В оригинальной схеме балласт подключается с помощью транзистора. Реле-регулятор подключается к АКБ и пока напряжение ниже 14.2 вольта, то РР подаёт минусовое напряжение не затвор транзистора и он закрыт. А как только напряжение на АКБ достигнет 14.2 вольта, то РР отключает минус и транзистор открывается, и через него идет ток на балласт. При этом РР работает очень быстро и держит напряжение 14.2 вольта, оно несколько раз в секунду открывает и закрывает транзистор обеспечивая плавный отбор лишней мощности. И собственно по этому нельзя в этой схеме использовать обычное контактное реле, оно просто не выдержит частоту включения-выключения 10....100Гц, будет сильно дребезжать контактами пока они не отгорят.
Сама схема выглядит вот так (ниже рисунок) дополнительное описание - Балластный регулятор для ветрогенератора схема и описание
>
Если у вас нет реле-регулятора с управлением по минусу то можно сделать балластный контроллер на основе реле генератора ВАЗ, и других автомобилей где реле отключает плюсовую щётку генератора и об этом далее.
Когда напряжение ниже 14.2В то плюсовое напряжение подаётся на контакт "Ш", оно подаётся на затвор первого транзистора и он открывается (резистор затвора на минус подключается). Далее этот транзистор подаёт через себя минус (исток-сток) на затвор второго транзистора, и тот минусом закрывается, и через себя не пропускает минус на балласт.
А когда напряжение поднимается выше 14.2В то плюс пропадает с выхода реле регулятора. Первый транзистор закрывается разряжая затвор через резистор на минус. И на затвор второго транзистора перестаёт поступать минус, и он открывается заряжается затвор через резистор от плюса. И он на балласт подаёт минус, балласт включается. Ниже рисунок схемы на двух транзисторах и реле ВАЗ.
>
Из минусов такой схемы это некоторая сложность с подключением транзистора, хотя куда ещё проще, но всё-таки многие не могут и у них не получается. А так-же бывает что транзисторы сгорают, не понятно из-за чего, но такое случалось не только у меня. Вдаваться в описание возможных причин не будем, в общем я нашёл другой выход, и об этом далее.
>
Для изготовления понадобятся:
1. Реле-регулятор любой с управлением по плюсу, это регуляторы ВАЗ например
2. Твёрдотельное реле на постоянный ток
3. Резистор или светодиодную лампочку маломощную
4. Балласт, в качестве которого лампочки или большой резистор
Ветрогенератор подключается напрямую на аккумулятор и с балластным контроллером никак не связан. А сам контроллер подключается тоже к аккумулятору, но с ветряком никак не связан, он просто отслеживает напряжение аккумулятора и при превышении 14.2 вольта включает балласт чтобы остановить рост напряжения и сжечь лишнюю энергию. Поэтому не важно что заряжает аккумулятор, это может быть ветрогенератор, солнечные батареи, или зарядное устройство, контроллер всё равно будет включать балласт при превышении 14.2 вольта. Таким образом можно излишки энергии использовать даже с солнечных батарей, и эти излишки можно пустить на подогрев воды заменив лампочки на водонагревательный ТЭН.
И если говорить о работе самого контроллера, то балласт он включает не резко, а мягко, импульсами, отбирая только лишнюю энергию. Ветрогенератор при этом не получает удары мощной нагрузкой, как это бывает с другими контроллерами. Контроллеры с мощными балластами обычно полностью подключают нагрузку и происходит резкий удар по ветряку, и он начинает замедляться и пока напряжение АКБ не просядет до заданного гистерезиса ветряк будет нагружен мощной нагрузкой и останавливается. И когда акб заряжены то ветряк может получать несколько таких ударов балласта, от этого нагрузки большие на лопасти и подшипники, обмотку генератора. Так-же есть контроллеры, которые просто тормозят генератор при превышении напряжения, и они тоже резко включают торможение практически замыкая генератор, что тоже очень плохо. А этот балластный регулятор работает как ШИМ(PWM) контроллер мягко скидывая только излишки на балласт, только здесь импульсный принцип работы.
Кстати потребление контроллера совсем небольшое, порядка 20мА, и реле твёрдотельное включается только во время скидывания лишней энергии и в отличие от контактных реле потребляет всего 15мА.
Для наглядности работы данной схемы контроллера я записал небольшое видео. На видео реальная работа контроллера с реальным ветрогенератором. Правда в в день съёмки ветерок был совсем небольшой, поэтому чтобы было видно как происходит сброс лишней энергии я отключил две из трёх лампочек балласта, чтобы было видно по яркости свечения лампочки.
На этом всё, всем удачи в повторении подобной конструкции балластного регулятора для ветряка... Ниже несколько фото этого контроллера.
>
>
>
Дополнительная информация по схеме и описания работы в других статьях: e-veterok.ru уже прочитали: 329 Ветрогенератор во время своей работы производит электроток. Напряжение его неровно, так как напрямую зависит от скорости ветра. Некоторые владельцы подключают ветряк непосредственно к потребителю — осветительным приборам, насосам и т.д. Но большинство пользователей предпочитает использовать полный комплекс оборудования, позволяющий получить стабильное напряжение, необходимое для питания всех бытовых приборов и устройств. Такая равномерность достигается , которую заряжает . При этом, величину заряда необходимо постоянно удерживать в рамках рабочих параметров устройства, иначе напряжение в локальной сети пропадет, или, что гораздо хуже, выйдет из строя АКБ. Мнение эксперта Эксперт Energo.House Фомин О. А. Горный инженер, строитель. Допускать закипание аккумуляторов никак нельзя, поэтому необходимо устройство, ограничивающее напряжение на входе. Функцию контроля за величиной заряда выполняет балластный регулятор, или контроллер. Это электронное устройство, отключающее аккумулятор при возрастании напряжения, или сбрасывающее излишки энергии на потребитель — ТЭН, лампу или иной простой и нетребовательный к некоторым изменениям питания прибор. При падении заряда контроллер переключает АКБ в режим заряда, способствуя восполнению запаса энергии. Первые конструкции контроллеров были простыми и позволяли только включать торможение вала. Впоследствии функции устройства были пересмотрены, и лишнюю энергию начали использовать более рационально. А с началом использования ветрогенераторов в качестве основного источника питания для дачных или частных домов проблема в использовании лишней энергии отпала сама собой, так как в настоящее время в любом доме всегда найдется, что подключить. Мнение эксперта Эксперт Energo.House Фомин О. А. Горный инженер, строитель. Одним из простых вариантов сборки контроллера является использование автомобильного реле-регулятора. Это устройство само по себе уже является готовым контроллером, дополнительных элементов для создания нужного прибора требуется совсем немного. Использовать только одно реле нельзя, поскольку оно не рассчитано на высокую частоту срабатываний и сразу выйдет из строя. Существует несколько базовых схем контроллеров, имеющих собственную специфику: Нагрузка через транзистор подается на реле. Оно пропускает ток до достижения максимального заряда, но как только нужное значение будет достигнуто (автомобильное ВАЗовское реле отсекает 14,5 В), то реле отключает минус, а транзистор открывается и пропускает ток на балласт. Как только напряжение упадет, транзистор закрывается, а реле вновь соединяет минус и начинается зарядка АКБ. В качестве балластного потребителя обычно используется обычная лампочка. Эта схема намного проще, но действует не менее эффективно. При использовании плюсового контакта в качестве управляющего транзисторы обычно заменяют твердотельным реле типа GTH6048ZA2 или подобного. Соединение генератора и АКБ получается прямым, как и контроллер. При превышении заряда устройство автоматически подключает нагрузку к аккумулятору, обеспечивая расход излишнего заряда. При достижении критического напряжения 14,5 В реле-регулятор включает твердотельное реле, подключающее нагрузку. Схема проста и поэтому она весьма надежна. Этот вариант применяется для трехфазных генераторов. Схема намного сложнее, так как в ней используются микросхемы и дополнительные элементы, обеспечивающие их работу. В качестве балласта используется нихромовый резистор, намотанный на керамике. Принцип действия устройства состоит в выпрямлении полученного от генератора трехфазного тока, который через реле поступает на микросхему. При понижении напряжения триггер переключает схему в режим загрузки, при повышении — включается балласт, отбирающий лишний заряд. Можно собрать схему как для 12, так и для 24-вольтовых устройств. Мнение эксперта Эксперт Energo.House Фомин О. А. Горный инженер, строитель. Внимание! В настоящее время на рынок поступило множество китайских контроллеров, вполне доступных по цене и способных работать с разными устройствами от 12 до 30 В. Они вполне функциональны и способны избавить от самостоятельной сборки с неясным результатом. Изготовление устройства своими руками доступно только тем, кто имеет некоторые навыки работы с паяльником, в состоянии уверенно читать схемы и вообще имеет хотя бы общее представление об электротехнике и принципах работы электронных устройств. Подходить к вопросу без понимания его сути бессмысленно, так как малейшая ошибка поставит такого мастера в тупик. Этот момент довольно сложен и зачастую выполняется не столько именно путем расчетов, сколько подгонкой параметров балластного регулятора к имеющимся характеристикам ветрогенератора. Дело в том, что каждое устройство имеет собственные рабочие показатели, несоответствие которым не позволит контроллеру качественно выполнять свои функции. Например, если для устройства потребуется 12 вольт для начала зарядки, а контроллер собран на 24, то такая система попросту не сможет работать. Для расчета контроллера надо снять все рабочие характеристики с генератора, т.е. проверить ветряк с установленным генератором на производительность в разных режимах работы — на , средних и . Учесть преобладающую скорость потока, при которой устройство будет работать практически все время. На основании этих данных выбирается напряжение, при котором открывается транзистор, переключающий устройство с одного режима на другой и наоборот. Прежде, чем приступить к сборке, надо приготовить все необходимые детали, тщательно проверить их номинал. Потребуются инструменты и материалы: Создание печатной платы — непростой процесс, требующий наличия определенных приспособлений, химикатов и пластины фольгированного гетинакса. Проще использовать готовую монтажную панель или обычную пластину из фанеры, пластика или прочих листовых материалов. Тщательно продумать размещение всех элементов на пластине. Рекомендуется объединять их по категориям, чтобы все однотипные детали были сгруппированы в одних местах, так будет проще ориентироваться во время ремонтных работ. Необходимо предусмотреть световую сигнализацию, свидетельствующую о текущем режиме работы устройства, чтобы при первом же взгляде было сразу видно, загрузка или отдача энергии происходит в данный момент. При должной подготовке и наличии всех необходимых деталей процесс сборки особых проблем не вызывает. Основная задача — правильное соединение всех элементов в соответствии со схемой. При аккуратной и внимательной сборке устройство будет выполнять поставленную задачу вполне качественно, главное, чтобы все детали были исправными и соответствовали заявленным номиналам. energo.house Нашел на просторах паутины, вот такую схему . Паренек переделал, первую схему упростив ее до безобразия , собрав схему рисунка 2 В первой схеме, все детали которые на ней изображены можно купить в России, а вот во второй будет проблемка, с микросхемой серии 555, я их честно говоря, в глаза даже не видел . Первоисточником является американский сайт. Еще небольшой совет, я буду повторятся ну так надо.Все контроллеры устанавливаем на напряжение 14.2 вольт 14.4 Вольта . Если вы конечно не богатые, и можете себе позволить купить скажем 10 гелевых АКБ. Я представляю инфу для смертных, или экономных, то есть для тех кто гонится за качеством. 🙂 Почему именно 14.2- 14.5 В. Да просто это рабочее и мах напряжение заряда АКБ щелочных (автомобильных). При таких напряжениях, АКБ заряжается полностью и работают на 100%. рисунок 1 – схема контроллера , печатная плата Рисунок 2 – схема контроллера , печатная плата, вид спаеного….. Используемые детали рис 2 IC1 – 7805 5 Volt positive Voltage Regulator R3, R4, R5 – 1K Ohm 1/8 Watt 10%IC2 – NE555 Timer Chip R6 – 330 Ohm 1/8 Watt 10%PB1, PB2 – NO Momentary Contact Push Buttons R7 – 100 Ohm 1/8 Watt 10%LED1 – Green LED Q1 – 2N2222 Or Similar NPN TransistorLED2 – Yellow LED Q2 – IRF540 Or Similar Power MOSFETRLY1 – 40 Amp SPDT Automotive Relay C1 – 0.33uF 35V 10%D1 – 1N4001 or similar С2 – 0.1uF 35V 10% R1, R2 – 10K Multi-Turn Trim-Pots Новая версия контроллера (балластного регулятора напряжения) для ветрогенератора. Схема контроллер для ветрогенератора своими руками
Контроллер для ветрогенератора, схема, описание, и видео
В прошлых статьях я уже описывал схему изготовления контроллера для ветрогенератора на основе автомобильного реле-регулятора (РР). Также в тех статьях есть фото и видео работы этого балластного регулятора. Принцип работы очень простой, реле-регулятор автомобильный при 14.2 вольта отключает щетку генератора и он перестаёт заряжать аккумулятор в автомобиле и таким образом АКБ не перезаряжается. А для работы с ветрогенератором сигнал от РР используется для включения дополнительной нагрузки к АКБ, которая сжигает лишнюю энергию и не даёт напряжению выросли выше 14.2 вольта.
Балластный регулятор для ветрогенератора
Самодельный контроллер, или балластный регулятор для моих ветрогенераторов. Ветрогенераторы исправно работают уже более полугода, но все это время я сам контролировал заряд аккумуляторов, и вот наконец собрал самый простой контроллер
> Дополнение к статье о балластном регуляторе
Решил снова описать принцип работы балластного регулятора и добавил более понятный рисунок схемы балласта. В статье подробно описаны все элементы и принцип их работы, также фотографии + видео готового балластного регулятора
> Контроллер для ветра и солнца
Небольшая модернизация балластного регулятора. Теперь слив энергии идет на четыре автомобильные лампочки. Транзистора два, установил их на новый общий радиатор. Проверка солнечными панелями прошла успешно, но транзисторы стали греться, поэтому решил оставить только две лампочки, подробнее...
балластный регулятор заряда и его сборка своими руками
Что такое контроллер заряда?
Устройство и принцип работы
Схемы балластного регулятора
Прерывание по минусовому контакту
Прерывание по плюсу
Усложнённый вариант схемы контроллера
Как сделать устройство управления своими руками?
Расчет контроллера
Подготовительные работы
Сборка устройства
Схема контроллера универсальный Ветрогенератор солнечная панель. | Пелинг Инфо солнечные батареи
Поделиться ссылкой:
Похожее
peling.ru
Электроника ветряка, самодельный ветрогенератор
Часть 1 - перейти на страницу Часть 2- перейти на страницу Часть3 - третья часть. Часть 4 - перейти на страницу Сама схема работает так.Генератор ветряка подключается к контроллеру. От контроллера идут провода к аккумулятору. Туда же подключается и нагрузка. Если напряжение на аккумуляторе падает ниже 11.9 В, контроллер подключает генератор к аккумулятору, и последний начинает заряжаться. Если напряжение аккумулятора достигает 14 В, контроллер подключает к нему дополнительную нагрузку.>
Оба пороговых напряжения, 11.9 В и 14 В, можно изменять подстроечными резисторами. Интересуясь в Интернете, какими же должны быть эти пороги для свинцовых аккумуляторов, я обнаружил некоторые расхождения у различных авторов. Для своей схемы я взял усредненные значения.
При напряжении аккумулятора между 11.9 В и 14 В, контроллер может переключать систему между зарядом и отдачей тока в нагрузку. Пара кнопок позволяет мне делать эти переключения в любое время, независимо от контроллера. Очень удобно при наладке устройства.
Желтый светодиод зажигается во время зарядки аккумулятора. Когда аккумулятор заряжен, и избыточная мощность отводится в дополнительную нагрузку, загорается зеленый светодиод. Таким образом, я имею минимальную обратную связь, позволяющую понять, что происходит в системе. Кроме того, с помощью мультиметра я могу измерять напряжения в любых точках. Все это не очень удобно.
Как только у меня дойдут руки до того, чтобы упаковать конструкцию в подходящий корпус, я непременно добавлю вольтметр и амперметр, возможно, от автомобильного приборного щитка.
Я использовал свою собранную на листе фанеры схему, что бы с помощью внешнего источника питания имитировать различные режимы заряда и разряда аккумулятора, и настроить контроллер. Устанавливая напряжение 11.9 В, а затем 14 В, я выставил подстроечными резисторами требуемые пороги. Сделать это следовало до отъезда, так как заниматься настройкой в поле никакой возможности у меня не было бы.
Доработка.Исследовав подробнее правила заряда свинцовых аккумуляторов, верхний порог я установил равным 14.8 В. Кроме того, от брата мне достались герметичные свинцовые аккумуляторы, которыми я и заменил обычные, использовавшиеся первоначально.
Важно ! --Я понял, что в первую очередь, надо подключать к контроллеру аккумулятор, и только потом ветрогенератор или солнечную батарею. Если генератор подключить первым, волны напряжения не будут сглаживаться аккумулятором, контроллер будет работать неправильно, реле хаотически переключаться, а броски напряжения, в конце концов, приведут к выходу из строя микросхем. Короче, всегда подключайте аккумуляторную батарею первой, а ветрогенератор вслед за ней. И наоборот, разбирая систему, убедитесь в первую очередь, что генератор отключен. Батарею отключайте последней.
Наконец, представлю вам принципиальную схему. Она лишь немного отличается от прототипа, ссылку на который я приводил выше. Как я говорил раньше, некоторые детали я заменил на те, которые уже были у меня, чтобы не тратиться на покупку новых. Советую вам поступать также. Совершенно не обязательно повторять схему один в один.
>
Перевод текстов на рисунке,Замечание: C3c и IC3d не используются.Заземлите их входы,а выходы оставьте свободными. Входы подключения ветряных турбин и солнечных батарей Battery Bank+ «+» аккумуляторной батареи Dummy Load+ «+» дополнительной нагрузки.
Battery Bank- «-» аккумуляторной батареи Dummy Load- «-» дополнительной нагрузки IC1 LM7808 +8V Voltage Regulator, IC1 LM7808 стабилизатор напряжения +8 В,IC2 LM1458 Dual operational amplifier IC2 LM1458
сдвоенный операционный усилитель,IC3 4001 Quad 2-input NOR Gate,IC3 CD4001 4 логических элемента «2И-НЕ»,Q1 IRF540 MOSFET,Q1 IRF540 MOSFET,D1-3 Blocking diodes rated for the maximum current each source could produce,D1…D3 блокировочные диоды, рассчитанные на максимальный ток подключаемых источников D4 1N4007,D4 1N4007. LED1 Yellow LED . LED1 желтый светодиод, LED2 Green LED, LED2 зеленый светодиод. F1 Fuse rated at total expected current all sources combined will produce. F1 предохранитель, рассчитанный на максимальный суммарный ток всех подключаемых источников. F2 1 Amp Fuse for controller electronics. F2 предохранитель 1 А в шине питания электроники контроллера. RLY1 40 Amp SPDT automotive relay . RLY1 автомобильное реле на коммутируемый ток 40 А . PB1-2 Momentary contact NO pushbuttons. PB1-2 кнопки без фиксации.
All resistors are % Watt 10%. Все резисторы ? Вт 10%. Test Point A should read 7.4V. Контрольная точка A. Напряжение в точке 7.4 В. Test Point B should read 5.95V. Контрольная точка B. Напряжение в точке 5.95 В
Наконец, проект завершен. До моего отъезда осталась всего неделя. Пролетела она быстро. Я разобрал турбину и тщательно упаковал все детали и инструменты, необходимые, чтобы собрать турбину после поездки через всю страну. Погрузив все в машину, я во второй раз поехал на свой участок в Аризоне, на этот раз с надеждой, что хоть какое-то электричество у меня там будет.
продолжение - читать далее...
otchelniki.e-veterok.ru
устройство, характеристики и принцип работы
Контроллер для ветрогенератора выполняет сразу несколько функций: контролирует повороты лопастей, зарядку аккумулятора и преобразовывает переменный ток в постоянный.
Без участия этого прибора совершенно невозможно должное нормальное функционирование ветровой установки.
Контроль: зачем
По сути, контроллер можно рассматривать как прибор-врач. В альтернативной энергетике этот прибор следит за состоянием аккумуляторной батареи: отключает ее по мере накопления заряда и включает по мере израсходования энергии.
При отключении батареи, ветровая установка продолжает свою работу, однако ток теперь перенаправляется контроллером на другие приборы. Получается, что таким образом контроллер сохраняет долголетие ветряка подобно лечащему врачу у людей.
Устройство прибора
Все без исключения производители позаботились о том, чтобы этот прибор защищал аккумуляторную батарею от перезарядки. При сильном ветре включается плавное торможение (или даже остановка) вала – так было раньше, когда контроллеры еще не были продуманы о перенаправлении вырабатываемой энергии. Теперь же стало возможным отдавать энергию при ее переизбытке на другие приборы.
Схема автономного энергообеспечения домаНапример, электронагревательные, которым как раз нужен большой объем тока. То есть прибор «поумнел» и теперь ветровая установка может работать совершенно бесконечно (был бы ветер), а вся присутствующая в доме техника будет подключена к сети от «дармового» ветра. Экономия, как говорится, заметна невооруженным глазом.
Основные параметры
При покупке нового контроллера следует обращать внимание на его основные параметры. Ведь от их показателей будет зависеть работа всей ветровой конструкции:
- Номинальная мощность. Следует изучить этот параметр, чтобы прибор выдержал нагрузку, оказанную на него.
- Напряжение. 12, 24 или 48 вольт – это все имеет свое значение.
- Включение торможения. При достижении определенного вольтажа срабатывает автоматика, которая блокирует работу вала. Например, при напряжении в 48 вольт прибор остановит вал, когда будет достигнут уровень заряда в 58 вольт.
- Возобновление работы. При падении напряжения автоматика запустит вал. При уже упоминаемом напряжении в 58 вольт, когда вал будет остановлен, возможен его повторный запуск при показателе 54 вольта.
- Диапазон рабочий температур. Может колебаться по-разному, но в основном в диапазоне от -100 до +400С.
- Вес и размеры. Принципиального значения не имеют, тем более сейчас, когда практически ежегодно появляются новые и более компактные модели.
- Допустимая влажность. Любой прибор, работающий по электронной схеме, боится повышения влажности. Обычно контроллеры способны работать без нарушений с влажностью не выше 80%.
- Совместимость с солнечными батареями. Более новые модели полностью совместимы как для работы с ветровыми установками, так и для работы с солнечными батареями.
Самостоятельное производство
Уже практически все устройства и агрегаты человечество научилось делать самостоятельно, значительно экономя при этом свои сбережения. Контроллер не стал исключением – народные умельцы успешно применяют приборы собственного изготовления.
Конструктивная схема контроллера для ветрякаМногие компании, которые продают устройства контроля, не гарантируют их совместимость с ветровыми установками, если фирмы-производители разные. Скорее всего, это делается для того, чтобы принести максимальную прибыль конкретной компании, купив у них и ветрогенератор, и контроллер.
Однако, не все так печально. Интернет давно уже переполнен схемами контроллеров, имеющие разные схемы строения. Просмотрев и изучив самодельные приборы, представленные в сети, можно прийти к выводу, что можно и не переплачивать, а положиться на свое умение паять и читать схему. Так что, ничего невозможного нет. Тем более, что тропинка давно протоптана, осталось только по ней пройти.
energomir.biz
Электроника ветряка, самодельный ветрогенератор
Часть 1 - перейти на страницу Часть 2- перейти на страницу Часть3 - третья часть. Часть 4 - перейти на страницу Сама схема работает так.Генератор ветряка подключается к контроллеру. От контроллера идут провода к аккумулятору. Туда же подключается и нагрузка. Если напряжение на аккумуляторе падает ниже 11.9 В, контроллер подключает генератор к аккумулятору, и последний начинает заряжаться. Если напряжение аккумулятора достигает 14 В, контроллер подключает к нему дополнительную нагрузку.>
Оба пороговых напряжения, 11.9 В и 14 В, можно изменять подстроечными резисторами. Интересуясь в Интернете, какими же должны быть эти пороги для свинцовых аккумуляторов, я обнаружил некоторые расхождения у различных авторов. Для своей схемы я взял усредненные значения.
При напряжении аккумулятора между 11.9 В и 14 В, контроллер может переключать систему между зарядом и отдачей тока в нагрузку. Пара кнопок позволяет мне делать эти переключения в любое время, независимо от контроллера. Очень удобно при наладке устройства.
Желтый светодиод зажигается во время зарядки аккумулятора. Когда аккумулятор заряжен, и избыточная мощность отводится в дополнительную нагрузку, загорается зеленый светодиод. Таким образом, я имею минимальную обратную связь, позволяющую понять, что происходит в системе. Кроме того, с помощью мультиметра я могу измерять напряжения в любых точках. Все это не очень удобно.
Как только у меня дойдут руки до того, чтобы упаковать конструкцию в подходящий корпус, я непременно добавлю вольтметр и амперметр, возможно, от автомобильного приборного щитка.
Я использовал свою собранную на листе фанеры схему, что бы с помощью внешнего источника питания имитировать различные режимы заряда и разряда аккумулятора, и настроить контроллер. Устанавливая напряжение 11.9 В, а затем 14 В, я выставил подстроечными резисторами требуемые пороги. Сделать это следовало до отъезда, так как заниматься настройкой в поле никакой возможности у меня не было бы.
Доработка.Исследовав подробнее правила заряда свинцовых аккумуляторов, верхний порог я установил равным 14.8 В. Кроме того, от брата мне достались герметичные свинцовые аккумуляторы, которыми я и заменил обычные, использовавшиеся первоначально.
Важно ! --Я понял, что в первую очередь, надо подключать к контроллеру аккумулятор, и только потом ветрогенератор или солнечную батарею. Если генератор подключить первым, волны напряжения не будут сглаживаться аккумулятором, контроллер будет работать неправильно, реле хаотически переключаться, а броски напряжения, в конце концов, приведут к выходу из строя микросхем. Короче, всегда подключайте аккумуляторную батарею первой, а ветрогенератор вслед за ней. И наоборот, разбирая систему, убедитесь в первую очередь, что генератор отключен. Батарею отключайте последней.
Наконец, представлю вам принципиальную схему. Она лишь немного отличается от прототипа, ссылку на который я приводил выше. Как я говорил раньше, некоторые детали я заменил на те, которые уже были у меня, чтобы не тратиться на покупку новых. Советую вам поступать также. Совершенно не обязательно повторять схему один в один.
>
Перевод текстов на рисунке,Замечание: C3c и IC3d не используются.Заземлите их входы,а выходы оставьте свободными. Входы подключения ветряных турбин и солнечных батарей Battery Bank+ «+» аккумуляторной батареи Dummy Load+ «+» дополнительной нагрузки.
Battery Bank- «-» аккумуляторной батареи Dummy Load- «-» дополнительной нагрузки IC1 LM7808 +8V Voltage Regulator, IC1 LM7808 стабилизатор напряжения +8 В,IC2 LM1458 Dual operational amplifier IC2 LM1458
сдвоенный операционный усилитель,IC3 4001 Quad 2-input NOR Gate,IC3 CD4001 4 логических элемента «2И-НЕ»,Q1 IRF540 MOSFET,Q1 IRF540 MOSFET,D1-3 Blocking diodes rated for the maximum current each source could produce,D1…D3 блокировочные диоды, рассчитанные на максимальный ток подключаемых источников D4 1N4007,D4 1N4007. LED1 Yellow LED . LED1 желтый светодиод, LED2 Green LED, LED2 зеленый светодиод. F1 Fuse rated at total expected current all sources combined will produce. F1 предохранитель, рассчитанный на максимальный суммарный ток всех подключаемых источников. F2 1 Amp Fuse for controller electronics. F2 предохранитель 1 А в шине питания электроники контроллера. RLY1 40 Amp SPDT automotive relay . RLY1 автомобильное реле на коммутируемый ток 40 А . PB1-2 Momentary contact NO pushbuttons. PB1-2 кнопки без фиксации.
All resistors are % Watt 10%. Все резисторы ? Вт 10%. Test Point A should read 7.4V. Контрольная точка A. Напряжение в точке 7.4 В. Test Point B should read 5.95V. Контрольная точка B. Напряжение в точке 5.95 В
Наконец, проект завершен. До моего отъезда осталась всего неделя. Пролетела она быстро. Я разобрал турбину и тщательно упаковал все детали и инструменты, необходимые, чтобы собрать турбину после поездки через всю страну. Погрузив все в машину, я во второй раз поехал на свой участок в Аризоне, на этот раз с надеждой, что хоть какое-то электричество у меня там будет.
продолжение - читать далее...
www.otchelniki.ru
Контроллеры для ветряка | Пелинг Инфо солнечные батареи
И так, как и обещал распаковка контроллера заряда МРРТ для солнечных батарей СКЗ-40А производства Сибконтакт. В данном видео вы сможете краем глаза заглянуть внутрь прибора и увидеть отличия от контроллеров, которые мы уже могли наблюдать в прошлых обзорах. Контроллер гораздо больше своих конкурентов и тяжелее за счет применения более мощного радиатора, который нужен для более эффективного отвода тепла от мощных ключей прибора.
Поделиться ссылкой:
Обзор видео в этот раз будет коротким, постараюсь разложить в нем все по полочкам для тех кто просто смотрит мои видео через канал и не заходит на сайт. В видео я на примере готового контроллера рассказываю на что влияет та или иная доработка не только контроллера но и внедрение разных преобразователей в схему.
Поделиться ссылкой:
И так в этой части темы, я вам расскажу как я доработал почти до конечной стадии Контроллер заряда для ветрогенератора. А именно я исправил заводской недочет который приводил к тому что контроллер заряда после тормоза не обнулялся. А так же встроил плату преобразователя таким образом чтобы ветрогенератор когда начинал крутится, и почти сразу хоть как то заряжать наш аккумулятор.
Поделиться ссылкой:
И так пришел мне еще один контроллер для ветрогенератора, ребята решили меня порадовать и как бонус отправили более мощный контроллер за те же деньги. Ну ни чем он толком не выделяется по функционалу от предыдущего. Все тот же уже знакомый корпус, но винты уже по человечески выкручиваются, да и компоновка уже солиднее.
Поделиться ссылкой:
Многие задаются вопросом как и чем заряжать аккумуляторы от ветрогенератора, чтобы не было ни пере разряда ни большой нагрузки на ветрогенератор, чтобы обороты у ветрогенератора слабее гасались на слабых ветрах. Ну на эти вопросы не только ответит вам данный контроллер заряда от Mi-Sol, ну а также станет отличным помощником в защите вашей системе от перезаряда.
Поделиться ссылкой:
Решил немного попробовать рассказать про зарядные устройства, ну и об сопутствующих узлах.
Поделиться ссылкой:
Это солнечное зарядное устройство. При подключении панели солнечных батарей для аккумуляторной батареи, как правило, необходимо использовать схему контроллера заряда, чтобы предотвратить аккумулятора от перезарядки. ссылка на орегинал не найдена.
Поделиться ссылкой:
Самое дорогое при сборке ветрогенератора является зарядное устройство если покупать его в китае. Но что делать если денег нет или их мало а хочется, тут на помощь придет вам блок заряда от автомобильного генератора. В автомобиле так же используются генераторы на разную мощность и трех фазные. Генераторы у автомобилей так же разные , от 500 до
Поделиться ссылкой:
Многие купив ветряк и солнечные, задумываются как их подключить. Чтобы не спалить универсальный контроллер, Нужно сделать диодную развязку цепи причем диоды выбирать максимально большие по току. Например Солнечная батарея 80 Ватт ток 3.7А Диод надо ставить 5А желательно на радиаторе! Чтобы при замыкании провода или высокой солнечной активности, не сжечь диод. Диоды категорически не рекомендую устанавливать в нутри солнечной батареи! Дабы диоды Шотки (быстродействующие диоды с функцией ключа) могут выйти из строя , а достать его из солнечной батареи , либо будет не реально, либо повредит ее. Да и если провод у вас выходящий с солнечной батареи идет например к щетку . И на протяжении всего провода, считая батарею нет диодов, потери мощности будут минимальны! То есть, все это, я испытал на практике . Провода от моих солнечных батарей идут сечением 0.75 .
Поделиться ссылкой:
Схема отрыта в сети на англо язычном сайте, имеет не большое исполнение, с усилителем и контроллером заряда, защитную цепь для отвода лишнего электричества.
Лампы служат в качестве нагрузки. Рекомендую вместо дампа использовать, автомобильные лампы китайского производства 55 ватт 2-3 штуки. Провод питания ламп минимум 1 квадрат.
Поделиться ссылкой:
peling.ru
Поделиться с друзьями: