ux R

Uвых

Uоп

R1 R2

Uвх

Uсрб

Uотп

Uвых t

t

studfiles.net

Триггер Шмитта на транзисторе и оптроне

Опубликовал admin | Дата 4 февраля, 2014

     Триггер, это устройство, имеющее два устойчивых состояния и способное под действием управляющего сигнала скачком переходить из одного устойчивого состояния в другое. Передаточная характеристика триггера представляет собой практически прямоугольную петлю гистерезиса с пороговыми уровнями напряжения, при которых происходит переключение триггера из одного устойчивого состояния в другое.

     В отсутствии гистерезиса при входных медленно изменяющихся напряжениях, будет наблюдаться многократное переключение триггера (дребезг), что крайне не желательно. Гистерезис увеличивает стабильность работы триггера при напряжениях близких к пороговому. Триггер Шмитта, как нельзя лучше подходит для формирования фронтов и спадов импульсов управления мощными транзисторами.Триггер Шмитта с оптроном, shema-1Чем круче фронты и спады импульсов, тем меньше коммутационные потери транзистора, тем меньше рабочая температура транзистора при одинаковой коммутируемой мощности. При использовании триггера Шмитта для управления полевыми транзисторами, коммутирующими нагрузку в сети переменного тока 220В, последний не плохо бы гальванически развязать от блока управления, что повысит электробезопастность устройства.

Для этого первый транзистор в схеме триггера Шмитта заменим транзистором из оптрона (см. рис 1), например АОТ128, имеющим время нарастания и спада импульса выходного тока 5 мксек. Ниже приведены данные по времени нескольких популярных импортных оптронов. Как видим, время нарастания и спада тоже многовато.Время включения оптрона, optronВ своем эксперименте в качестве оптрона я использовал 4N35 фирмы MOTOROLA. В качестве транзистора VT1 был выбран КТ3102Б. При указанных на схеме номиналах элементов и при напряжении питания 12В, триггер имел следующие показатели. Напряжение логического нуля на выходе триггера, это когда ток через светодиод оптрона отсутствует, составляет 1,3В. Напряжение логической единицы — через светодиод оптрона течет ток — 11,9В. В моем случае триггер срабатывает при входном токе через светодиод 11мА. Но, конечно, этот ток надо выбирать больше. У меня он был выбран около 20 мА, притом, что максимальный ток светодиода данного оптрона составляет 60 мА.

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:5 041

www.kondratev-v.ru

Триггерные схемы

Триггерные схемы.

Триггер — логическое устройство, способное хранить 1 бит данных. К триггерным принято относить все устройства, имеющие два устойчивых состояния. В основе любого триггера находится кольцо из двух инверторов. Общепринято это кольцо изображать в виде так называемой защелки. Принципиальная схема простейшего триггера-защелки, выполненного на двух инверторах резисторно-транзисторной логики, дана на рисунке . Цепи входного управления у этой защелки нет.

После подачи на триггер напряжения питания состояния его транзисторов могут быть равновероятны: либо насыщен транзистор VT1, а VТ2 находится в состоянии отсечки, либо наоборот. Эти состояния устойчивы. Защелка не может работать как мультивибратор. Пусть по каким-то причинам при включении питания на коллекторе одного из транзисторов, например VTI, коллекторное напряжение снижается, тем самым уменьшается базовый ток IБ2 транзистора VТ2, следовательно, падает и сила его коллекторного тока IК2. Из-за этого на коллекторе VT2 напряжение Uи.п - IK2RK2 должно повыситься. Если это так, то должен еще быстрее возрастать базовый ток 1 транзистора VTI, ускоряя его переход к состоянию насыщения. Этот процесс идет быстро, лавинообразно. Он называется регенеративным. Процесс окончится, когда перестанет изменяться коллекторный ток транзистора VTI и он перейдет в состояние насыщения. Транзистор VT2 окажется в состоянии отсечки.

Дальнейшее изменение токов IK1 и IK2 станет невозможным. Поскольку защелка симметрична, выключая и включая питание Uи.п можно получить один из двух вариантов устойчивого состояния транзисторов в защелке. Если считать что напряжение низкого уровня соотвегсТвует логическому О, обнаруживаем, что запись данных в защелку способом включения и выключения питания даст равновероятный, а поэтому неопределенный результат: 1,0 или 0,1. Однозначную запись 1 бита информации в защелку можно осуществить, если снабдить ее цепями управления и запуска.

В настоящее время существует много разновидностей триггерных схем. Все они появились как результат разработки новых цепей запуска. Для записи данных, т.е. переключения состояния триггера, могут использоваться: статический запуск уровнями напряжения, запуск только одним, положительным или отрицательным перепадом импульса, а также запуск полным тактовым импульсом, когда используются его фронт и срез. Известны триггеры с подачей запускающего перепада через конденсатор, т.е. импульсный запуск только по переменной составляющей тактовой последовательности. На рисунках покказаны схемы взаимного преобразования триггеров.

Среди микросхем КМОП присутствуют все типы триггеров: RS, D и JK . Наиболее популярны D-триггеры, причем в микросхемах ТМ1 и ТМ2 их содержится по два, а в ТМЗ — четыре. Микросхема ТВ1 содержит два наиболее универсальных JK-триггера.

www.microshemca.ru

Триггеры. Симметричный триггер на биполярных транзисторах. RS-триггеры на логических элементах

6. Триггеры

6.1. Общие сведения. Триггерами, или спусковыми устройствами, называют устройства, имеющие два состояния устойчивого равновесия. Каждое из этих состояний может сохраняться сколь угодно длительное время. Переход из одного состояния устойчивого равновесия в другое осуществляется скачком под воздействием внешнего управляющего напряжения.

Перепады выходного напряжения или устойчивые состояния триггера можно принять в качестве логической информации «0» и «1». Поэтому триггер можно использовать в качестве запоминающего устройства, которое хранит один разряд числа, представленного в двоичном коде.

Триггеры подразделяются на две группы — статические и динамические. Статическими называют триггеры, у которых каждое состояние характеризуется неизменным уровнем (потенциалом) выходного напряжения. Статические триггеры называют также потенциальными. В динамических триггерах одно из состояний (обычно единичное) характеризуется наличием на выходе непрерывной последовательности импульсов определенной частоты, а другое (нулевое) — отсутствием импульсов.

Статический триггер реализуется на двухкаскадном усилителе с положительной ОС. Каждый усилитель образует одно плечо триггера. Если оба плеча обладают симметрией по схемотехнике и по параметрам входящих в них элементов, то такой триггер называют симметричным. Если симметрия отсутствует, то триггер называется несимметричным.

Интегральные триггеры используются как самостоятельные устройства и, кроме того, входят в состав различных функциональных устройств: счетчиков, регистров, запоминающих устройств и т.п. Современные интегральные триггеры часто строятся на основе нескольких логических элементов, объединенных в одну микросхему. Они могут иметь несколько входов и различаться способами ввода входной информации.

На схемах входы триггера обозначают буквами латинского алфавита в соответствии с табл. 6.1. По названиям информационных входов называют и триггеры: RS-триггер, D-триггер, JK-триггер и др.

В зависимости от схемы управляющего устройства триггеры делятся на синхронные и асинхронные. Асинхронные триггеры имеют только информационные (логические) входы, и в них запись информации осуществляется в момент ее поступления. В синхронных триггерах запись информации, поступившей на информационные входы, происходит только при поступлении на синхронизирующий (тактирующий) вход дополнительного командного импульса. Синхронные триггеры могут иметь и асинхронные входы, которые обычно служат для установки триггера в нужное исходное состояние.

Асинхронные триггеры используются в качестве коммутаторов, ключей, счетчиков импульсов, делителей частоты повторения импульсов и т.п. Синхронные триггеры применяются в вычислительной и цифровой технике.

Таблица 6.1. Функциональное назначение входов триггера

Условное обозначение

Назначение

S

R

J

K

T

D

V

C

Информационные входы

Вход для раздельной установки триггера в состояние 1

Вход для раздельной установки триггера в состояние 0

Вход для установки в состояние 1 JK-триггера

Вход для установки в состояние 0 JK-триггера

Счетный вход триггера

Вход для установки триггера в состояния 0 или 1

Управляющие входы

Подготовительный вход для разрешения приема информации

Подготовительный вход для осуществления приема информации. Вход синхронизации

Триггеры, переключающиеся по уровню входных сигналов, называют триггерами со статическим управлением, а по фронтам и срезам — триггерами с динамическим управлением.

Рис. 6.1. Условные обозначения триггеров

На схемах триггер изображают прямоугольником, разделенным вертикальной линией на две части (рис. 6.1.): правая часть — основное поле, левая — дополнительное. В основном поле помещается буква Т, а в дополнительном у каждого входа пишется буква (метка), указывающая на его функциональное назначение в соответствии с табл. 6.1. Статические прямые входы и выходы отображают прямыми линиями без каких-либо индикаторов, а инверсные имеют дополнительный индикатор в виде маленького кружка на стороне прямоугольника (рис. 6.1, а). Динамические входы обозначают небольшими треугольниками. У прямых динамических входов, вызывающих «опрокидывание» триггера при изменении уровня сигнала от 0 к 1, острие треугольника направлено внутрь поля (рис. 6.1, б), а у инверсных, вызывающих опрокидывание триггера при изменении уровня сигнала от 1 до 0, — наружу (рис. 6.1, в).

У триггера может быть несколько информационных входов, связанных в группы операциями И либо ИЛИ. Группа входов, связанная операцией И, в дополнительном поле помечается символом логического умножения. Группа входов, связанная операцией логического сложения ИЛИ, дополнительных символов в условном обозначении не имеет (рис. 6.1, г).

6.2. Симметричный триггер на биполярных транзисторах. Упрощенная принципиальная  схема симметричного транзисторного триггера приведена на рис. 6.2, а, а его временные диаграммы — на рис. 6.2, б. Если допустить, что после подачи напряжения источника  на триггер оба транзистора VТ1 и VТ2 оказались открытыми, то вследствие даже незначительного отличия параметров элементов первого и второго плеч появятся различия в коллекторных токах и напряжениях, которые благодаря действию положительной ОС будут увеличиваться до тех пор, пока один из транзисторов не закроется, а другой не перейдет в режим насыщения.

Рис.6.2. Схема симметричного триггера (а) и графики напряжений на его входах и выходах

Если после подачи напряжения  транзистор VТ1 оказался в режиме насыщения, а транзистор VТ2 — в режиме отсечки, то первый отрицательный импульс, поступивший на базу VТ1, вызывает уменьшение тока  и увеличение напряжения . Скачок напряжения  поступает на базу транзистора VТ2.

Это приводит к увеличению тока  и уменьшению напряжения , которое передается на базу VТ1.

В результате действия положительной ОС транзистор VТ1 запирается, а транзистор VТ2 отпирается и переходит в режим насыщения. Такое состояние триггера сохраняется до прихода отрицательного импульса на базу транзистора VТ2 (второй вход). Уменьшение напряжения  вызывает уменьшение тока  и увеличение напряжения . Создаются условия для нового срабатывания триггера.

Транзистор VТ1 открывается и переходит в режим насыщения, а транзистор VТ2 запирается. В таком состоянии триггер будет находиться до поступления на первый вход следующего отрицательного импульса, который вызовет его «опрокидывание» в первое устойчивое состояние, и т. д.

Напряжения на коллекторах транзисторов служат выходными сигналами триггера. Из приведенных графиков и принципа работы следует, что уровни сигналов на выходах являются взаимно инверсными и по состоянию одного выхода можно судить о состоянии другого. Один из выходов называют прямым и обозначают буквой . Другой выход — инверсный — обозначается . В силу симметрии схемы прямым или инверсным может быть назначен любой выход триггера.

vunivere.ru

мир электроники - Триггер Шмитта

Электронные устройства 

 материалы в категории

Триггер Шмитта (говорить Шмидта и Шмита не корректно)- это особый вид триггера который так же имеет два устойчивых состояния (логический ноль или логическая единица), но работает несколько иначе- переключение триггера Шмитта происходит лишь при определенной амплитуде входного сигнала и удержание триггера в устойчивом состоянии возможно лишь пока уровень входного сигнала выше порога срабатывания триггера.

В общем триггер Шмитта это некое пороговое устройство: когда сигнал на входе достиг порогового значения он открывается и будет держаться в открытом состоянии пока уровень входного сигнала не упадет ниже порога срабатывания.

Область применения триггеров Шмитта:1. Преобразование аналогового сигнала в цифровой. В случаях когда требуется получить из аналогового сигнала прямоугольные импульсы/2. В качестве дискриминаторов- когда необходимо отделить сигналы с разной амплитудой. Используется несколько триггеров Шмитта с разным порогом срабатывания.3. В качестве компаратора- сравнивающего устройства.

Триггер Шмитта на транзисторах

А теперь давайте рассмотрим как работает триггер Шмита на транзисторах.Схема триггера Шмитта на транзисторах на рисунке ниже:

триггер шмитта на транзисторах

При нулевом напряжении на входе транзистор T1 заперт а транзистор T2, наоборот- в открытом состоянии (на его базе присутствует напряжение смещения через резисторы Rc1, R1 и R2. Напряжение на выходе Vout будет практически уравновешено между питающими потенциалами и будет соответствовать логическому "нулю"

Если на вход Vin начать подавать аналоговый сигнал то по достижении порога открытия транзистора T1(а этот порог можно менять базовым смещением, которое на рисунке не указано) он начнет открываться, забирая тем самым ток с базы транзистора T2.Транзистор T2 начнет запираться и следовательно будет уменьшаться и напряжение на резисторе Re, что приведет к увеличению скорости отпирания транзистора T1.Таким образом переключение транзисторов в триггере произойдет практически мгновенно, транзистор T2 закроется и на выходе Vout будет присутствовать логическая "единица".

При падении сигнала на входе Vin все произойдет наоборот: транзистор T1 начнет запираться, ток базы транзистора T2 начнет увеличиваться, он будет открываться и потенциал на общем резисторе Re начнет повышаться. Увеличение этого потенциала приведет к ускорению запирания транзистора T1.

Смотрим также:Расчет триггера Шмитта

 

radio-uchebnik.ru

Запуск транзисторных триггеров

Запуск триггера можно производить, запирая насыщенный транзистор или отпирая предварительно запертый. Первый вариант предпочтительнее, так как на отпертый транзистор с очень малым входным сопротивлением переключающий импульс воздействует меньшее время, чем при втором варианте. Этим уменьшается мощность, потребляемая от генератора запуска. В этом случае ускоряющие конденсаторы могут иметь меньшую ёмкость, что сокращает время переходных процессов и установления напряжений в схеме после её опрокидывания. Переключающий импульс должен иметь вполне определённую длительность, чтобы не влиять на схему после возникновения лавинообразного процесса. Поэтому составной частью цепей запуска часто являются дифференцирующие цепи (укорачивающие цепи).

Существуют два вида запуска триггеров: раздельный и общий (счётный).

При раздельном запуске импульсы запуска, чередующиеся по полярности, подаются либо на базу одного транзистора, либо импульсы одной полярности подаются на базу то одного, то другого транзистора.

Триггер с раздельным запуском показан на рис.3.12. Другой вариант такого же триггера, на входах которого установлены дифференцирующие цепи, показан на рис.3.18.

Рис.3.18. Триггер с раздельным запуском и дифференцирующими

цепями на входах

 

Вследствие дифференцирования входных прямоугольных импульсов на резисторах R1 (R2)выделяются разнополярные импульсы, что создаёт опасность вторичного переключения триггера от входного импульса. Такая опасность устраняется с помощью отсекающих диодов VD1 и VD2, пропускающих на базы транзисторов импульсы только одной полярности. Отрицательный прямоугольный импульс, поступающий на один из входов, дифференцируется, и соответствующий переднему фронту отрицательный остроконечный импульс через диод VD1 или VD2 воздействует на базу насыщенного транзистора. Последний выходит из состояния насыщения, развивается лавинообразный процесс, и схема опрокидывается. Следующее переключение схемы произойдёт под действием импульса, поступившего на другой вход.

 

Триггер со счётным запуском

Счётный запуск осуществляется импульсом определённой полярности, поступающим на общий вход обоих плеч триггера. Такой триггер часто называют счётным (Т-триггером). Схема счётного триггера показана на рис.3.19.

Рис.3.19. Схема триггера со счётным запуском (Т-триггера)

 

Как и при раздельном запуске, переключение триггера произойдёт, если запускающий импульс поступит на базу того транзистора, с которого оно должно начаться (отрицательный запускающий импульс должен поступить на базу насыщенного транзистора). Задача цепи запуска – направить каждый запускающий импульс в нужном направлении (т.е. на базу насыщенного транзистора). Кроме того, она должна устранить опасность повторного переключения от одного запускающего импульса, ещё присутствующего на общем входе уже после опрокидывания триггера.

Работа Т-триггера

Пусть в исходном состоянии VT1открыт, а VT2 закрыт. Ускоряющий конденсатор C' разряжен, так как потенциал его левой обкладки близок к нулю ввиду того, что VT1 насыщен, а на правой обкладке потенциал немного меньше нуля (из-за наличия источника смещения –Ек). Поэтому можно сказать, что UС'≈ 0. Ускоряющий конденсатор C'' заряжен, так как его левая обкладка подключена к базе насыщенного VT1, потенциал на которой примерно равен нулю, а правая обкладка присоединена к коллектору запертого VT2, потенциал которого примерно равен +Ек. Следовательно, можно сказать, что UС''≈+Ек.

При подаче на вход схемы отрицательного импульса запуска оба диода VD1 и VD2 отпираются. Через диод VD1 отрицательный импульс запуска подаётся на базу VT1 и запирает его. Напряжение на коллекторе VT1 становится равным +Ек. Через диод VD2 отрицательный импульс запуска подаётся на базу запертого VT2 и не изменяет его состояния. Через диод VD2 протекает ток заряда C' по цепи:

+Ек→ Rк1 → C' → VD2(открытый) → источник импульсов → – Ек

(корпус).

Ввиду того, что длительность импульса запуска мала, конденсатор C' заряжается на очень незначительную величину (ΔUС'). После окончания входного импульса запуска оба диода запираются и отключают источник импульсов запуска от триггера. В этом состоит основное назначение отсекающих диодов.

Таким образом, на некоторое время оба транзистора оказываются запертыми. При этом напряжение +Ек на коллекторах обоих транзисторов через делители R' – Rб2и R'' – Rб1оказывается приложенным к базам обоих транзисторов, и они начинают открываться. Однако плечи триггера в этот момент не будут симметричны, так как C' и C'' заряжены к этому моменту неодинаково: C' заряжен до величины UС'≈ 0, а C'' – до величины UС''≈+Ек. Поэтому ток Ік2 будет больше тока Ік1. Ток, протекающий через VT2 , будет равен сумме токов от источника питания и от заряженного до +Ек конденсатора C'', а ток, протекающий через VT1, будет равен сумме токов от источника питания и от заряженного до +ΔUС' конденсатора C'. В результате неравенства токов, протекающих через транзисторы, возникает лавинообразный процесс, и схема опрокидывается: VT1 запирается, а VT2 отпирается.

Перед следующим тактом запуска запертым оказывается VT1, а отпертым – VT2. Теперь C' заряжается по цепи:

+Ек→ Rк1 → C' → Rб2 → –Есм→ +Есм (корпус) → – Ек.

C'' разряжается по цепи:

+C''→ VT2 → корпус(+Есм) → –Есм → Rб1 → – C''.

В этом состоянии схема будет находиться до прихода следующего импульса запуска. Далее цикл работы триггера повторяется, но меняются ролями его плечи.

Отсюда можно увидеть особенность ускоряющих конденсаторов в таком триггере: кроме обычной функции ускорения опрокидывания, они выполняют функции элементов «памяти», запоминающих состояние триггера и способствующих течению процессов опрокидывания в нужном направлении. Если в триггерах с раздельным запуском отсутствие ускоряющих ёмкостей приводит лишь к уменьшению быстродействия триггера, то в рассмотренной схеме наличие их является обязательным, в противном случае триггер нормально работать не сможет.

Существуют и другие схемы триггеров со счётным запуском, но и в них элементами «памяти» служат конденсаторы.

 

Блокинг-генератор

Блокинг-генератор – это релаксационный генератор коротких импульсов, представляющий собой однокаскадный неинвертирующий усилитель с глубокой положительной обратной связью. Выполнение фазового условия самовозбуждения (т.е. создание положительной обратной связи) обеспечивается соответствующим включением обмоток импульсного трансформатора. Импульсный трансформатор – это трансформатор с ферромагнитным сердечником, служащий для преобразования электрических импульсов длительностью от нескольких наносекунд до десятков микросекунд. Основным требованием, предъявляемым к импульсному трансформатору, является обеспечение минимальных искажений генерируемого импульса. Для выполнения этого требования конструкция импульсного трансформатора имеет ряд особенностей, которые обеспечивают уменьшение индуктивности рассеивания и вихревых токов в сердечнике, а также незначительные паразитные ёмкости. Таким образом, импульсный трансформатор, как и усилительный элемент, осуществляет инвертирование сигнала, в результате чего сдвиг по фазе между выходным и входным сигналами становится равным 2π, и, следовательно, при выполнении амплитудного условия самовозбуждения в схеме возможно возникновение регенеративного процесса.

Блокинг-генератор формирует практически прямоугольные импульсы с достаточно широким диапазоном длительностей и периода повторения. При формировании радиолокационной последовательности импульсов, когда , мощность формируемых импульсов оказывается очень большой даже при применении маломощных транзисторов. Это объясняется тем, что в транзисторах за счёт импульсной инжекции можно получать токи, намного превышающие допустимые токи непрерывного режима работы. Восстановление эмиссионных свойств эмиттера происходит во время паузы между формированием соседних импульсов.

Во время формирования импульса блокинг-генератор имеет очень малое выходное сопротивление и поэтому может работать на низкоомную нагрузку. С обмоток импульсного трансформатора можно получать импульсы различной полярности, причём, с дополнительных обмоток амплитуда выходных импульсов может намного превышать напряжение источника питания.

Блокинг-генератор может работать в автоколебательном, ждущем (заторможенном) режиме и в автоколебательном режиме с внешней синхронизацией.

Схема транзисторного блокинг-генератора изображена на рис.3.20. Временные диаграммы работы блокинг-генератора показаны на рис.3.21.

Рис.3.20. Схема транзисторного блокинг-генератора

 

Работа блокинг-генератора.

Поскольку данный блокинг-генератор работает в автоколебательном режиме, то рассмотрение процессов можно начать с любого момента. Начнём

с момента перезаряда конденсатора, когда транзистор заперт (находится в режиме отсечки).

1-й этап. Перезаряд конденсатора.

Конденсатор C, заряженный при формировании предыдущего импульса, перезаряжается по цепи: + Ек (корпус) →ωб →C →Rб →– Ек

Рис.3.21. Временные диаграммы работы блокинг-генератора

 

Ток перезаряда создаёт на Rб падение напряжения, полярность которого приложена к базе транзистора плюсом. В результате потенциал базы относительно эмиттера оказывается более положительным и поэтому транзистор находится в запертом состоянии. По мере перезаряда конденсатора положительное напряжение на базе уменьшается (рис.3.20, а; б).

2-й этап. Первое опрокидывание схемы (прямой блокинг-процесс).

В тот момент, когда напряжение на базе VT1 достигнет нуля (t = t1), транзистор отпирается, и в цепях базы и коллектора начинают протекать токи iби iк. Появление iк вызывает возникновение ЭДС самоиндукции е1в обмотке импульсного трансформатора ωк, препятствующей возникновению и росту iк. Возникновение е1, в свою очередь, вызывает появление ЭДС взаимоиндукции е2 в обмотке ωб, минус которой оказывается приложенным к базе. При этом замыкается цепь положительной обратной связи:

+Δiк→ +Δе1→ –Δе2 → –ΔUб→ +Δiб→ +Δi'к (>Δiк)

и начинается лавинообразный процесс отпирания транзистора (прямой блокинг-процесс). Говорят, что схема «опрокидывается». Процесс опрокидывания идёт до тех пор, пока транзистор не зайдёт в область насыщения. В этот момент токи iб и iк достигают максимальных значений, а отрицательное напряжение на коллекторе становится равным почти нулю.

3-й этап. Формирование вершины импульса.

С момента перехода транзистора в режим насыщения входной ток iб перестаёт управлять током коллектора iк, и транзистор теряет свои усилительные свойства. ЭДС самоиндукции е1и взаимоиндукции е2пропадают; начинается формирование плоской вершины импульса. С момента отпирания транзистора в цепи базы появляется ток. В обмотке импульсного трансформатора ωб возникает ЭДС за счёт энергии, запасённой во время формирования вершины импульса, и начинается заряд конденсатора C током базы по цепи:

корпус → переход (Э-Б) → C → ωб → корпус (эмиттер).

Напряжение на конденсаторе нарастает быстро, так как прямое сопротивление перехода «эмиттер-база» очень мало. По мере заряда конденсатора положительный потенциал базы увеличивается, а ток в цепи эмиттер - база (iб) уменьшается, что приводит к выходу транзистора из режима насыщения.

4-й этап. Второе опрокидывание схемы (обратный блокинг-процесс).

Процесс формирования вершины заканчивается в тот момент (t = t2), когда ток заряда конденсатора iбуменьшится настолько, что величина коэффициента усиления по току β будет достаточной для возникновения обратного блокинг-процесса. В этот момент транзистор вновь становится активным элементом, обладающим усилительными свойствами. Уменьшение тока базы iб вызывает уменьшение тока коллектора iк и появление ЭДС самоиндукции е'1 и взаимоиндукции е'2. Эти ЭДС имеют направление, противоположное соответствующим ЭДС, возникающим при первом опрокидывании схемы. Вновь замыкается петля положительной обратной связи:

–Δiб→ –Δiк → –Δе'1 → +Δе'2 → ΔUб → –Δi'б(> –Δiб).

Процесс развивается лавинообразно и приводит к резкому запиранию транзистора. Напряжение на коллекторе Uк понижается до величины – Ек, даже ниже – Ек. Это объясняется тем, что в процессе формирования вершины импульса ток намагничивания импульсного трансформатора после запирания транзистора не может исчезнуть мгновенно. В результате ударно возникает ЭДС самоиндукции, приводящая к «всплеску» Uк. При достаточно высокой добротности паразитного колебательного контура в цепи коллектора этот «всплеск» может перейти в паразитные колебания (пунктир). Для предотвращения возникновения паразитных колебаний обычно параллельно обмотке, стоящей в цепи коллектора, включается диод. Малое прямое сопротивление диода шунтирует паразитный колебательный контур, образованный индуктивностью и межвитковой ёмкостью первичной обмотки ωк. Добротность колебательного контура при этом становится низкой, и колебания быстро затухают.

После запирания транзистора вновь начинается описанный выше процесс сравнительно медленного перезаряда конденсатора C.

Ждущий блокинг-генератор

Блокинг-генератор может работать в ждущем режиме. Для этого в общем случае необходимо поддерживать транзистор в запертом состоянии до момента поступления отпирающего импульса. Запереть транзистор можно различными способами: подать положительное напряжение на базу или отрицательное напряжение на эмиттер (если транзистор структуры p-n-p). Обычно выбирается второй вариант (рис.3.22), так как при этом используется общий источник питания – Ек.

Рис.3.22. Ждущий блокинг-генератор

 



infopedia.su

Триггер Шмитта на транзисторах

Триггерная система относится к тем электронным устройствам, которые способны в течение длительного времени поочередно пребывать в двух устойчивых состояниях. Эти состояния могут чередоваться в результате воздействия на них сигналов извне. Точно такими же свойствами обладает триггер Шмитта на транзисторах. Для распознавания того или иного состояния устройства, используется значение напряжения, образующееся на его выходе.

Сведения о триггерах

Все триггеры действуют, фактически, как импульсные устройства. Они состоят из активных элементов, в том числе ламп и транзисторов, функционирующих в ключевом режиме. Перемена каждого состояния продолжается в течение очень короткого времени.

Все данные устройства отличаются особым свойством, заключающимся в способности запоминать двоичную информацию. На этом принципе и основано функционирование этих приборов. Сама память триггера заключается в возможности сохранять каждое состояние, после того, как прекратит свое действие переключающий сигнал. Если одно состояние принять за единицу, а другое – за ноль, то по факту получается запоминание одного числового разряда, из которого состоит двоичный код.

Изготовление триггеров осуществляется с использованием, в основном, полупроводниковых приборов. Как правило, это различные виды полевых и биполярных транзисторов. Ранее, для этих приборов применялись электронные лампы и электромагнитные реле. В современной электронике триггеры используются в логических схемах различных видов вычислительной техники и являются основными компонентами процессоров, счетчиков и прочих аналогичных систем.

Особенности триггера Шмитта

Триггер Шмитта является компонентом электронных устройств. С его помощью постоянно изменяющийся сигнал на входе, преобразуется на выходе в серийные прямоугольные импульсы. В его состав входят два инвертора с положительно-обратной связью. Триггер Шмитта на транзисторах отличается от других систем единственным входом и выходом, а также отсутствием свойств памяти.

Таким образом, выходной электрический сигнал операционного усилителя поступает к прямому входу. Устанавливается определенный уровень, обеспечивающий переключение схемы. Электрический ток к операционному усилителю подводится от двухполярного блока питания на 5 В.

При образовании на выходе усилителя положительного потенциала напряжения, на прямом входе оно составляет один вольт. Когда оба потенциала одинаковы, наблюдается стабильное состояние всей схемы. Если же значение входного сигнала превысит значение 1 вольта, полярность напряжения на входе усилителя изменится на отрицательный потенциал. В результате, напряжение на его входе изменится, и будет составлять один вольт. Таким образом, когда изменяется входное напряжение, на выходе происходит переход из одного состояния в другое.

electric-220.ru


Каталог товаров
    .