Полевыми транзисторами называют активные полупроводниковые приборы, в которых выходным током управляют с помощью электрического поля (в биполярных транзисторах выходной ток управляется входным током). Полевые транзисторы называют также униполярными, так как в процессе протекания электрического тока участвует только один вид носителей. Различают два вида полевых транзисторов: с управляющим переходом и с изолированным затвором. Все они имеют три электрода: исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Транзистор с управляющим p-n-переходом. Его схематическое изображение приведено на рис. 1.21, а условное графическое обозначение этого транзистора – на рис. 1.22, а, б (p- и n-типов соответственно). Стрелка указывает направление от слоя р к слою п (как и стрелка в изображении эмиттера биполярного транзистора). В интегральных микросхемах линейные размеры транзисторов могут быть существенно меньше 1 мкм. Рис. 1.22 Устройство транзистора Рис. 1.23 Графическое изображение: а – канал р-типа; б – канал n-типа Удельное сопротивление слоя n (затвора) намного меньше удельного сопротивления слоя р (канала), поэтому область р-n-перехода, обедненная подвижными носителями заряда и имеющая очень большое удельное сопротивление, расположена главным образом в слое р. Если типы проводимости слоев полупроводника в рассмотренном транзисторе изменить на противоположные, то получим полевой транзистор с управляющимр-n-переходом и каналом n-типа. Если подать положительное напряжение между затвором и истоком транзистора с каналом р-типа: изи > 0, то оно сместит p-n-переход в обратном направлении. При увеличении обратного напряжения на переходе он расширяется в основном за счет канала (в силу указанного выше различия в удельных сопротивлениях). Увеличение ширины перехода уменьшает толщину канала и, следовательно, увеличивает его сопротивление. Это приводит к уменьшению тока между истоком и стоком. Именно это явление позволяет управлять током с помощью напряжения и соответствующего ему электрического поля. Если напряжение изи достаточно велико, то канал полностью перекрывается областью p-n-перехода (напряжение отсечки). В рабочем режиме р-n-переход должен находиться под обратным или нулевым напряжением. Поэтому в рабочем режиме ток затвора примерно равен нулю (iз ? 0), а ток стока практически равен току истока. На ширину р-n-перехода и толщину канала прямое влияние также оказывает напряжение между истоком и стоком. Пусть uзи = 0 и подано положительное напряжение uис(рис. 1.24). Это напряжение окажется поданным и на промежуток затвор – сток, т.е. окажется, что uзс = uис и р-n-переход находится под обратным напряжением. Обратное напряжение в различных областях р-n-перехода различно. В областях вблизи истока это напряжение практически равно нулю, а в областях вблизи стока это напряжение примерно равно величине uис. Поэтому p-n-переход будет шире в тех областях, которые ближе к стоку. Можно считать, что напряжение в канале от истока к стоку увеличивается линейно. При uис = Uзиотс канал полностью перекроется вблизи стока (рис. 1.25). При дальнейшем увеличении напряжения uис эта область канала, в которой он перекрыт, будет расширяться. Рис. 1.24 Принцип действия транзистора Рис. 1.25 Режим отсечки Схемы включения транзистора. Для полевого транзистора, как и для биполярного, существуют три схемы включения: схемы с общим затвором (03), общим истоком (ОИ) и общим стоком (ОС). Наиболее часто используются схемы с общим истоком (рис. 1.26). Так как в рабочем режиме ic ? 0, то входные характеристики обычно не рассматриваются. Выходные (стоковые) характеристики. Выходной характеристикой называют зависимость вида где f – некоторая функция. Выходные характеристики для транзистора с р-n-переходом и каналом n-типа приведены на рис. 1.27. Обратимся к характеристике, соответствующей условию uзи = 0. В линейной области (uис < 4 В) характеристика почти линейна (все характеристики этой области представляют собой почти прямые линии, веерообразно выходящие из начала координат). Она определяется сопротивлением канала. Транзистор, работающий в линейной области, можно использовать в качестве линейного управляемого сопротивления. При uис > 4 В канал в области стока перекрывается. Дальнейшее увеличение напряжения приводит к очень незначительному росту тока, так как с увеличением напряжения область, в которой канал перекрыт, расширяется. При этом сопротивление промежутка исток-сток увеличивается, а ток ic практически не изменяется. Это область насыщения. Ток стока в области насыщения uзи = 0 и при заданном напряжении исиназывают начальным током стока и обозначают через ic нач. Для рассматриваемых характеристик ic нач = 5 мА при иси = 10 В. Рис. 1.26 Схема с общей базой Рис. 1.27 Выходные характеристики Параметрами, характеризующими свойства транзистора усиливать напряжение, являются: 1) Крутизна стокозатворной характеристики S (крутизна характеристики полевого транзистора): 2) Внутреннее дифференциальное сопротивление Rис диф 3) Коэффициент усиления Можно заметить, что Транзисторы с изолированным затвором. Полевой транзистор с изолированным затвором – это транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Физической основой работы таких транзисторов является эффект поля, который состоит в изменении концентрации свободных носителей заряда в приповерхностной области полупроводника под действием внешнего электрического поля. В соответствии с их структурой такие транзисторы называют МДП-транзисторами (металл-диэлектрик-полупроводник) или МОП-транзисторами (металл-оксид-полупроводник). Существуют две разновидности МДП-транзисторов: с индуцированным и со встроенным каналами. Рис. 1.28 Устройство МДП-транзистора со встроенным каналом n-типа На рис. 1.28 показан принцип устройства транзистора со встроенным каналом. Основанием (подложкой) служит кремниевая пластинка с электропроводностью p-типа. В ней созданы две области с электропроводностью n+-типа с повышенной проводимостью. Эти области являются истоком и стоком и от них сделаны выводы. Между стоком и истоком имеется приповерхностый канал с электропроводностью n-типа. Заштрихованная область – диэлектрический слой из диоксида кремния (его толщина обычно составляет 0,1 – 0,2 мкм). Сверху диэлектрического слоя расположен затвор в виде тонкой металлической пленки. Кристалл такого транзистора обычно соединен с истоком, и его потенциал принимается за нулевой. Иногда от кристалла бывает сделан отдельный вывод. Если к затвору приложено нулевое напряжение, то при подаче между стоком и истоком напряжения через канал потечет ток, представляющий собой поток электронов. Через кристалл ток не пойдет, так как один из p-n-переходов находится под обратным напряжением. При подаче на затвор напряжения отрицательной полярности относительно истока (следовательно, и кристалла) в канале образуется поперечное электрическое поле, которое выталкивает электроны из канала в области истока, стока и кристалла. Канал обедняется электронами, его сопротивление увеличивается, ток уменьшается. Чем больше напряжение на затворе, тем меньше ток. Такой режим называется режимом обеднения. Если подать положительное напряжение на затвор, то под действием поля из областей стока, истока и кристалла в канал будут приходить электроны. Сопротивление канала падает, ток увеличивается. Такой режим называется режимом обогащения. Если кристалл n-типа, то канал должен быть p-типа и полярность напряжения меняется на противоположную. Другим типом является транзистор с индуцированным (инверсным) каналом (рис. 1.29). От предыдущего он отличается тем, что канал возникает только при подаче на затвор напряжения определенной полярности. При отсутствии напряжения на затворе канала нет, между истоком и стокомn+-типа расположен только кристалл p-типа и на одном из p-n+-переходов получается обратное напряжение. В этом состоянии сопротивление между стоком и истоком велико и транзистор закрыт. При подаче на затвор напряжения положительной полярности под влиянием поля затвора электроны проводимости будут перемещаться из областей стока и истока и p-области по направлению к затвору. Когда напряжение на затворе достигает своего отпирающего (порогового) значения (еденицы вольт), в приповерхностном слое концентрация электронов настолько увеличивается, что превышает концентрацию дырок, и в этом слое произойдет так называемая инверсия типа электропроводности, т.е. образуется тонкий канал n-типа, и транзистор начнет проводить ток. Чем больше напряжение на затворе, тем больше ток стока. Очевидно, что такой транзистор может работать только в режиме обогащения. Если подложка n-типа, то получится индуцированный канал p-типа. Транзисторы с индуцированным каналом часто встречаются в устройствах переключения. Схемы включения полевых транзисторов подобны схемам включения биполярных. Следует отметить, что полевой транзистор позволяет получить намного больший коэффициент усиления, нежели биполярный. Обладая высоким входным сопротивлением (и низким выходным) полевые транзисторы постепенно вытесняют биполярные. По электропроводности канала различают p-канальные и n-канальные МДП-транзисторы. Условное обозначение этих приборов на электрических схемах показано на рис. 1.30. Существует классификация МДП-транзисторов по конструктивно-технологическим признакам (чаще по виду материала затвора). Рис. 1.30 Условные графические обозначения полевых транзисторовс изолированным затвором: а – со встроенным р-каналом; б – со встроеннымn-каналом; в – с индуцированным p-каналом; г – с индуцированным n-каналом Интегральные микросхемы, содержащие одновременно p-канальные и n-канальные МДП-транзисторы, называют комплементарными (сокращенно КМДП-ИМС). КМДП-ИМС отличаются высокой помехоустойчивостью, малой потребляемой мощностью, высоким быстродействием. Частотные свойства полевых транзисторов определяются постоянной времени RC-цепи затвора. Поскольку входная емкость Сзи у транзисторов с р-n-переходом велика (десятки пикофарад), их применение в усилительных каскадах с большим входным сопротивлением возможно в диапазоне частот, не превышающих сотен килогерц – единиц мегагерц. При работе в переключающих схемах скорость переключения полностью определяется постоянной времени RC-цепи затвора. У полевых транзисторов с