Автономный обогрев частного дома позволяет выбирать индивидуальные температурные режимы, что очень комфортно и экономно для жильцов. Чтобы каждый раз не при смене погоды на улице не задавать другой режим в помещении, можно использовать терморегулятор или термореле для отопления, который можно установить и на радиаторы и на котёл. Обозначения для регулировки температуры Одинокий дом зимой Автономное отопление электричеством с использованием ЭОУ Биполярный транзистор Кремниевые диоды Схема терморегулятора Совет. По этой причине на схеме R 3 помечен знаком * и особой точности здесь добиваться не следует, только бы не было больших перепадов. Эти измерения можно провести относительно транзисторного коллектора, соединённым источником питания с общим приводом. Принципиальная схема компаратора Малогабаритное реле (16A) Совет. На рисунке выше видно, что допустимая коммутация тока реле 16A, значит, допускает управление нагрузкой до 3кВт. Используйте прибор для мощности 2-2,5кВт, чтобы облегчить нагрузку. Блок питания для терморегулятора Настольная лампа с абажуром из металла Можно, конечно, установить на радиаторы краны с температурными датчиками, как на самой первой фотографии, но такие устройства не смогут отключать котёл. Но предложенный нами вариант не единственный в своём роде и вы убедитесь в этом, просмотрев видео ролик, приложенный к статье (читайте также статью «Как делается водяное отопление пола: правильная последовательность работ и полезные советы»). otoplenie-gid.ru Российская зима отличается своей суровостью и сильными холодами, о чем известно всем. Поэтому помещения, в которых находятся люди, должны отапливаться. Центральное отопление является наиболее распространенным вариантом, а в случае его недоступности можно воспользоваться индивидуальным газовым котлом. Однако часто случается так, что ни то, ни другое недоступно, к примеру, в чистом поле находится небольшое помещение насосной водопроводной станции, в котором круглосуточно дежурят машинисты. Это может быть комната в каком-то большом необитаемом здании или караульная вышка. Примеров хватает. Все эти случаи вынуждают осуществлять устройство электрического отопления. При малых размерах помещения вполне можно обойтись обычным электрическим масляным радиатором, а в комнатах больших размеров чаще всего устраивают водяное отопление с использованием радиатора. Если не следить за температурой воды, то рано или поздно она может закипеть, из-за чего из строя выйдет весь котел. Для предохранения от таких случаев используются терморегуляторы. В функциональном плане приспособление можно разделить на несколько отдельных узлов: датчик температуры, компаратор, а также устройства управления нагрузкой. Далее будут описаны все эти части. Эта информация необходима для того, чтобы сделать терморегулятор своими руками. В данном случае предложена конструкция, в которой датчиком температуры служит обычный биполярный транзистор, благодаря чему можно отказаться от использования терморезисторов. Данный датчик работает на базе того, что параметры транзисторов всех полупроводниковых приборов в большей степени зависят от температуры среды. Создание терморегулятора своими руками должно осуществляться с обязательным учетом двух моментов. Во-первых, речь идет о склонности автоматических устройств к автогенерации. В случае, когда между исполнительным устройством и датчиком термореле установлена слишком сильная связь, после срабатывания реле сразу же выключается, а затем снова включается. Это будет происходить в тех случаях, когда датчик находится в непосредственной близости к охладителю или обогревателю. Во-вторых, у всех датчиков и электронных устройств имеется определенная точность. К примеру, можно отслеживать температуру в 1 градус, но меньшие величины отследить намного сложнее. В таком случае простая электроника начинает часто ошибаться и принимать взаимоисключающие решения, особенно когда температура почти равна той, что установлена для срабатывания. Если говорить о том, как сделать терморегулятор своими руками, то стоит сказать, что датчик тут является терморезистором, уменьшающим свое сопротивление в процессе нагрева. Он включается в цепь делителя напряжения. В цепь также включается переменный резистор R2, посредством которого устанавливается температура срабатывания. С делителя напряжение поступает на элемент 2И-НЕ, который включен в режим инвертора, а после этого на базу транзистора, служащего в качестве разрядника для конденсатора С1. Он, в свою очередь, подключен к входу (S) RS-триггера, который собран на паре элементов, а также на вход еще одного 2И-НЕ. С делителя напряжение поступает на вход 2И-НЕ, который управляет вторым входом (R) RS-триггера. Итак, мы рассматриваем, как создать простой терморегулятор своими руками, поэтому важно понять, как он работает в разных ситуациях. При высокой температуре терморезисторы характеризуются малым напряжением, поэтому на делителе присутствует напряжение, воспринимаемое логическими схемами как ноль. Транзистор при этом открыт, на входе S-триггера воспринимается логической ноль, а конденсатор C1 разряжен. На выходе триггера устанавливается логическая единица. Реле находится во включенном режиме, а транзистор VT2 является открытым. Чтобы точно понимать, как сделать терморегулятор, стоит отметить, что эта конкретная реализация реле ориентирована на охлаждение объекта, то есть оно включает вентилятор при высокой температуре. Когда происходит снижение температуры, у терморезистора возрастает сопротивление, что приводит к повышению напряжения на делителе. В определенный момент происходит закрытие транзистора VT1, после чего начинается зарядка конденсатора C1 через R5. В конце концов наступает момент достижения уровня логической единицы. Именно она поступает на один из входов D4, а на второй вход данного элемента подается напряжение с делителя. Когда на обоих входах установятся логические единицы, а на выходе элемента появляется ноль, произойдет переключение триггера в противоположное состояние. В этом случае будет выключено реле, что позволит выключить вентилятор, если в этом есть необходимость, либо включить отопление. Так можно сделать терморегулятор для погреба своими руками, чтобы он включал и отключал вентилятор при необходимости. Итак, температура снова стала увеличиваться. Ноль на делителе появится сначала на одном из входов D4, он и снимет ноль на входе триггера, сменив его на единицу. Далее по мере увеличения температуры появится ноль на инверторе. После его смены на единицу будет открыт транзистор, что приведет к разрядке элемента C1 и установлению нуля на входе триггера, отключающего нагрев теплоносителя в системе водяного отопления либо включающего вентилятор. Такие терморегуляторы для отопления, своими руками сделанные, работают достаточно эффективно. Блоки C1, R5 и VT1 предназначены для устранения автогенерации, благодаря тому, что на них устанавливается время задержки выключения. Оно может составлять от нескольких секунд до нескольких минут. Мы рассматриваем достаточно простой терморегулятор, своими руками созданный, поэтому указанный выше узел позволяет также устранить дребезг термодатчика. Даже при очень маленьком самом первом импульсе происходит открытие транзистора и моментальная разрядка конденсатора. Далее дребезг будет игнорироваться. При закрытии транзистора ситуация повторяется. Зарядка конденсатора начинается только после завершения последнего импульса дребезга. Благодаря введению триггера в схему удается обеспечить максимальную четкость срабатывания реле. Как известно, триггер может иметь лишь два положения. Чтобы сделать терморегулятор своими руками, можно воспользоваться специальной монтажной платой, на которой вся схема будет собрана навесным способом. Можно использовать и печатную плату. Питание можно использовать любое в пределах 3-15 вольт. Реле следует подбирать в соответствии с этим. По аналогичной схеме можно сделать терморегулятор для аквариума своими руками, однако следует учесть, что он должен крепиться снаружи к стеклу, тогда проблем с его использованием не возникнет. Описанное выше реле продемонстрировало в процессе эксплуатации весьма высокую надежность. Температура поддерживается с точностью до долей градуса. Однако она находится в прямой зависимости от задержки времени, определяемой цепью R5C1, а также реакцией на срабатывание, то есть мощность охладителя или нагревателя. Диапазон температуры и точность ее установки определяется подбором резисторов делителя. Если вы сделали такой терморегулятор своими руками, то он не нуждается в настройке, а начинает сразу же работать. fb.ru В данной статье рассматривается самодельный терморегулятор для погреба, который можно изготовить своими руками из доступных недорогих радиодеталей. Схема достаточно проста и состоит из двух блоков. Первый измерительный – собран на базе компаратора 554СА3, второй блок собран на регуляторе мощности КР1182ПМ1 выполняющий роль коммутатора нагрузки до 1000 Вт. Как уже было сказано выше, измеритель температуры терморегулятора для погреба построен на основе компаратора DD1. На один из его входов (3 прямой вход) подается постоянное напряжение с делителя напряжения состоящего из резисторов R3 и R4. На другой его вход (4 инверсный вход) также подается напряжение с делителя на резисторах R1 и R2. Резистор R2 представляет собой терморезистор ММТ-4 и является измерительным элементом конструкции. При температуре в погребе выше чем 3...6 градусов на выводах компаратора DD1 (выв. 3 и 4) находится равное напряжение, вследствие чего на выходе (9) присутствует лог.1. Поэтому на реле K1 нет напряжения и его контакты замкнуты. Это приводит к блокировке работы фазового регулятора КР1182ПМ1 и терморегулятора в целом. Если же температура в погребе опустится ниже отметки 6...3 градусов, то это приведет к увеличению сопротивления терморезистора R2 и как следствие это приведет к разбалансировке напряжений на входах компаратора. Теперь на выходе DD1 появится лог.0 и включится реле. Реле, разомкнув свои контакты, разрешает работу DD2. Медленный заряд конденсатора С1 приводит к постепенному нарастанию напряжения и из-за этого произойдет плавное (в течении 1-2 секунды) включение электрических ламп, служащих в качестве нагревательного элемента терморегулятора погреба. Подобный режим работы устройства сохраняет лампы от перегорания. Подстроечный резистор R4 необходим для более точной настройки требуемого уровня температурного режима. Откалибровать терморегулятор можно своими руками по термометру, установленному в погребе. В качестве подстроечного резистора R4 использован резистор марки СП4-1. Его корпус водонепроницаем и защищен от пыли и грязи. Терморезистор R2 типа ММТ-4 на 3,9 кОм. Так же возможно применить другой с сопротивлением в районе от 1 кОм до 10 кОм. При его выборе необходимо обратить внимание, что необходим резистор с отрицательным ТКС (температурный коэффициент сопротивления), его еще называют термистор. Отрицательный ТКС означает, что при нагреве термистора его сопротивление уменьшается, в отличие от позистора (положительный ТКС) сопротивление которого возрастает с увеличением температуры. Терморезистор монтируется прямо на самодельную печатную плату. В случае если планируется применить выносной вариант датчика, то терморезистор подсоединяется к плате проводом в экранирующей оплеткой. И еще необходимо подпаять неполярный конденсатор 1 мкФ между выводом (3) компаратора и общим проводом схемы. Реле К1 - герконовое реле с небольшим током потребления. Другое более мощное реле использовать нельзя, поскольку оно подключено непосредственно к выходу компаратора, ток нагрузки которого должен быть не более 50 мА. Можно так же своими руками изготовить такое рел. Для этого понадобится геркон, имеющий нормально замкнутые контакты. Поверх него необходимо намотать обмотку проводом ПЭЛ диаметром 0,1 мм и состоящую из 500 витков. Тиристоры, возможно, заменить на КУ202К, КУ202Л, КУ202М. При использовании тиристоров КУ202К, КУ202Л мощность нагревательного элемента должна быть не более 200 Вт. В роли нагревателя в погреб крайне удобно применить электролампы накаливания. Четыре лампы по 100Вт, расположенные по углам погреба, гарантируют поддержание постоянной температуры в районе от 3 до 6 градусов при небольшом объеме погреба. Все постоянные резисторы типа МЛТ-0,25 или CF-0,25. Следует отметить, что резисторы CF имеют цветовую маркировку. Источник: Радиолюбитель 10/2006 www.joyta.ruТерморегулятор для погреба своими руками. Схема и описание. Терморегулятор своими руками схема
инструкция, фото и видео-уроки, цена
Автоматическая регулировка тепла в помещении
Для чего это нужно
Температурный датчик
Компаратор
Управление нагрузкой
Блок питания
Наладка терморегулятора
Заключение
Как сделать терморегулятор своими руками. Терморегулятор для аквариума или отопления своими руками
Выход из ситуации
Особенности устройства
Важные нюансы
Процесс создания
Как это работает
Понижение температуры
Возрастание температуры
Сборка
Терморегулятор для погреба своими руками. Схема и описание
Описание работы терморегулятора
Детали терморегулятора для погреба
Поделиться с друзьями: