интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Устройство и принцип действия синхронного двигателя. Схема синхронного двигателя


Устройство и принцип действия синхронного двигателя

Принцип действия синхронного двигателя примерно такой же, как и у асинхронного. Но есть несколько отличий, которые имеют ключевое значение при выборе мотора для той или иной конструкции. В промышленности получили широкое распространение асинхронные машины – их доля достигает 96% от общего количества электрических двигателей. Но это вовсе не говорит о том, что отсутствуют другие типы электрических агрегатов.

Отличие от асинхронного мотора

Главное отличие синхронной машины заключается в том, что скорость вращения якоря такая же, как и аналогичная характеристика магнитного потока. И если в асинхронных моторах используется короткозамкнутый ротор, то в синхронных имеется на нем проволочная обмотка, к которой подводится переменное напряжение. В некоторых конструкциях используются постоянные магниты. Но это делает двигатель дороже.

принцип действия синхронного двигателя

Если увеличивать нагрузку, подключаемую к ротору, частота вращения его не изменится. Это одна из ключевых особенностей такого типа машин. Обязательное условие – у движущегося магнитного поля должно быть столько же пар полюсов, сколько у электромагнита на роторе. Именно это гарантирует постоянную угловую скорость вращения этого элемента двигателя. И она не будет зависеть от момента, приложенного к нему.

Конструкция мотора

Устройство и принцип действия синхронных двигателей несложны. Конструкция включает в себя такие элементы, как:

  1. Неподвижная часть – статор. На ней находится три обмотки, которые соединяются по схеме «звезда» или «треугольник». Статор собран из пластин электротехнической стали с высокой степенью проводимости.
  2. Подвижная часть – ротор. На нем тоже имеется обмотка. При работе на нее подается напряжение.

Между ротором и статором имеется прослойка воздуха. Она обеспечивает нормальное функционирование двигателя и позволяет магнитному полю беспрепятственно воздействовать на элементы агрегата. В конструкции присутствуют подшипники, в которых вращается ротор, а также клеммная коробка, расположенная в верхней части мотора.

Как работает двигатель

Если кратко, принцип действия синхронного двигателя, как и любого другого, заключается в преобразовании одного вида энергии в другой. А конкретно – электрической в механическую. Работает мотор таким образом:

  1. На статорные обмотки подается переменное напряжение. Оно создает магнитное поле.
  2. На обмотки ротора также подается переменное напряжение, создающее поле. Если используются постоянные магниты, то это поле уже по умолчанию имеется.
  3. Два магнитных поля взаимопересекаются, противодействуют друг другу – одно толкает другое. Из-за этого двигается ротор. Именно он установлен на шарикоподшипниках и способен свободно вращаться, дать ему нужно только толчок.

Вот и все. Теперь остается только использовать полученную механическую энергию в нужных целях. Но требуется знать, как правильно вывести в нормальный режим синхронный двигатель. Принцип работы у него отличается от асинхронного. Поэтому требуется придерживаться определенных правил.

синхронные двигатели устройство и принцип действия

Для этого электродвигатель подключают к оборудованию, которое необходимо привести в движение. Обычно это механизмы, которые должны работать практически без остановок – вытяжки, насосы и прочее.

Синхронные генераторы

Обратная конструкция – синхронные генераторы. В них процессы протекают немного иначе. Принцип действия синхронного генератора и синхронного двигателя отличаются, но не существенно:

  1. На обмотку статора не подается напряжение. С нее оно снимается.
  2. На обмотку ротора подается переменное напряжение, которое необходимо для создания магнитного поля. Потребление электроэнергии крайне маленькое.
  3. Ротор электрогенератора раскручивается при помощи дизельного или бензинового двигателя либо же силой воды, ветра.
  4. Вокруг ротора имеется магнитное поле, которое двигается. Поэтому в обмотке статора индуцируется ЭДС, а на концах появляется разность потенциалов.

Но в любом случае требуется стабилизировать напряжение на выходе генераторной установки. Для этого достаточно запитать роторную обмотку от источника, напряжение которого постоянно и не изменяется при колебаниях частоты вращения.

Полюсы обмоток двигателя

синхронные двигатели конструкция принцип действия

В конструкции ротора имеются постоянные или электрические магниты. Их обычно называют полюсами. На синхронных машинах (двигателях и генераторах) индукторы могут быть двух типов:

  1. Явнополюсными.
  2. Неявнополюсными.

Они различаются между собой только взаимным расположением полюсов. Для уменьшения сопротивления со стороны магнитного поля, а также улучшения условий для проникновения потока, используются сердечники, изготовленные из ферромагнетиков.

принцип действия синхронного двигателя кратко

Эти элементы располагаются как в роторе, так и в статоре. Для изготовления используются только сорта электротехнической стали. В ней очень много кремния. Это отличительная особенность такого вида металла. Это позволяет существенно уменьшить вихревые токи, повысить электрическое сопротивление сердечника.

Воздействие полюсов

В основе конструкции и принципа действия синхронных двигателей лежит обеспечение влияния пар полюсов ротора и статора друг на друга. Для обеспечения работы нужно разогнать индуктор до определенной скорости. Она равна той, с которой вращается магнитное поле статора. Именно это позволяет обеспечить нормальную работу в синхронном режиме. В момент, когда происходит запуск, магнитные поля статора и ротора взаимно пересекаются. Это называется «вход в синхронизацию». Ротор начинает вращаться со скоростью, как у магнитного поля статора.

Самое сложное в работе синхронного мотора – это его запуск. Именно поэтому его используют крайне редко. Ведь конструкция усложняется за счет системы запуска. На протяжении долгого времени работа синхронного двигателя зависела от разгонного асинхронника, механически соединенным с ним. Что это значит? Второй тип двигателя (асинхронный) позволял разогнать ротор синхронной машины до подсинхронной частоты. Обычные асинхронники не требуют специальных устройств для запуска, достаточно только подать рабочее напряжение на обмотки статора.

принцип действия синхронного генератора и синхронного двигателя

После того, как будет достигнута требуемая скорость, происходит отключение разгонного двигателя. Магнитные поля, которые взаимодействуют в электрическом моторе, сами выводят его на работу в синхронном режиме. Для разгона потребуется другой двигатель. Его мощность должна составлять примерно 10-15 % от аналогичной характеристики синхронной машины. Если нужно вывести в режим электродвигатель 1 кВт, для него потребуется разгонный мотор мощностью 100 Вт. Этого вполне достаточно, чтобы машина смогла работать как в режиме холостого хода, так и с незначительной нагрузкой на валу.

Более современный способ разгона

Стоимость такой машины оказывалась намного выше. Поэтому проще использовать обычный асинхронный мотор, пусть и много у него недостатков. Но именно его принцип работы и был использован для уменьшения габаритов и стоимости всей установки. При помощи реостата производится замыкание обмоток на роторе. В итоге двигатель становится асинхронным. А запустить его оказывается намного проще – просто подается напряжение на обмотки статора.

синхронный двигатель принцип

Во время выхода на подсинхронную скорость возможно раскачивание ротора. Но это не происходит за счет работы его обмотки. Напротив, она выступает в качестве успокоителя. Как только частота вращения будет достаточной, производится подача постоянного напряжения на обмотку индуктора. Двигатель выводится в синхронный режим. Но такой способ можно воплотить только в том случае, если используются моторы с обмоткой на роторе. Если там применяется постоянный магнит, придется устанавливать дополнительный разгонный электродвигатель.

Преимущества и недостатки синхронных моторов

работа синхронного двигателя

Основное преимущество (если сравнивать с асинхронными машинами) – за счет независимого питания роторной обмотки агрегаты могут работать и при высоком коэффициенте мощности. Также можно выделить такие достоинства, как:

  1. Снижается ток, потребляемый электродвигателем, увеличивается КПД. Если сравнивать с асинхронным мотором, то эти характеристики у синхронной машины оказываются лучше.
  2. Момент вращения прямо пропорционален напряжению питания. Поэтому даже если снижается напряжение в сети, нагрузочная способность оказывается намного выше, нежели у асинхронных машин. Надежность устройств такого типа существенно выше.

Но вот имеется один большой недостаток – сложная конструкция. Поэтому при производстве и последующих ремонтах затраты окажутся выше. Кроме того, для питания обмотки ротора обязательно требуется наличие источника постоянного тока. А регулировать частоту вращения ротора можно только с помощью преобразователей – стоимость их очень высокая. Поэтому синхронные моторы используются там, где нет необходимости часто включать и отключать агрегат.

fb.ru

Синхронные двигатели — принцип работы, конструкции

Все электродвигатели построены на одном и том же принципе взаимодействия магнитных полей. Катушка с сердечником из ферромагнитного материала оказывает заметное механическое воздействие на другую аналогичную катушку. Разноименные полюсы соленоидов притягиваются, а одноименные — отталкиваются.

Поэтому в двигателе должно быть пространственное перемещение полюсов магнитного поля, создаваемое одной его частью. А другая часть движка создает свои полюсы и откликается вращением на пространственное перемещение полюсов. Она может содержать как постоянные магниты, так и катушки с сердечником. Далее расскажем о том, как магнитные поля функционируют в синхронных двигателях, а также предоставим другую информацию об этих машинах.

Конструктивные особенности

Синхронный двигатель содержит

  • часть конструкции, в которой создается перемещающееся магнитное поле, называемую статором;
  • часть двигателя, которая вращается от воздействия магнитного поля, называемую ротором;
  • провод, соединяющий движок с источником питания, который сравнивают с якорной цепью корабля. Чтобы указать на ту часть двигателя, которая присоединена к проводу, ее называют якорем. В рассматриваемой машине питающий провод присоединен к статору. Следовательно, это якорь.
Составные частит синхронных двигателей Составные частит синхронных двигателей

Чем больше витков содержат взаимодействующие катушки, тем меньший ток потребуется для эффективной работы движка. Но сила тока — это не самая сложная проблема. Главное — создать пространственное перемещение магнитного поля, что весьма непросто.

По этой причине синхронный двигатель появился только после того, как заработал первый генератор. Его создал в 1891 г. М.О. Доливо-Добровольский. Обратимость электрических машин позволяет использовать их и генераторами, и двигателями. Обратима и синхронная машина. Но для движков существуют определенные конструктивные ограничения, которых нет у генераторов.

Принцип работы

Для получения направления вращения статор двигателя должен содержать как минимум две катушки. Только в такой конструкции можно создать направленное перемещение магнитного поля. Это определяет устройство и принцип работы многих электродвигателей, питаемых от сети. Для нормальной работы синхронной машины, если это генератор, статор может содержать только одну катушку и быть источником ЭДС. Его ротор вращается принудительно. При этом, независимо от направления вращения, на клеммах статора появится переменное напряжение.

Но если такой генератор используется как двигатель, направление вращения его ротора может быть в обе стороны.

Оно будет определяться

  • либо положением ротора в момент подачи напряжения на клеммы статора;
  • либо принудительно направлением стартового вращения.

Конструкцию большинства электрических машин в основном определяет система электроснабжения, с которой они связаны. В наши дни первичными источниками ЭДС являются трехфазные генераторы. Эти машины создают трехфазное напряжение. Оно позволяет непосредственно получать перемещающееся магнитное поле. Без него синхронные двигатели переменного тока не могут работать, так же, как и асинхронные движки.

Для этого используются три или две фазы, питающие обмотки статора движка. Устройство синхронного двигателя должно соответствовать схеме электропитания. Наилучший результат получается при трехфазной конструкции статора. В этом случае магнитное поле получается вращающимся. По этой причине трехфазный синхронный двигатель является наиболее эффективным, если его сравнивать с аналогами, но при меньшем числе фаз.

Электромагнитные процессы и вращение

Намагниченный ротор тянется за полем статора и поэтому вращается синхронно с ним. В этом и состоит принцип действия синхронного двигателя. Магнитный поток в теле ротора в основном определяет крутящий момент на вале движка. Чем больше магнитный поток, тем больше крутящий момент. При этом независимо от нагрузки на вал (в определенных пределах) его скорость вращения не изменяется. Меняется только взаимное положение полей статора и ротора, но не скорости вращения.

По мере увеличения нагрузки на вал полюсы ротора оказываются все больше позади поля статора. Число n оборотов в минуту ротора рассматриваемого двигателя зависит от того, сколько пар полюсов p у статора. Если он запитан переменным напряжением с частотой  f , используется формула

Формула Формула

В результате изменения положения ротора под нагрузкой уменьшается магнитный поток в сердечнике статора. Вследствие этого ток статора увеличивается и компенсирует уменьшение магнитного потока, противодействуя нагрузке на вале движка. Аналогичные процессы происходят в нагружаемом трансформаторе. Полюсы статора и ротора все больше удаляются друг от друга по мере увеличения нагрузки. Но частота оборотов остается неизменной до определенного момента.

Как только электромагнитные параметры конструкции статора оказываются меньше некоторого предельного значения, ротор останавливается. Время до полной остановки определяет привод, использующий синхронный электродвигатель. Конструкция ротора без специальных технических решений не позволяет получить крутящий момент за счет скольжения, как в асинхронном двигателе. То же самое получится, когда синхронные двигатели запускаются — скольжение отсутствует.

Но конструкция, в которой много пар полюсов и медленное вращение ротора, может быть исключением. На самостоятельный пуск движка влияет масса ротора и скорость перемещения поля статора мимо ротора. Обычно сила их взаимодействия может преодолеть инерцию ротора. Но после принудительной раскрутки тем или иным способом. Только при этих стартовых условиях возможна работа синхронного двигателя. Начальная скорость для входа в синхронизм обычно близка к параметрам вращающегося магнитного поля статора.

Разновидности движков

Конструкция ротора и принцип действия синхронной машины-двигателя напрямую связана

  • с мощностью, которую надо создать на его вале,
  • необходимой для этого величиной магнитного потока,
  • параметрами напряжения питания статора.

Устройство синхронных машин небольшой мощности получается более простым при изготовлении магнитного ротора из специальных материалов. Так же применяется явно полюсный ротор с малой начальной намагниченностью. В результате получаются конструкции с постоянными магнитами, а также гистерезисные и синхронные реактивные двигатели. На статор этих движков подается переменное напряжение. Число фаз и частота соответствуют конструкции двигателя. В однофазных движках может быть использован конденсатор, через который подключается одна из двух обмоток статора. Но может быть применена схема из показанных далее вариантов.

Варианты устройства синхронных двигателей Варианты устройства синхронных двигателейРазновидности роторов Разновидности роторовПринцип работы ротора Принцип работы ротораОдин из вариантов конструкции двигателя Один из вариантов конструкции двигателяРотор с постоянными магнитами Ротор с постоянными магнитамиГистерезисный движок Гистерезисный движок

 

Три разновидности конструкции ротора реактивного двигателя Три разновидности конструкции ротора реактивного двигателя

 

Гистерезисный движок похож на синхронный реактивный двигатель. Эти синхронные машины переменного тока характеризует одинаковый принцип действия. Его определяет магнитное поле статора, намагничивающее ротор. Гистерезисный движок и синхронный реактивный электродвигатель своей надежностью не уступают асинхронным двигателям. Однако роторы этих синхронных машин всегда бывают существенно дороже роторов асинхронных движков.

С целью получения максимального силового взаимодействия и больших по величине крутящих моментов в роторе используется принцип электромагнита. При этом его называют индуктором с обмоткой возбуждения. Для ее питания применяется постоянное напряжение, которое подается на щетки. Они расположены на статоре и скользят по кольцам, установленным на роторе. Через эту пару скользящих контактов течет постоянный ток возбуждения.

Классический движок с индуктором Классический движок с индуктором

Такое классическое устройство синхронной машины существует и в наши дни, но преимущественно в наиболее мощных моделях. Для запуска движков обычно используются конструктивные решения со скольжением магнитных полей, характерные для асинхронных двигателей. При наличии индуктора для этого достаточно накоротко замкнуть щетки. В синхронных электрических машинах движки без щеток в роторе делаются с пусковыми обмотками типа беличьей клетки. Могут быть иные конструктивные решения для асинхронного старта.

Важной особенностью рассматриваемых двигателей, питаемых переменным напряжением, является их польза при работе без механической нагрузки или при ее небольшой величине. В таком режиме работы при небольшом возбуждении реактивная мощность из сети потребляется, а при значительном — отдается в сеть. Тем самым увеличивается эффективность электроснабжения. Для этой цели делаются специальные движки, называемые синхронными компенсаторами.

Движки-компенсаторы на подстанции Движки-компенсаторы на подстанции

Развитие полупроводниковых приборов позволило создавать вращающееся магнитное поле путем преобразования постоянного напряжения. Очевидно то, что такое техническое решение расширило возможности управления электрическими двигателями. Регулирование частоты питающего напряжения и бесконтактный индуктор — это главные достижения полупроводниковых моделей. Но при этом существуют ограничения, определяемые возможностями электронных ключей.

По этой причине наиболее мощные из всех существующих движков по-прежнему являются трехфазными индукторными конструкциями со щетками и кольцами.

Похожие статьи:

domelectrik.ru

Глава пятая электропривод с синхронным двигателем

5.1. Схема включения, статические характеристики и режимы работы синхронного двигателя

Синхронные трехфазные двигатели (СД) широко применяются в электроприводах самых разнообразных рабочих машин и механизмов, что объясняется их высокими технико-экономическими показателями.

1.Синхронные двигатели имеют высокий коэффициент мощностиcos, равный единице для электроприводов небольшой мощности и опережающийcosв установках большой мощности. Способность СД работать с опережающимcosи отдавать в сеть реактивную мощность позволяет улучшать режим работы и экономичность сети электроснабжения.

2.Высокий КПД современных СД, составляющий 96–98 %, что на 1–1,5 % выше КПД АД тех же габаритов и скорости.

3.Возможность регулирования перегрузочной способности СД за счет регулирования тока возбуждения и меньшая зависимость этого показателя от напряжения сети по сравнению с АД.

4.Синхронный двигатель обладает абсолютно жесткой механической характеристикой.

5.Важным преимуществом конструкции СД является большой воздушный зазор, вследствие чего его характеристики и свойства мало зависят от износа подшипников и неточности монтажа ротора.

6.Возможность их изготовления на очень большие мощности (до нескольких десятков мегаватт и более).

На рис. 5.1 приведена схема включения СД. На статоре СД, выполненном аналогично статору АД, располагается трехфазная обмотка, подключенная к сети переменного тока.

Ротор СД выполняется с двумя обмотками: обмоткой возбуждения постоянного тока и короткозамкнутой пусковой обмоткой в виде беличьей клетки. Пусковая обмотка обеспечивает механическую характеристику СД в виде одной из кривых, показанных на рис. 5.2, а. Характеристика1обеспечивает по сравнению с характеристикой2больший «входной» момент СД (Mв1>Mв2), но меньший пусковой момент (Mп1<Mп2). Выбор вида пусковой механической характеристики определяется конкретными условиями работы СД.

После вхождения СД в синхронизм его скорость при изменениях момента нагрузки на валу до некоторого максимального значения Мmaxостается постоянной и равной угловой скорости магнитного поля (синхронной скорости)

(5.1)

где р– число пар полюсов СД;f1– частота питающей сети.

Поэтому его механическая характеристика имеет вид горизонтальной прямой линии, показанной на рис. 5.2, б. Если момент нагрузки превысит значениеМmax, то СД может выпасть из синхронизма.

Для определения максимального момента СД Мmax, до которого сохраняется синхронная работа СД с сетью, служит угловая характеристика СД. Она отражает зависимость моментаМот внутреннего угла СД, представляющего собой угол сдвига между ЭДС статораЕи напряжением сетиUфили, что то же самое, между осью магнитного поля СД и осью его полюсов.

Получим угловую характеристику для неявнополюсного СД при пренебрежении активным сопротивлением обмотки статора (R1=0). Векторная диаграмма для этого случая показана на рис. 5.3,а, где обозначено:x1– индуктивное сопротивление фазы обмотки статора;I–ток статора СД.

Подводимая к СД мощность может быть принята равной электромагнитной мощности

(5.2)

где Uф– фазное напряжение сети;– угол сдвига между напряжением сети и током СД. Отсюда

(5.3)

Из векторной диаграммы рис. 5.3, аследует

(5.4)

Рассмотрение треугольника АВСпозволяет определить, что

(5.5)

с учетом чего (5.4) запишется как

(5.6)

Подстановка (5.6) в (5.3) дает следующее выражение:

(5.7.)

где Mmax=3UфЕ/(0x1) – максимальный момент СД.

Из выражения (5.7) видно что момент СД представляет собой синусоидальную функцию внутреннего угла машины. Полученное выражение угловой характеристики (5.7) может быть с погрешностью примерно 10–20 % использовано и для явнополюсных СД.

Угловая характеристика СД показана на рис. 5.3, б. Максимального значения момент СД достигает при=/2. Эта величина характеризует собой перегрузочную способность СД. При больших значениях угла СД выпадает из синхронизма, а при меньших углахего работа устойчива.

Важной величиной является номинальный угол сдвига ном, его значение равно 25–30°, которому соответствует номинальный моментMном. При таком значенииномм=Мmax/Mном=22,5.

Синхронный двигатель может работать во всех основных энергетических режимах, а именно: двигательном и генераторном при параллельной и последовательной работе с сетью и независимо от сети. При этом режим генератора последовательно с сетью (торможение противовключением) используется редко из-за того, что перевод СД в этот режим сопровождается значительными бросками тока и требует применения сложных схем управления.

Для осуществления торможения СД чаще используется генераторный режим при работе независимо от сети переменного тока (режим динамического торможения). Для реализации этого режима обмотка статора СД отключается от сети и замыкается на дополнительный резистор R1д, как показано на рис. 5.4,а, обмотка возбуждения продолжает питаться от источника, постоянного тока.

Механические характеристики СД в этой схеме подобны характеристикам АД при динамическом торможении. При изменении R1ди тока возбужденияIвполучаются различные искусственные характеристики СД.

studfiles.net

Лабораторная работа № 12Синхронный двигатель Цель работы:

200

  • ознакомление с принципом действия, характеристиками синхронного двигателя;

  • приобретение практических навыков подключения к сети, эксплуатации и отключения синхронного двигателя;

  • получение экспериментального подтверждения теоретических сведений о характеристиках синхронного двигателя.

Основные теоретические положения Введение

Синхронные двигатели применяются там, где требуется постоянная частота вращения. Мощные синхронные двигатели устанавливаются на металлургических заводах, шахтах, холодильниках, на компрессорных и нефтеперекачивающих станциях магистральных трубопроводах, где они приводят во вращение прокатные станы, насосы, вентиляторы и т.д. Основное достоинство синхронного двигателя заключается в возможности работать с высоким коэффициентом мощности. Специальные синхронные двигатели малой мощности используются в приборах и системах управления.

Принцип действия синхронного двигателя

Рис. 1

Синхронную машину после подключения к сети можно перевести в двигательный режим, если отключить приводной двигатель и подключить механическую нагрузку. В отличие от генераторного режима ротор будет отставать от результирующего магнитного поля (рис. 1) на уголиз-за момента сопротивления нагрузки MН, направленной против вращения, что приводит к появлению электромагнитного моментаM, так как в этом случае сила притяжения разноименных полюсовNиSприобретает составляющую, перпендикулярную оси ротора, направленную по направлению вращения ротора и магнитного поля, скорости вращения которых совпадают и равныn0=  60 f/p.

Схема замещения и векторная диаграмма синхронного двигателя

В отличие от генератора, работающего параллельно сети, в двигательном режиме ток I и синхронная ЭДСEсинизменяют направление на противоположное. В соответствии с этим схема замещения двигателя приобретает вид, приведенный на рис. 2,а. На основании 2-го закона Кирхгофа по схеме замещения можно написать следующее уравнение:

,

где — синхронная ЭДС иXсин— синхронное сопротивление (индуктивное), рассмотренные в лабораторной работе "Синхронный генератор в автономном режиме";Uа— падение напряжения на обмотке статора; u— комплексное напряжение сети. Пренебрегая активным сопротивлением из-за его малости, получаем

.

В соответствии с этим уравнением на рис. 2, бприведена векторная диаграмма синхронного двигателя. По сравнению с аналогичной векторной диаграммой для синхронного генератора угол рассогласования изменил знак.

аб

Рис. 2

Угловая характеристика синхронного двигателя

Угловая характеристика синхронной машины (зависимость момента Мот угла нагрузкипри постоянном токе возбужденияIВ= const, рис. 3) рассмотрена в предыдущей лабораторной работе. Режиму двигателя соответствует правая часть характеристики> 0.

Полезная мощность на валу ротора P2, в пренебрежении потерями совпадающая с электрической мощностью, потребляемой двигателем из сетиP1:

 P2   P1  = 3E0U sin/XCИН = Pmax sin,

где Pmax= 3E0U/XCИН— максимальная активная мощность, потребляемая двигателем.

Электромагнитный момент на валу двигателя

M = 9,55PМ/n0 = 28,6E0U sin/n0XCИН = Mmax sin,

где Mmax= 28,6E0Usin/n0XCИН— максимальный момент, развиваемый ротором.

При холостом ходе двигателя оси ротора и статора совпадают,= 0, соответственноM= 0,P= 0. С увеличением момента сопротивления нагрузки на валу ротор отстает от магнитного поля, а электрическая мощностьPи электромагнитный моментMвозрастают. Причем, в отличие от генераторного режима,Mявляется полезным моментом, вращающим вал ротора, а активная мощность теперь потребляется двигателем от сети. При изменении углаот 0 до +90двигатель работает устойчиво. Если еще увеличить момент сопротивления нагрузки, то уголпревысит значение +90, аM,Pначнут уменьшаться. При этом ротор начнет вращаться несинхронно с магнитным полем. Тогда двигатель перестанет работать параллельно с сетью —выпадет из синхронизма, что может вызвать нежелательные явления и рассматриваться как аварийный режим.

Так же как и в генераторном режиме, с увеличением тока возбуждения IВЭДСE0тоже увеличивается, при этом происходит ростPmaxиMmax.

studfiles.net

Принцип действия и устройство синхронных машин

Магнитное поле в синхронной машине создается постоянным током, протекающим по обмотке возбуждения. Потребность в ис­точнике постоянного тока для питания обмотки возбуждения - очень существенный недостаток синхронных машин.

Схема синхронного генератора

Схема синхронного генератора.

Обычно обмотки возбуждения получают энергию от генератора постоянного тока параллельного возбуждения (возбудите­ля), находящегося на одном валу с основной машиной.

Его мощность составляет 1-5% мощности синхронной машины. При небольшой мощности широко используются схемы питания обмоток возбуждения синхронных машин из сети переменного тока через выпрямители.

Принцип действия синхронного генерато­ра основан на использовании закона элек­тромагнитной индукции. На рис. 1 пока­зана простейшая трехфазная обмотка, со­стоящая из трех катушек, сдвинутых на 120° и помещенная на роторе (якоре).

Рисунок 1. Принцип действия синхронного генератора.

Рисунок 1. Принцип действия синхронного генератора.

Ка­тушки соединяют между собой в звезду или треугольник и подключают к трем контакт­ным кольцам, на которых помещают неподвижные щетки. В катушках при вращении якоря индуктируются переменные во времени ЭДС, равные по амплитуде и сдвинутые по фазе на 2/3.

Современные синхронные генераторы изготавливают на линей­ное напряжение до 16000 В (иногда и выше), изоляция контактных колец и щеток которых представляет собой большую сложность. Основной недостаток такой конструкции - наличие скользящего контакта в цепи основной мощности машины. Для его исключения обмотку якоря, т. е. индуктируемую часть, помещают на статоре, а полюсную систему с обмоткой возбуждения - на роторе машины.

Обмотка возбуждения получает питание через контактные коль­ца. В этом случае скользящий контакт находится в цепи малой мощности и напряжение в цепи обмотки возбуждения относительно невелико (не более 500 В).

Статор синхронной машины имеет такое же устройство, как и статор асинхронной машины.

В зависимости от устройства ротора, различают две конструкции синхронных машин:

Рисунок 2. Схема устройства ротора с явновыраженными (а) и неявновыраженными (б) полюсами.

Рисунок 2. Схема устройства ротора с явновыраженными (а) и неявновыраженными (б) полюсами.

  • с явновыраженными полюсами;
  • с неявновыраженными полюсами.

В машинах с относительно малой частотой вращения роторы выполняют с явновыраженными полюсами. На роторе (рис. 2 а) равномерно помещают явновыраженные полюсы, состоящие из по­люсного сердечника 1, на котором расположена катушка обмотки возбуждения 3, удерживаемая полюсным наконечником 2. Такое устройство ротора облегчает выполнение обмотки возбуждения, но при большой частоте вращения не может быть использовано, так как не обеспечивает нужной механической прочности.

Поэтому при большой частоте вращения роторы выполняют с неявновыраженными полюсами (рис. 2 б). Такой ротор изго­тавливают в виде цилиндра, на части поверхности которого имеются пазы. В пазах укладывают проводники обмотки возбуждения, за­тем пазы заклинивают и лобовые соединения обмотки возбуждения стягивают стальными бандажами.

В зависимости от рода первичного двигателя, которым приво­дится во вращение синхронный генератор, последний называют гидрогенератором (первичный двигатель - гидравлическая турби­на), турбогенератором (первичный двигатель - паровая турбина) и дизель-генератором (первичный двигатель - дизель).

Конструктивная схема синхронной машины

Конструктивная схема синхронной машины с неподвижным и вращающимся якорем.

Гидрогене­раторы - обычно тихоходные явнополюсные машины с большим числом полюсов, выполняемые с вертикальным расположением вала. Турбогенераторы - быстроходные неявнополюсные машины, выполняемые в настоящее время с двумя полюсами. Ротор современного турбогенератора делают из цельной стальной поковки. На части поверхности ротора выфрезованы пазы для размещения обмотки возбуждения. Дизель-генераторы - явнополюсные машины с горизонтальным расположением вала.

Синхронные машины небольшой мощности (до 15 кВА) и не­высокого напряжения (до 380/220 В) изготавливают с неподвижной полюсной системой и вращающимся якорем (подобно машинам постоянного тока). Синхронный двигатель не имеет принципиаль­ных конструктивных отличий от синхронного генератора. На стато­ре двигателя помещают трехфазную обмотку, при включении кото­рой в сеть трехфазного переменного тока создается вращающееся магнитное поле. На роторе двигателя размещают обмотку возбуж­дения, включаемую в сеть источника постоянного тока.

Ток возбуж­дения создает магнитный поток полюсов. Вращающееся магнитное поле токов обмотки статора увлекает за собой полюсы ротора. При этом ротор может вращаться только с синхронной частотой, т. е. с частотой, равной частоте вращения поля статора. Таким образом, частота синхронного двигателя строго постоянна, если неизменна частота тока питающей сети.

Основное достоинство синхронных двигателей - возможность их работы с потреблением опережающего тока, т. е. двигатель мо­жет представлять собой емкостную нагрузку для сети. Такой дви­гатель повышает cos всего предприятия, компенсируя реактив­ную мощность других приемников энергии.

Синхронные двигатели имеют меньшую, чем у асинхронных, чувствительность к изменению напряжения питающей сети, вра­щающий момент у синхронных двигателей пропорционален напря­жению сети в первой степени, тогда как у асинхронных — квадрату напряжения.

Поделитесь полезной статьей:

Top

fazaa.ru

Устройство и принцип действия синхронной машины

Устройство синхронных машин. Синхронные машины вне зависимости от режима работы состоят из двух основных частей: неподвижного статора, выполняющего функции якоря и ротора, вращающегося внутри статора и служащего индуктором (рис. 4.1).

Статор трехфазной синхронной машины аналогичен статору трехфазного асинхронного двигателя. Он состоит из корпуса /, цилиндрического сердечника 2, набранного из отдельных пластин электротехнической стали, и трехфазной обмотки 3, уложенной в пазы сердечника.

Ротор синхронной машины представляет собой электромагнит постоянного тока, который создает магнитное поле, вращающееся вместе с ротором. Ротор имеет обмотку возбуждения 4, которая через специальные контактные кольца 5 питается постоянным током от выпрямителя или от небольшого генератора постоянного тока, называемого возбудителем.

В отечественной энергетике также используются синхронные машины с «бесщеточным» возбуждением. Обмотка ротора таких машин питается от выпрямителя, вращающегося вместе с ротором. Выпрямитель в свою очередь получает питание от возбудителя, имеющего вращающуюся вместе с ротором трехфазную обмотку, возбуждаемую неподвижными постоянными магнитами.

Роторы синхронных машин бывают двух типов: с явно выраженными и неявно выраженными полюсами.

Роторы с явно выраженными полюсами (рис. 4.1) применяются в сравнительно тихоходных машинах (80 – 1000 об/мин), например гидрогенераторах; они имеют значительноечисло полюсов. Конструктивно роторы этого типа (рис. 4.2) состоят из вала 6, ступицы 7, полюсов 8, укрепляемых в шлицах ступицы, полюсных катушек 4 возбуждения, размещенных на полюсах. Поверхность полюсного наконечника полюсов имеет такой профиль, что магнитная индукция в воздушном зазоре машины распределяется примерно по синусоидальному закону. Для быстроходных машин (турбогенераторы, синхронные двигатели, турбокомпрессоры и т. п.) явнополюсная конструкция ротора неприменима из-за сравнительно большого диаметра ротора и возникающих в связи с этим недопустимо больших центробежных сил.

Большей механической прочностью обладает ротор с неявно выраженными полюсами. Он состоит (рис. 4.3) из сердечника 1 и обмотки возбуждения 2. Сердечник изготовляется из стальной поковки цилиндрической формы. На его внешней поверхности фрезеруются пазы, в которые закладывается обмотка возбуждения.

Обмотка возбуждения распределяется в пазах сердечника так, чтобы создаваемое ею магнитное поле было распределено в пространстве по закону, близкому к синусоидальному.

Принцип работы и ЭДС синхронного генератора. Работа синхронного генератора основана на явлении электромагнитной индукции. При холостом ходе обмотка якоря (статора) разомкнута, и магнитное поле машины образуется только обмоткой возбуждения ротора (рис. 4.4). При вращении ротора синхронного генератора от проводного двигателя ПД с постоянной частотой nо магнитное поле ротора, пересекая проводники фазных обмоток статора AX, BY, CZ (рис.4.4,а) наводит в них ЭДС  , где B – магнитная индукция в воздушном зазоре между статором и ротором;  l – активная длина проводника;  – линейная скорость пересечения проводников магнитным полем.

Выше отмечалось,  что индукция В в воздушном зазоре распределена по синусоидальному закону , где - угол, отсчитываемый от нейтральной линии, поэтому ЭДС в одном проводнике .

Обозначив, получим , т.е. ЭДС в проводниках обмоток статора изменяется по синусоидальному закону.

ЭДС отдельных проводников каждой обмотки статора сдвинуты по фазе относительно друг друга, поэтому они суммируются геометрически  (аналогично ЭДС статора асинхронного двигателя – см. п. 3.8.1). Действующее значение ЭДС одной фазы определяется выражением:

где  – обмоточный коэффициент; – частота синусоидальных ЭДС; - число витков одной фазы обмотки статора; - число пар полюсов; – максимальный магнитный поток полюса ротора; – синхронная частота вращения.

Катушки отдельных фаз статора сдвинуты в пространстве на электрический угол, равный 1200, и их ЭДС образуют симметричную трёхфазную систему.

Изменяя ток возбуждения , можно регулировать магнитный поток ротора и пропорциональную ему ЭДС генератора. На рис. 4.5 представлена зависимость , снятая при номинальной частоте вращения .

Эта зависимость называется характеристикой холостого хода. Форма характеристики напоминает форму кривой намагничивания ферромагнитного сердечника. Характерной особенностью её является отсутствие пропорциональности между магнитным потоком и током возбуждения , что обусловлено явлением насыщения магнитной системы машины.

Принцип действия и вращающий момент синхронного двигателя. Принцип действия синхронного двигателя основан на явлении притяжения разноименных полюсов двух магнитных полей – статора и ротора.  Вращающееся поле статора с полюсами N и S создается при питании обмоток статора от трёхфазной сети аналогично вращающемуся полю асинхронного двигателя (на рис. 4.6 полюсы статора N и S показаны штриховкой, вращаются они против часовой стрелки с частотой ). Поле ротора создается постоянным током, протекающим по обмотке ротора.

Предположим, что ротор каким-либо способом разогнан до синхронной частоты вращения против часовой стрелки. Тогда полюсы ротора и будут вращаться с частотой ; произойдет «сцепление» этих полюсов с разноименными полюсами статора и (см. штрихованные линии на рис. 4.6).

В режиме идеального холостого хода (момент сопротивления ) оси магнитных полей статора и ротора совпадают (рис. 4.6.а). При этом на полюсы ротора действуют радиальные силы и, которые не создают ни вращающего момента, ни момента сопротивления.

Если к валу машины приложить механическую нагрузку, которая создает момент сопротивления , ось ротора и его полюсов , сместится в сторону отставания на угол (рис. 4.6,б). Теперь вращающее поле статора как бы “ведёт” за собой поле ротора и сам ротор. Тангенциальные составляющие и создают вращающий момент , где - радиус ротора.

Машина работает в двигательном режиме, её вращающий момент преодолевает момент сопротивления механической нагрузки.

При увеличении момента механической нагрузки на валу ротора угол увеличивается (до некоторого предела), что приводит к увеличению вращающегося момента двигателя , причем частота вращения ротора остается неизменной и равной .

Противодействующий момент и противо-ЭДС. При работе синхронной машины в режиме нагруженного генератора (на схеме рис. 4.4,б нагрузка Zн подключена к обмоткам статора через выключатель Q) по обмоткам статора протекает ток, который создает своё вращающееся магнитное поле. В генераторном режиме, в отличие от двигательного режима, полюсы ротора опережают на угол полюсы магнитного поля статора. В результате взаимодействия разноименных полюсов статора и ротора на ротор действует момент, направленный против вращения, т.е. тормозной момент . В установившемся режиме момент уравновешивает вращающийся момент приводного двигателя: .

При работе синхронной машины в режиме двигателя поле ротора пересекает витки трехфазной обмотки статора и в ней индуцируется ЭДС, которая согласно правилу Ленца действует навстречу току статора. По этой причине её называют противо-ЭДС. В установившемся режиме противо-ЭДС почти полностью уравновешивает напряжение сети .

Таким образом, при работе синхронной машины на нагрузку (электрическую или механическую) в обмотке статора индуцируется ЭДС Е и возникает момент ротора .

Реакция якоря в синхронной машине. Реакция якоря – это воздействие поля якоря (статора) на магнитное поле машины. При работе синхронной машины на нагрузку (электрическую в режиме генератора  и механическую в режиме двигателя) по обмоткам статора (якоря) протекают синусоидальные токи, которые создают вращающееся магнитное поле статора. Ротор имеет частоту вращения , поэтому частота ЭДС и тока статора , где - число пар полюсов машины. Частота вращения магнитного поля статора . Следовательно, поля ротора и статора вращаются с одной и той же частотой ; они взаимодействуют между собой и образуют результирующее вращающееся магнитное поле машины. Взаимодействие полей зависит от характера нагрузки и режима работы машины.

Рассмотрим реакцию якоря на примере двухполюсного синхронного генератора с неявно выраженными полюсами ротора, работающего на различную по характеру нагрузку .

При активной нагрузке с сопротивлением R ЭДС фазы обмотки статора и её ток совпадают по фазе и достигают максимума в тот момент, когда ось mm1 магнитного потока ротора Ф0 перпендикулярна оси nn1 катушки обмотки статора (например, АX на рис. 4.7,а). Магнитный поток статора Фя замыкается по сердечникам статора и ротора через воздушный зазор. Таким образом, в случае активной нагрузки ось потока ротора Ф0 опережает ось потока статора Фя на электрический угол, равный 900 (поперечная реакция якоря). При этом результирующий магнитный поток машины (ось qq1) поворачивается относительно потока ротора Ф0на угол в направлении, противоположном направлению вращению ротора.

При чисто индуктивной нагрузке XL ток в обмотке статора отстаёт от ЭДС на 900 и поэтому достигает максимума в тот момент времени, когда полюс ротора повернётся на 900 по направлению вращения (рис. 4.7,б). В этом случае магнитный поток статора оказывается направленным навстречу магнитному потоку ротора и размагничивает машину ().

При емкостной нагрузке XC ток в фазе статора опережает ЭДС на 900 и поэтому достигает максимума в тот момент, когда полюс ротора не доходит на 900 до оси mm1 (рис. 4.7,в). Магнитный поток статора в этом случае оказывается направленным согласно с магнитным потоком ротора и намагничивает машину  ().

При работе синхронной машины в режиме двигателя ток в статоре при том же направлении вращения имеет противоположное направление. Ось результирующего потока двигателя оказывается повернута относительно потока ротора на угол , но не против направления вращения, как у генератора, а по направлению вращения.

Таким образом, реакция якоря в синхронной машине изменяет как поток машины, так и его направление (в отличие от асинхронной машины, у которой ). Изменение Фрез приводит к изменению ЭДС, что неблагоприятно сказывается на работе потребителей электроэнергии при работе машины в режиме генератора. Уменьшение неблагоприятного влияния реакции якоря достигается уменьшением магнитного потока статора за счёт увеличения воздушного зазора между ротором и статором синхронной машины.

electrono.ru

Синхронный двигатель. Пуск синхронного двигателя.

Конструкция синхронного двигателя такая же, как и у синхронного генератора. При подаче тока в трехфазную обмотку статора в нем возникает вращающееся магнитное поле. Частота вращения его определяется формулой: n = 60 f / p, где f — частота тока питающей сети, р — число пар полюсов на статоре.

Принцип действия синхронного двигателя

Ротор, зачастую являющийся электромагнитом, будет строго следовать за вращающимся магнитным полем, то есть его частота вращения n2 = n1. Рассмотрим принцип действия синхронного двигателя на следующей условной модели (рис. 1). Пусть магнитное поле статора будет смоделировано системой вращающихся магнитных полюсов N — S.

Принцип действия синхронного двигателя

принцип действия синхронного двигателя

Рис. 1

Ротор двигателя тоже представляет собой систему электромагнитов S — N, которые сцеплены с полюсами на статоре. Если нагрузка на двигателе отсутствует, то оси полюсов статора будут совпадать с осями полюсов ротора (θ = 0). Если же к ротору подключена механическая нагрузка, то оси полюсов статора и ротора могут расходиться на некоторый угол θ. Однако магнитное сцепление ротора со статором будет продолжаться, и частота вращения ротора будет равна синхронной частоте статора (n2 = n1). При больших значениях ротор может выйти из сцепления и двигатель остановится.

Главное преимущество синхронного двигателя перед асинхронным — это обеспечение синхронной скорости вращения ротора при значительных колебаниях нагрузки.

Пуск синхронного двигателя

Как мы показали выше, синхронное вращение ротора обеспечивается магнитным сцеплением полюсов ротора с вращающимся магнитным полем статора. В первый момент пуска двигателя вращающееся магнитное поле статора возникает практически мгновенно. Ротор же, обладая значительной инерционной массой, прийти в синхронное вращение сразу не сможет. Его надо разогнать до подсинхронной скорости каким-то дополнительным устройством.

Долгое время роль разгонного двигателя играл обычный асинхронный двигатель, механически соединенный с синхронным. Ротор синхронного двигателя приводится во вращение до подсинхронной скорости. Далее двигатель сам втягивается в синхронизм. Обычно мощность пускового двигателя составляет 5-15 % от мощности синхронного двигателя. Это позволяет пускать в ход синхронный двигатель только вхолостую или при малой нагрузке на валу.

Применение пускового двигателя мощностью, достаточной для пуска синхронного двигателя под нагрузкой делает такую установку громоздкой и дорогой. В последнее время используется так называемая система асинхронного пуска синхронных двигателей. С этой целью в полюсные наконечники забивают стержни, напоминающие собою короткозамкнутую обмотку асинхронного двигателя.

Система асинхронного пуска синхронного двигателя

система асинхронного пуска синхронного двигателя

Рис. 2

В начальный период пуска синхронный двигатель работает как асинхронный, а в последующем — как синхронный. В целях безопасности обмотку возбуждения в начальном периоде пуска закорачивают, а на заключительном подключают к источнику постоянного тока.

www.mtomd.info


Каталог товаров
    .