изолированным затвором входная емкость значительно меньше, поэтому их частотные свойства намного лучше, чем у полевых транзисторов с р-n-переходом. electrono.ru Полевой транзистор в отличие от биполярного иногда называют униполярным транзистором, так как его работа основана на использовании только одного типа носителей - либо электронов, либо дырок. Основным способом движения носителей заряда, образующих ток полевого транзистора, является дрейф в электрическом поле. Проводящий слой, в котором создается рабочий ток полевого транзистора, называют каналом. Полевой транзистор - полупроводниковый усилительный прибор, которым управляет не ток (как в биполярном транзисторе), а электрическое поле (отсюда и название - полевой), осуществляющее изменение площади поперечного сечения проводящего канала. При этом изменяется выходной ток транзистора. Каналы могут быть приповерхностными (транзисторы с изолированным затвором) и объемными (транзисторы с управляющим р-n-переходом). Приповерхностный канал представляет собой либо обогащенный слой, образующийся за счет донорных примесей в полупроводнике, либо инверсный слой, возникающий под действием внешнего поля. Такой полевой транзистор имеет классическую структуру металл-диэлектрик-полупроводник (МДП-структуру), в которой роль диэлектрика, как правило, играет оксид (например, двуокись кремния SiО2). Поэтому полевой транзистор с такой структурой часто называют МДП- или МОП-транзистором (металл-оксид-полупроводник). Металлический электрод, создающий эффект поля, называют затвором (З), два других электрода - истоком (И) и стоком (С). Исток и сток в принципе обратимы. Истоком служит тот из них, из которого при соответствующей полярности напряжения между истоком и стоком в канал поступают основные носители заряда, а стоком - тот электрод, через который эти носители уходят из канала во внешнюю цепь. В зависимости от того, какой из выводов является общим для входа и выхода, различают три схемы включения полевого транзистора: с общим истоком (ОИ), с общим затвором (ОЗ) и общим стоком (ОС). Наибольшее распространение на практике нашла схема ОИ. Принцип работы полевого транзистора. В полевом транзисторе с объемным каналом площадь поперечного сечения канала меняется за счет изменения площади обедненного слоя обратно включенного р-n-перехода. На рис. 10.9 показана схема включения полевого транзистора с управляющим р-n-переходом, выполненным в виде кольца, охватывающего n-область. Эта схема включения соответствует схеме с ОИ. На р-n-переход затвор-исток с помощью источника питания подается обратное напряжение UЗИ. При его увеличении глубина d обедненного слоя (заштрихованная область на рис. 10.9) возрастает, а токопроводящее сечение b канала сужается. При этом увеличивается сопротивление канала, а следовательно, снижается выходной то IС транзистора. Поскольку напряжение UЗИ прикладывается к р-n-переходу в обратном направлении, ток IЗ ничтожно мал и практически мало зависит от управляющего напряжения. Вследствие этого для полевых транзисторов входная характеристика не имеет практического значения. Рис. 10.9. Схема включения полевого транзистора с управляющим р-n-переходом Рис. 10.10. Статические вольт-амперные характеристики полевых транзисторов с управляющим р-n-переходом (схема с ОИ): а -выходные; б - передаточные При расчете цепей с полевыми транзисторами используют передаточные и выходные ВАХ. На рис. 17.10, а, б приведены соответственно выходные и передаточные характеристики полевого транзистора с управляющим р-n-переходом для схемы включения с ОИ. Очевидно, что эти характеристики имеют нелинейный характер. Реальная структура МДП-транзистора с каналом n-типа показана на рис. 10.11. Металлический затвор изолирован от полупроводниковой подложки слоем диэлектрика (отсюда эквивалентное название МДП-транзистора - полевой транзистор с изолированным затвором). Пусть напряжение на затворе отсутствует, т. е. UЗИ=0. Если между стоком и истоком подвести напряжение указанной на рис. 10.11 полярности, то при нулевом потенциале на затворе на пути от истока к стоку окажутся два встречно включенных р-n-перехода. Поэтому токопроводящее сечение канала b будет обладать большим сопротивлением, а выходной ток IC окажется ничтожно мал (примерно равен обратному току р-n-перехода). Если подать на затвор отрицательное напряжение UЗИ, то поверхностный слой подложки р-типа, прилегающий к металлизированной пластине затвора, обогатится дырками и значение тока IC практически не изменится. Если же приложить к затвору небольшое положительное напряжение UЗИ и постепенно его повышать, то дырки под действием поля, создаваемого положительным напряжением затвора, будут уходить из поверхностного слоя в глубь подложки, а электроны - притягиваться, образуя обогащенный электронами поверхностный слой подложки, примыкающий к пластине затвора. Количество этих электронов значительно меньше, чем в областях подложки n-типа, примыкающих к истоку и стоку. Однако этого количества электронов по отношению к основным носителям заряда для р-области становится достаточно, по мере возрастания положительного напряжения на затворе, для образования слоя противоположной проводимости по отношению к подложке р-типа - инверсного слоя. Этот инверсный слой и является токопроводящим каналом n-типа, замыкающим две другие n-области подложки, примыкающие к истоку и стоку. Такой канал называется индуцированным, т. е. наведенным полем затвора. Таким образом, индуцированные каналы отсутствуют в равновесном состоянии и образуются под действием внешнего напряжения определенной полярности и определенного значения. Напряжение на затворе, при котором возникает токопроводящий канал, называется пороговым. Если выбрать подложку n-типа, а области истока и стока сделать р-типа, то получится МДП-транзистор с индуцированным р-каналом. Рис. 10.11. Структура МДП-транзистора В МДП-транзисторах со встроенным каналом у поверхности полупроводника под затвором, при нулевом напряжении на затворе относительно истока, существует инверсный слой - проводящий (встроенный) канал. Этот канал практически реализуют в виде тонкого приповерхностного слоя с помощью ионного легирования. МДП-транзисторы со встроенным каналом могут работать при обеих полярностях напряжения на затворе. Передаточные и выходные ВАХ данного транзистора, включенного по схеме с ОИ, показаны на рис. 10.13. Значение выходного тока IC полевого транзистора, как видно из вышеизложенного, зависит от приложенного к затвору напряжения. Причем эта зависимость нелинейная. Поэтому полевой транзистор, как и биполярный, является управляемым нелинейным элементом цепи. Основными параметрами, характеризующими полевой транзистор как нелинейный элемент, являются: коэффициент усиления по току входное сопротивление коэффициент усиления по напряжению дифференциальное выходное (внутреннее) сопротивление крутизна (определяется по передаточной характеристике) Рис. 10.12. Переходные (а) и выходные (б) ВАХ МДП-транзистора с индуцированным каналом Рис. 10.13. Переходная (а) и выходные (б) ВАХ МДП-транзистора со встроенным n-каналом Входное сопротивление Rвх полевого транзистора очень велико (несколько МОм), поскольку, как отмечалось, значение тока затвора IЗ очень мало. Значение параметра Rвых определяют при работе транзистора в режиме насыщения как котангенс угла наклона выходной характеристики. Так как для полевых транзисторов режиму насыщения соответствует пологая часть выходной характеристики, то в рабочей области этот угол мал и, следовательно, выходное сопротивление оказывается достаточно большим (сотни кОм). Крутизна передаточной характеристики отражает степень влияния входного напряжения на выходной ток, т. е. эффективность управляющего действия затвора, и составляет 1... 5 мА/В. Последние три параметра связаны соотношением Особенности полевого транзистора. Из принципа действия полевого транзистора вытекают две основные его особенности: в установившемся режиме работы входной ток полевого транзистора стремится к нулю (т. е. Rвх стремится к бесконечности) инерционность полевого транзистора в отличие от биполярного обусловлена только процессами перезаряда его р-n-переходов. Следует отметить, что конструкция полевого транзистора предполагает получение больших значений входных и выходных емкостей прибора. Последнее с увеличением частоты входного сигнала приводит к фактическому падению коэффициента усиления каскада на полевом транзисторе. Действительно, по постоянному току коэффициент усиления полевых транзисторов стремится к бесконечности (входной ток стремится к нулю). При увеличении частоты входного сигнала входной ток полевого транзистора, определяемый его входной емкостью, растет, что эквивалентно снижению значения коэффициента усиления. Поэтому принято считать, что в общем случае по быстродействию, усилению и частотным свойствам полевой транзистор, как правило, не имеет преимуществ перед биполярным транзистором. Основными преимуществами полевого транзистора являются его высокое входное сопротивление по постоянному току и большая технологичность. Последнее обусловливает широкое применение полевых транзисторов при разработке цифровых интегральных схем. Дискретные полевые транзисторы, выпускаемые промышленностью, классифицируют по мощности и частоте аналогично биполярным. Тиристоры. Тиристор — полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три (или более) выпрямляющих перехода, который может переключаться из закрытого состояния в открытое и наоборот. Различают диодные (неуправляемые) и триодные (управляемые) тиристоры. Диодный тиристор называют динистором, а триодный — тринистором. Рис. 10.14. Схема включения динистора Динистор, условное обозначение которого приведено на рис. 10.0,14, представляет собой двухполюсную четырехслойную р-n-р-n-структуру. Электрод, обеспечивающий электрическую связь с внешней n-областью, называется катодом, а с внешней р-областью — анодом. С учетом знаков приложенного к структуре внешнего напряжения переходы 1 и 3 смещены в прямом направлении, а все напряжение падает на переходе 2, который работает в режиме коллектора. Рассматриваемую структуру динистора можно представить состоящей из двух транзисторов р1-n1-р2 и n2-р2-n1, у которых области n1 и р2 условно разделены (рис. 10.14). Переход 1 представляет собой эмиттерный переход первого транзистора, через который дырки инжектируют из р1-области в область n1, выполняющую роль базы для этого транзистора. Пройдя базу и коллекторный переход 2, инжектированные дырки появляются в коллекторе p2 первого транзистора, который в то же время служит базой второго транзистора. Этот ток определяется выражением где IpК0 — обратный дырочный ток коллекторного перехода; α1— коэффициент передачи тока эмиттера первого транзистора. Появление дырок в базе р2 второго транзистора (n2-p2-n1) приводит к образованию нескомпенсированного объемного заряда. Этот заряд, понижая высоту потенциального барьера эмиттерного перехода 3 второго транзистора, вызывает встречную инжекцию электронов из эмиттерной области n2 второго транзистора в область р2, являющуюся базой для второго транзистора и коллектором для первого. Инжектированные электроны проходят через коллекторный переход 2 и попадают в коллектор n1 второго транзистора, служащий одновременно базой первого транзистора (р1-n1-р2). Величина электронного тока равна где InК0 —обратный электронный ток коллекторного перехода; α2 — коэффициент передачи тока эмиттера второго транзистора. Учитывая, что дырки и электроны движутся навстречу друг-другу, суммарный ток рассматриваемой структуры равен где IКБ0 — суммарный обратный ток двух р-n-переходов динистора, α∑ — суммарный коэффициент передачи тока. Решая полученное выражение относительно Iн получают (10.9) Как видно из (10.9), при Данное условие является условием переключения динистора. Физически это означает, что при α∑=1 инжекция электронов в область n1 приводит к появлению нескомпенсированного объемного заряда, который, понижая высоту потенциального барьера перехода 1, вызывает встречную вторичную инжекцию дырок из области р1 в область n1. Далее процесс повторяется, и ток в контуре эквивалентных транзисторов лавинообразно возрастает. При изменении полярности напряжения, приложенного к рассматриваемой структуре, на обратную переходы 1 и 3 окажутся смещенными в обратном направлении. Если эти переходы достаточно высоковольтные, то вольт-амперная характеристика динистора имеет вид обратной ветви ВАХ диода. Рис. 10.15. Вольт-амперные характеристики динистора и вагрузочвого резистора (I — открытое состояние, II — область отрицательногосопротивления, III — закрытое состояние, IV — область высокого сопротивления, V — область пробоя) Описанные процессы определяют ВАХ динистора, показанную на рис. 10.15, на прямой ветви которой можно выделить две устойчивые зоны: область III с малыми значениями тока Iн при больших значениях напряжения Uα, и область отпирания I с большими токами Iн, при малых напряжениях Uα. Точки А и В соответствуют выполнению условия α∑=1 и называются соответственно точками включения и удержания динистора, а соответствующие им токи называются током включения (Iвкл) и током удержания (Iуд). Между точками А и В лежит зона II, в которой динистор обладает отрицательным дифференциальным сопротивлением. В соответствии со вторым законом Кирхгофа для схемы, представленной на рис. 10.14, имеем Решением этого уравнения будет точка пересечения линии нагрузки Rн и ВАХ динистора (рабочая точка). Если напряжение Uα на динисторе (рис. 10.15) достигает значения напряжения включения Uвкл, рабочая точка скачкообразно переходит из состояния А в А'. При уменьшении напряжения рабочая точка из В скачкообразно переходит в В'. Обратная ветвь ВАХ динистора может быть разделена на две области: IV (область обратного смещения) и V (область пробоя структуры). Таким образом, управление током Iн динистора возможно только за счет изменения величины и направления напряжения внешнего источника, приложенного между анодом и катодом прибора. Тринистор представляет собой четырехслойную полупроводниковую структуру, в которой одна из базовых областей сделана управляющей (рис. 10.16). В зависимости от того, база какого условного транзистора сделана управляющей, различают тринисторы с анодным и катодным управлением. Базовый вывод дает возможность управлять током близлежащего эмиттера. Для этого на управляющий электрод (УЭ) необходимо подать напряжение такой полярности, которая обеспечит отпирание соответствующего эмиттерного перехода. В этом случае процессы отпирания и запирания тиристора, т. е. управление его током Iн, осуществляют не за счет изменения приложенного между анодом и катодом напряжения внешнего источника (как у динистора), а за счет изменения напряжения на управляющем электроде, который является, как видно из рис. 10.16, входным электродом включенного в электрическую цепь тринистора. На рис. 10.17 приведены ВАХ тринистора, а на рис. 10.0, 15, 16 — его условные обозначения. Как видно из рис. 10.17, с возрастанием Uупр (а следовательно, Iупр) уменьшается напряжение включения тринистора и при достаточно большом значении Iупр вид прямой ветви ВАХ тринистора будет аналогичен виду прямой ветви ВАХ диода. Рис. 10.16. Схема включения тринистора Рис. 10.17. Вольт-амперные характеристики тринистора Полевой транзистор. Схема включения полевого транзистора
Полевые транзисторы | Электротехника
Полевые транзисторы.
Похожие статьи:
poznayka.org
Полевой транзистор - это... Что такое Полевой транзистор?
Полевой транзистор (англ. field-effect transistor, FET) — полупроводниковый прибор, в котором ток изменяется в результате действия перпендикулярного току электрического поля, создаваемого входным сигналом.
Протекание в полевом транзисторе рабочего тока обусловлено носителями заряда только одного знака (электронами или дырками), поэтому такие приборы часто включают в более широкий класс униполярных электронных приборов (в отличие от биполярных).
История создания полевых транзисторов
В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 29 мая 2012. |
Идея полевого транзистора с изолированным затвором была предложена Лилиенфельдом в 1926—1928 годах. Однако объективные трудности в реализации этой конструкции позволили создать первый работающий прибор этого типа только в 1960 году. В 1953 году Дейки и Росс предложили и реализовали другую конструкцию полевого транзистора — с управляющим p-n-переходом. Наконец, третья конструкция полевых транзисторов — полевых транзисторов с барьером Шоттки — была предложена и реализована Мидом (англ.)русск. в 1966 году. Затем в 1977 году ученый Джеймс МакКаллахем из Bell Labs установил, что использование полевых транзисторов может существенно увеличить производительность существующих вычислительных систем.
Схемы включения полевых транзисторов
Полевой транзистор можно включать по одной из трех основных схем: с общим истоком (ОИ), общим стоком (ОС) и общим затвором (ОЗ).
На практике чаще всего применяется схема с ОИ, аналогичная схеме на биполярном транзисторе с ОЭ. Каскад с общим истоком даёт очень большое усиление тока и мощности. Схема с ОЗ аналогична схеме с ОБ. Она не даёт усиления тока, и поэтому усиление мощности в ней во много раз меньше, чем в схеме ОИ. Каскад ОЗ обладает низким входным сопротивлением, в связи с чем он имеет ограниченное практическое применение в усилительной технике.
Классификация полевых транзисторов
По физической структуре и механизму работы полевые транзисторы условно делят на 2 группы. Первую образуют транзисторы с управляющим р-n переходом, или переходом металл — полупроводник (барьер Шоттки), вторую — транзисторы с управлением посредством изолированного электрода (затвора), т. н. транзисторы МДП (металл — диэлектрик — полупроводник).
Транзисторы с управляющим p-n переходом
Рис. 1. Устройство полевого транзистора с управляющим p-n переходомПолевой транзистор с управляющим p-n переходом — это полевой транзистор, затвор которого изолирован (то есть отделён в электрическом отношении) от канала p-n переходом, смещённым в обратном направлении.
Такой транзистор имеет два невыпрямляющих контакта к области, по которой проходит управляемый ток основных носителей заряда, и один или два управляющих электронно-дырочных перехода, смещённых в обратном направлении (см. рис. 1). При изменении обратного напряжения на p-n переходе изменяется его толщина и, следовательно, толщина области, по которой проходит управляемый ток основных носителей заряда. Область, толщина и поперечное сечение которой управляется внешним напряжением на управляющем p-n переходе и по которой проходит управляемый ток основных носителей, называют каналом. Электрод, из которого в канал входят основные носители заряда, называют истоком (Source). Электрод, через который из канала уходят основные носители заряда, называют стоком (Drain). Электрод, служащий для регулирования поперечного сечения канала, называют затвором (Gate).
Электропроводность канала может быть как n-, так и p-типа. Поэтому по электропроводности канала различают полевые транзисторы с n-каналом и р-каналом. Все полярности напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, противоположны.
Управление током стока, то есть током от внешнего относительно мощного источника питания в цепи нагрузки, происходит при изменении обратного напряжения на p-n переходе затвора (или на двух p-n переходах одновременно). В связи с малостью обратных токов мощность, необходимая для управления током стока и потребляемая от источника сигнала в цепи затвора, оказывается ничтожно малой. Поэтому полевой транзистор может обеспечить усиление электромагнитных колебаний как по мощности, так и по току и напряжению.
Таким образом, полевой транзистор по принципу действия аналогичен вакуумному триоду. Исток в полевом транзисторе подобен катоду вакуумного триода, затвор — сетке, сток — аноду. Но при этом полевой транзистор существенно отличается от вакуумного триода. Во-первых, для работы полевого транзистора не требуется подогрева катода. Во-вторых, любую из функций истока и стока может выполнять каждый из этих электродов. В-третьих, полевые транзисторы могут быть сделаны как с n-каналом, так и с p-каналом, что позволяет удачно сочетать эти два типа полевых транзисторов в схемах.
От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы могут обладать низким уровнем шума (особенно на низких частотах), так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда и канал полевого транзистора может быть отделён от поверхности полупроводникового кристалла. Процессы рекомбинации носителей в p-n переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника сопровождаются возникновением низкочастотных шумов.
Транзисторы с изолированным затвором (МДП-транзисторы)
Рис. 2. Устройство полевого транзистора с изолированным затвором.Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоем диэлектрика.
В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильнолегированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.
Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.
Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.
В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).
В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.
Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.
МДП-транзисторы с индуцированным каналом
При напряжении на затворе относительно истока, равном нулю, и при наличии напряжения на стоке, — ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших UЗИпор) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших UЗИпор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.
В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.
Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти всё напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряжённости электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда — дырки. Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энергия увеличивается за счёт энергии источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нём подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.
МДП-транзисторы со встроенным каналом
Рис. 3. Выходные статические характеристики (a) и статические характеристики передачи (b) МДП-транзистора со встроенным каналом. В данной схеме в качестве нелинейного элемента используется МДП транзистор с изолированным затвором и индуцированным каналом.В связи с наличием встроенного канала в таком МДП-транзисторе при нулевом напряжении на затворе (см. рис. 2, б) поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности (рис. 3).
Статические характеристики передачи (рис. 3, b) выходят из точки на оси абсцисс, соответствующей напряжению отсечки UЗИотс, то есть напряжению между затвором и истоком МДП-транзистора со встроенным каналом, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.
Формулы расчёта в зависимости от напряжения UЗИ
1. Транзистор закрыт
Пороговое значение напряжения МДП транзистора
2. Параболический участок.
-удельная крутизна передаточной характеристики транзистора.
3. Дальнейшее увеличение приводит к переходу на пологий уровень.
— Уравнение Ховстайна.МДП-структуры специального назначения
В структурах типа металл-нитрид-оксид-полупроводник (МНОП) диэлектрик под затвором выполняется двухслойным: слой оксида SiO2 и толстый слой нитрида Si3N4. Между слоями образуются ловушки электронов, которые при подаче на затвор МНОП-структуры положительного напряжения (28..30 В) захватывают туннелирующие через тонкий слой SiO2 электроны. Образующиеся отрицательно заряженные ионы повышают пороговое напряжение, причём их заряд может храниться до нескольких лет при отсутствии питания, так как слой SiO2 предотвращает утечку заряда. При подаче на затвор большого отрицательного напряжения (28…30 В), накопленный заряд рассасывается, что существенно уменьшает пороговое напряжение.
Структуры типа металл-оксид-полупроводник (МОП) с плавающим затвором и лавинной инжекцией (ЛИЗМОП) имеют затвор, выполненный из поликристаллического кремния, изолированный от других частей структуры. Лавинный пробой p-n-перехода подложки и стока или истока, на которые подаётся высокое напряжение, позволяет электронам проникнуть через слой окисла на затвор, вследствие чего на нём появляется отрицательный заряд. Изолирующие свойства диэлектрика позволяют сохранять этот заряд десятки лет. Удаление электрического заряда с затвора осуществляется с помощью ионизирующего ультрафиолетового облучения кварцевыми лампами, при этом фототок позволяет электронам рекомбинировать с дырками.
В дальнейшем были разработаны структуры запоминающих полевых транзисторов с двойным затвором. Встроенный в диэлектрик затвор используется для хранения заряда, определяющего состояние прибора, а внешний (обычный) затвор, управляемый разнополярными импульсами для ввода или удаления заряда на встроенном (внутреннем) затворе. Так появились ячейки, а затем и микросхемы флэш-памяти, получившие в наши дни большую популярность и составившие заметную конкуренцию жестким дискам в компьютерах.
Для реализации сверхбольших интегральных схем (СБИС) были созданы сверхминиатюрные полевые микротранзисторы. Они делаются с применением нанотехнологий с геометрическим разрешением менее 100 нм. У таких приборов толщина подзатворного диэлектрика доходит до нескольких атомных слоев. Используются различные, в том числе трехзатворные структуры. Приборы работают в микромощном режиме. В современных микропроцессорах корпорации Intel число приборов составляет от десятков миллионов до 2 миллиардов. Новейшие полевые микротранзисторы выполняются на напряженном кремнии, имеют металлический затвор и используют новый запатентованный материал для подзатворного диэлектрика на основе соединений гафния.[1]
В последние четверть века бурное развитие получили мощные полевые транзисторы, в основном МДП-типа. Они состоят из множества маломощных структур или из структур с разветвлённой конфигурацией затвора. Такие ВЧ и СВЧ приборы впервые были созданы в СССР специалистами НИИ «Пульсар» Бачуриным В. В. (кремниевые приборы) и Ваксембургом В. Я. (арсенид-галлиевые приборы) Исследование их импульсных свойств было выполнено научной школой проф. Дьяконова В. П. (Смоленский филиал МЭИ). Это открыло область разработки мощных ключевых (импульсных) полевых транзисторов со специальными структурами, имеющих высокие рабочие напряжения и токи (раздельно до 500—1000 В и 50-100 А). Такие приборы нередко управляются малыми (до 5 В) напряжениями, имеют малое сопротивление в открытом состоянии (до 0,01 Ом) у сильноточных приборов, высокую крутизну и малые (в единицы-десятки нс) времена переключения. У них отсутствует явление накопления носителей в структуре и явление насыщения, присущее биполярным транзисторам. Благодаря этому мощные полевые транзисторы успешно вытесняют мощные биполярные транзисторы в области силовой электроники малой и средней мощности.[2][3]
За рубежом в последние десятилетия стремительно развивается технология транзисторов на высокоподвижных электронах (ТВПЭ), которые широко используются в СВЧ устройствах связи и радионаблюдения. На основе ТВПЭ создаются как гибридные, так и монолитные микроволновые интегральные схемы (англ.)). В основе действия ТВПЭ лежит управление каналом с помощью двумерного электронного газа, область которого создаётся под контактом затвора благодаря применению гетероперехода и очень тонкого диэлектрического слоя — спейсера.[4]
Области применения полевых транзисторов
Значительная часть производимых в настоящий момент полевых транзисторов входит в состав КМОП-структур, которые строятся из полевых транзисторов с каналами разного (p- и n-) типа проводимости и широко используются в цифровых и аналоговых интегральных схемах.
За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).
Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные кварцевые часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет, потому что практически не потребляют энергии.
Грандиозными темпами развиваются области применения мощных полевых транзисторов. Их применение в радиопередающих устройствах позволяет получить повышенную чистоту спектра излучаемых радиосигналов, уменьшить уровень помех и повысить надёжность радиопередатчиков. В силовой электронике ключевые мощные полевые транзисторы успешно заменяют и вытесняют мощные биполярные транзисторы. В силовых преобразователях они позволяют на 1-2 порядка повысить частоту преобразования и резко уменьшить габариты и массу энергетических преобразователей. В устройствах большой мощности используются биполярные транзисторы с полевым управлением (IGBT) успешно вытесняющие тиристоры. В усилителях мощности звуковых частот высшего класса HiFi и HiEnd мощные полевые транзисторы успешно заменяют мощные электронные лампы, так как обладают малыми нелинейными и динамическими искажениями.
См. также
Ссылки
Примечания
- ↑ Дьяконов В. П. Intel. Новейшие информационные технологии. Достижения и люди. М.: СОЛОН-Пресс.- 2004.- 416 с.
- ↑ Схемотехника устройств на мощных полевых транзисторах: Справочник. В. В. Бачурин, В. Я. Ваксембург, В. П. Дьяконов и др.; Под ред. В. П. Дьяконова.- М.: Радио и связь, 1994.- 280 с.
- ↑ Энциклопедия устройств на полевых транзисторах. Дьяконов В. П., Максимчук А. А., Ремнев А. М., Смердов В. Ю.; Под ред. проф. В. П. Дьяконова.- М.: СОЛОН-Р, 2002.- 512 с.
- ↑ Semiconductor Physical Electronics (Second Edition). Sheng S. Li.- Springer, 2006.- 708 p. ISBN 0-387-28893-7 ISBN 978-0387-28893-2
dic.academic.ru
Поделиться с друзьями: