интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Последовательное включение тиристоров. Схема включения тиристора


Способ регулирования угла включения тиристора, схема и принцип действия.

Тиристорный контактор переменного тока.

 

Тиристорный контактор с управлением от анодного напряжения (рис.1)

Рис.1

Принцип действия: Силовой блок контактора выполнен по схеме с встречно-параллельным соединением тиристоров VS1 и VS2. Управление им осуществляется с помощью цепи, состоящей из резисторов R1, R2, R3 и механического контакта S. Эта цепь подключена параллельно тиристорам, поэтому при замкнутом ключе S напряжение на ее элементах, и в частности на резисторах R1 и R3, изменяется синхронно с анодным напряжением на тиристорах. А так как эти резисторы подключены параллельно управляющим цепям тиристоров, то напряжение одной полярности одновременно нарастает и на аноде тиристора, и на его управляющем электроде. Если это напряжение является положительным, например, по отношению к тиристору VS1 и снимаемое с резистора R1 напряжение превышает значение отпирающего напряжения, тиристор VS1 включается. При изменении полярности напряжения таким же образом происходит включение тиристора VS2. Диоды VD1 и VD2 в схеме необходимы для защиты управляющих цепей тиристоров от обратного напряжения при отрицательном напряжении на их анодах. Регулируемый резистор R2 в управляющей цепи выбирается из условия ограничения амплитуды импульса тока управления до допустимого для используемых тиристоров значения IGmax. Изменением сопротивления резистора R2 можно управлять током во входных цепях тиристоров и, следовательно, моментом включения их по отношению к началу полупериода напряжения. В результате контактор становится способным выполнять еще одну функцию – регулирование тока в нагрузке.

 

 

Способ регулирования угла включения тиристора, схема и принцип действия.

Предельный угол задержки включения тиристоров amax, который можно обеспечить резисторной управляющей цепью, равен 90о. Минимальный угол задержки включения тиристоров при активной нагрузке a=2о. Это объясняется тем, что все тиристоры имеют порог чувствительности по управляющей цепи и, кроме того, изменяющееся по синусоидальному закону анодное напряжение тоже должно превысить пороговое значение U(TO) по крайней мере, в два раза. Эти факторы приводят к появлению бестоковых пауз в кривой тока нагрузки (tп на рис.1). Из-за разброса характеристик управления тиристоров эти паузы могут быть неодинаковы по длительности, что приводит к появлению постоянной составляющей в токе нагрузки. При необходимости углы задержки включения тиристоров выравнивают регулированием токов управления посредством изменения сопротивления построечных резисторов R1 и R3. Схема, иллюстрирующая возможность изменения угла включения тиристора в пределах всего полупериода (a=180о), показана на рис 2.

 

Рис.2 рис.3

 

Принцип действия.

В течение отрицательного полупериода напряжения (по отношению к тиристору) конденсатор С заряжается через диод VD2 и нагрузку Rн практически до амплитудного значения напряжения сети с полярностью, указанной на рис.2. Когда анодное напряжение на тиристоре становится положительным, конденсатор перезаряжается через переменный резистор R и нагрузку от напряжения, равного –Um до напряжения UGT, при котором происходит включение тиристора VS1 (рис.3). Изменяя постоянную цепи зарядки конденсатора τ =(R+Rн)С посредством регулируемого резистора R, можно обеспечить задержку включения тиристора относительно максимального анодного напряжения, т.е. на угол a>90о. Применяемый в рассмотренных схемах способ управления тиристорами является одним из самых простых и надежных, так как реализуется минимальным числом элементов в управляющих цепях. Непосредственная связь управляющего электрода и анода тиристора дает возможность обеспечить выполнение и других требований, которые предъявляются к системам управления, а именно: автоматически осуществляется жесткая синхронизация поступления управляющих сигналов с моментом возможного включения тиристоров; потери мощности на управление малы, так как длительность воздействия тока управления регулируется самим тиристором. Как только он переключается в проводящее состояние, управляющая цепь оказывается зашунтированной малым сопротивлением и ток в ней уменьшается до нуля.

 

Похожие статьи:

poznayka.org

Последовательное включение тиристоров | Техника и Программы

При последовательном соединении тиристоров необходимо обеспечить равенство напряжений на каждом из тиристоров во всех условиях их работы. Существует четыре основных режима работы тиристоров:

•                включение,

•                пропускание тока в прямом направлении,

•                выключение,

•                работа в выключенном состоянии при напряжении, приложенном в прямом или обратном направлении.

В наборе из последовательно соединенных тиристоров при включении самому медленному прибору, пока он не включится, достанется непропорционально большая доля приложенного к цепочке напряжения. Таким образом, необходимо включать каждый тиристор так быстро, как это только возможно, для чего необходимо на их управляющие электроды подавать ток со скоростью нарастания 3…5 А за 500 нс. Впрочем, чем больше и быстрее, тем почти всегда лучше. Напряжение цепи управления на холостом ходу должно составлять 20…40 В.

Рис. 11.1 повторяет Рис. 10.2 и демонстрирует типовую форму импульса управления тиристорами при их последовательном соединении. Если управление осуществляется через оптоволоконный канал, то дисперсия временных параметров излучателей и детекторов в разных звеньях должна быть сведена к минимуму.

Рис. ii.i. Типовая форма импульса управления

Для управления последовательно включенными тиристорами было разработано множество схем. На Рис. 11.2 (слева) приведена схема с высоковольтным изолированным кабелем, продетым через набор тороидальных сердечников токовых трансформаторов, вторичные обмотки которых способны подать напряжение в несколько десятков вольт на оптоволоконные схемы управления тиристорами. Через кабель обычно пропускают ток порядка 100 А при частоте 60 Гц. Эта схема запуска тиристоров весьма популярна для устройств коррекции коэффициента мощности при средних уровнях напряжения. В центре показана конструкция с индивидуальными трансформаторами для питания каждой оптоволоконной схемы управления тиристорами. Для уменьшения размеров трансформаторов в этом случае часто применяют высокочастотное напряжение в их входных цепях. Справа изображена схема с импульсными трансформаторами в цепях управления каждого тиристора. Хотя эта схема и весьма успешно применяется в системах со средним напряжением, трансформаторы в ней требуют аккуратного проектирования и испытаний на электрическую прочность изоляции и время нарастания тока в режиме поддержания. Разновидностью этой схемы является схема с одним импульсным трансформатором, имеющим одну первичную и несколько вторичных обмоток, успешно применяемая в оборудовании класса 5 кВ. В большинстве этих схем взамен одного импульса управления используется последовательность из нескольких более коротких импульсов.

Рис. 11.2. Схемы управления тиристорами при их последовательном соединении

Еще одна конструкция, применяемая при самых высоких напряжениях, показана в упрощенном виде на Рис. 11.3. В этой конструкции напряжение питания схемы управления тиристорами получается из их напряжения анод-катод. Необходимость некоторого времени для заряда накопительного конденсатора ограничивает возможность работы этой конструкции при малых углах задержки включения тиристора, но после заряда конденсатора схема управления каждый период способна вырабатывать по два импульса управления, разделенные интервалом в 60°. Эта конструкция не может обеспечить большие токи управления из-за существенного увеличения в ней потерь мощности. Принципы этой конструкции используются в системах HVDC.

Рис. 11.3. Схема управления тиристорами при их последовательном соединении с питанием от цепи анод-катод

В дополнение к тиристорам, управляемым электрическими сигналами, существуют две их разновидности, включаемые непосредственно светом. Некоторые большие тиристоры управляются мощным световым потоком, создаваемым лазером. В других тиристорах встроены дополнительные управляющие тиристоры, для включения которых требуется менее интенсивный свет. В настоящее время это управление является областью приложения усилий многих разработчиков.

Способы управления тиристоров, рассмотренные выше, отвечают требованиям обеспечения одновременности их включения при последовательном соединении. А вот с выключением дело обстоит посложнее. График тока при выключении тиристора, приведенный на Рис. 10.3, в случае, например, трех последовательно включенных тиристоров превращается в график, приведенный на Рис. 11.4. Тиристор 1 начинает выключаться первым, и, как только на нем начинается рост напряжения, значение di/dt уменьшается и восстановление тиристоров 2 и 3 замедляется. При этом тиристору 1 может достаться непропорционально большая доля напряжения, ведь тиристоры 2 и 3 еще находятся в проводящем состоянии. Можно было бы подобрать тиристоры по их времени восстановления, но это дает мало пользы, так как на время восстановления оказывают сильное влияние температура и значение di/dt в схеме. Уравнения, приведенные на Рис. 10.4, можно приспособить для расчетов применительно к цепочке тиристоров и определить разбаланс в обратных напряжениях.

Рис. 11.4. Ток через тиристоры при их выключении

Стандартным приемом обеспечения равномерности распределения напряжений последовательно включенных тиристоров при выключении является добавление йС-цепочек параллельно каждому тиристору (Рис. 11.5). Постоянная времени R^C выбирается сравнимой со временем восстановления тиристоров.

Рис. 11.5. Элементы для балансированш тиристоров при их последовательном включении

Цепь RlC не окажет никакой помощи в балансировании напряжений на тиристорах, когда они уже заперты и к ним приложено прямое или обратное напряжение. Постоянная времени R^C слишком мала, так что разность этих напряжений просто перезарядит соответствующие конденсаторы. Для того чтобы сбалансировать эти напряжения, в схему вводят резистор R2. Его номинал выбирают так, чтобы ток через него был раз в 5…10 больше, чем ток утечки у применяемых тиристоров. Резистор R1 должен быть безындуктивным, а R2 — не обязательно этого типа. Параметры элементов R1, R2 и С и потери в тиристорах следует проверить с помощью компьютерного моделирования.

Источник: Сукер К. Силовая электроника. Руководство разработчика. — М.: Издательский дом «Додэка-ХХI, 2008. — 252 c.: ил. (Серия «Силовая электроника»).

nauchebe.net

Схема с тиристорами | Техника и Программы

Тиристор, или кремниевый управляемый прибор, представ­ляет собой специальный тип полупроводникового диода, кото­рый переводится в открытое состояние путем подачи напряже­ния на управляющий электрод. Тиржгщры выпускаются раз­личных размеров и номинальных мощностей, что позволяет ис­пользовать их для управления определенными уровнями мощно­сти. Например, прибор размером 13X26 мм может управлять током — 20 А при напряжении — 400 В.

Характеристики тиристора имеют такую же полярность, как и у обычного кремниевого выпрямительного диода при подаче напряжения между анодом и катодом. Однако характеристики тиристора по сравнению с диодами имеют большое преимуще­ство, так как позволяют путем подачи небольших напряжений и при очень малой мощности управлять током значительной ве­личины.

Схема, в которой используется тиристор, приведена на рис. 10.И,а, а на рис. 10.11,6 показано условное обозначение тиристора. При подаче на вход постоянного напряжения тири­стор обычно остается в закрытом состоянии и ток через него и, следовательно, через нагрузку не протекает. Если же подать запускающее напряжение между управляющим электродом и катодом (рис. 10.11, а), то тиристор переводится в полностью от­крытое состояние. При этом основное сопротивление для источ­ника постоянного напряжения составляет сопротивление на­грузки. После запуска тиристора, даже если отключить запус­кающее напряжение, прибор все равно остается в открытом со­стоянии, и ток продолжает протекать через нагрузку. Таким об­разом, запуск можно осуществлять короткими импульсами и тем самым подавать в налрузку ток большой величины.

Хотя после запуска тиржгщра напряжение на управляющем электроде перестает действовать, все же можно перевести тири­стор в закрытое состояние путем изменения приложенного к нему постоянного напряжения. Выключение можно осуществить или путем отключения поданного на тиристор напряжения, или путем изменения его полярности на обратную.

clip_image002

Рис. 10.11. Схема включения тиристора (а) и условные обозначения обычного тиристора (б) и тиристора с двумя управляющими электродами (в).

Переменное напряжение также можно использовать как в качестве управляющего сигнала, так и управляемого. При пода­че на управляющий электрод переменного напряжения, кото­рое находится в фазе с напряжением, приложенным между ано­дом и катодом, тиристор будет открываться во время каждого положительного полупериода напряжения на его аноде. Если разность фаз между управляющим и управляемым напряже­ниями будет постепенно изменяться, то тиристор будет открыт в течение части положительного полупериода, уменьшая тем самым мощность, передаваемую в нагрузку. Фазосдвигающая цепь, описанная в разд. 10.12, может использоваться для уп­равления мощностью, поступающей в нагрузку.

Для выделения постоянного напряжения на нагрузке полу­ченное пульсирующее напряжение можно подать на обычный фильтр, состоящий из последовательного резистора или дроссе­ля и параллельного конденсатора.

Путем введения в тиристор дополнительного управляющего электрода можно получить кремниевый управляемый переклю­чатель (рис. 10.И,в). Такой прибор может запускаться импуль­сами либо положительной, либо отрицательной полярности. В отличие от обычного тиристора переключатель можно перевести в закрытое состояние путем подачи сигнала на управ­ляющий электрод.

clip_image004

Рис. 10.12. Применение тиристора в телевизионном приемнике в качестве высоковольтного ограничителя.

Кроме управления мощностью, тиристор можно также ис­пользовать в качестве высоковольтного ограничителя (рис. 10.12). Такая схема применяется в цветных телевизионных приемниках (например, в некоторых моделях фирмы Sylvania) для того, чтобы избежать появления слишком больших напря­жений, которые могут нарушить работоспособность элементов или вызвать генерирование рентгеновского излучения.

Управление осуществляется в цепи усилителя строчной раз­вертки, выполненного на транзисторе n — р — n-типа. В схеме ограничения используются стабилитрон Д1 и тиристор Д2. Вы­вод стабилитрона, находящийся под потенциалом 120В, связан со схемой, которая вырабатывает высокое напряжение. Если высокое напряжение по какой-то причине возрастет до уровня, превышающего нормальный, то при 135 В произойдут пробой стабилитрона и запуск тиристора. При этом тиристор открыва­ется, его малое сопротивление зашунтирует входную базовую цепь усилителя строчной развертки, изменится смещение на ба­зе транзистора и его проводимость уменьшится. В результате схема строчной развертки и связанный с ней источник высокого напряжения перестают работать до тех пор, пока путем регули­ровки не будет устранена причина, вызвавшая повышение вы­сокого напряжения. Если же причина заключается в выходе из строя какого-либо элемента схемы, который не может быть восстановлен регулировкой, то вновь произойдет запуск тири­стора и высоковольтная часть опять будет переведена в нерабо­чее состояние.

nauchebe.net

Принцип работы тиристора - Электротехника

В некоторых электронных цепях используются электрорадиоэлементы, называемые тиристорами. Они выполняют функцию управления подачей токов на узлы электрической схемы, то есть функцию ключа.

К тиристорам относят разные радиоэлементы, имеющие 3 pn-перехода. В зависимости от количества выводов в устройствах различают: динисторы (с двумя контактами) и триодные тиристоры (с двумя контактами). Принципы их действия разнятся.

Динисторы

Тиристоры, обладающие двумя выводами, называются динисторами или диодными тиристорами. По возможности пропускания тока в том или ином направлении они делятся на:обозначение

  • проводящие электроток только в одном направлении,
  • проводящие электроток в двух направлениях.

Принцип работы тиристора диодного типа заключается в следующем: в обычном состоянии и при малом напряжении pn-переходы динисторов закрыты, но когда напряжение тока возрастает до определённого значения, pn-переходы открываются и ток начинает течь. В отличие от диода, которому для открытия необходимо сравнительно небольшое напряжение, динисторы требуют значительно более высокое напряжения, чтобы начать пропускать ток. Эта характеристика называется напряжением включения. Таким образом, выполняется управление допусками токов в сеть: токи низкого напряжения не пропускаются, а токи высокого пробивают преграду и получают доступ к стоящим за динистором узлам электрической цепи.

Динисторы применяются, в частности, в устройствах управления запуском энергосберегающих ламп и осветителях дневного света, регуляторах мощности и др.

Триодные тиристоры

Триодные тиристоры имеют три вывода, два из которых являются анодом и катодом, а третий – управлением pn-переходом. Если в динисторе управление поступлением тока происходит автоматически (pn-переход открывается под воздействием определённого напряжения), то движение тока от анода к катоду в тиристоре начинается только после подачи управляющего сигнала на третий контакт.

В зависимости от возможности проводить ток в том или ином направлении различают:

  • тиристоры, проводящие электроток в одном направлении,
  • тиристоры, проводящие электроток в двух направлениях.

К последним относится так называемый симистор – симметричный тиристор. Принцип работы симистора основывается на возможности проводить ток в двух направлениях, что позволяет использовать эти устройства в сетях переменного тока. В симисторах также имеется управляющий электрод, но отсутствуют анод и катод, поскольку в разные моменты времени ими являются оба вывода.

Закрытие pn-перехода тиристора может осуществляться двумя путями: либо проходящий через устройство ток снижается до отметки ниже минимального удерживающего тока (для незапираемых тиристоров), либо на управляющий вывод подаётся сигнал, полярность которого противоположна полярности сигнала, которым тиристор был открыт (для запираемых устройств). Если на отрытый тиристор вновь подать открывающий сигнал, закрытие pn-перехода не произойдёт.

включение в схему

Характеристики тиристоров

Тиристоры призваны осуществлять работу в сетях с большими нагрузками. Они могут выдерживать силу тока до десяти килоампер, напряжение – до нескольких киловольт. Открытие pn-перехода происходит за время от десятых долей микросекунд. Закрытие – от нескольких микросекунд.

Тиристоры применяются в инверторах, преобразующих постоянный ток в переменный, в выпрямителях, преобразующих переменный ток в постоянный, регуляторах мощности и в других приборах.

Применение тиристоров в радиотехнике позволяет контролировать поступление тока на отдельные узлы электрической цепи и подавать его только тогда, когда напряжение достигнет необходимых значений.

solo-project.com


Каталог товаров
    .