интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Устройство и принцип работы ветрогенератора. Схема ветрогенератора


Устройство и принцип работы ветрогенератора

Как устроен ветрогенератор

Любой ветрогенератор состоит из таких компонентов как;

Устройство ветрогенератора 02

— генератор, который вырабатывает переменный ток, и в дальнейшем преобразуется в постоянное напряжение, предназначенное для зарядки аккумуляторов. От скорости ветра зависит и мощность генератора;- лопасти, предназначены для передачи вращения к валу генератора через редукторы и стабилизаторы скорости вращения ротора генератора;— мачта ветряка должна иметь достаточную высоту. Чем выше находятся лопасти, тем больше они получат энергии ветра.

Также в устройство ветрогенератора входят;

— контроллер, необходимый для преобразования переменного напряжения идущего с генератора, в постоянное напряжение и последующей зарядкой аккумуляторов. Контроллер управляет поворотом лопастей, и контролируют направление ветра;— аккумуляторы накапливают электроэнергию, чтобы использовать ее при небольшом ветре или его отсутствии. Батарея также хорошо стабилизирует электроэнергию, полученную от генератора;— датчик направления ветра помогает лопастям «поймать» ветер;— АВР представляет собой устройство автоматического переключения между ветрогенератором и другими источниками электроэнергии, например электросетью, генератором, солнечными панелями;— инвертор предназначен для преобразования постоянного тока, поступающего с аккумуляторов, в переменное напряжение для домашней электросети. Инверторы могут разделяться по типу синусоиды для разных потребителей электроэнергии.

Устройство ветрогенератора 01

Устройство ветрогенератора

  1. Инвертор модифицированной синусоиды на выходе выдает квадратную синусоиду, предназначенную для не требовательных потребителей к качеству сети – это тэны, накальные лампы освещения.
  2. Инверторы с чистой синусоидой по качеству выходного напряжения подходят даже для самых требовательных потребителей электроэнергии.
  3. Инверторы трехфазного напряжения предназначены для трехфазных сетей.
  4. Сетевой инвертор работает без аккумулятора и способен к выводу электроэнергии в общую сеть.

Принцип действия ветрогенератора

Принцип работы ветрогенератора построен на преобразовании кинетической энергии силы ветра в энергию вращения вала генератора. Для вертикальных ветрогенераторов, вертикальная ось соединена с вертикальным ротором. Генератор и ротор расположены внизу конструкции. Лопасти закреплены в вертикальной оси.

Вращаясь, лопасти заставляют вращаться ротор генератора, который начинает вырабатывать переменный и нестабильный ток. Это ток идет на контроллер, который преобразует его в постоянное напряжение и заряжает аккумуляторы. С аккумулятора питание идет на инвертор, назначение которого превращение постоянного тока в переменное напряжением 220 В или 380 В, которое поступает к потребителям электроэнергии.

Схемы работы ветрогенераторов

Вариантов работы ветрогенератора может быть несколько:

  1. Автономная работа ветрогенератора.
Автономная работа ветрогенератора

Автономная работа ветрогенератора

  1. Такая совместная работа считается очень надежным и эффективным способом автономного электроснабжения. При отсутствии ветра, работают солнечные батареи. Ночью, когда не работают солнечные батареи, аккумулятор заряжается от ветровой установки.
Паралельная работа ветрогенератора с солнечными панелями

Параллельная работа ветрогенератора с солнечными панелями

  1. Ветрогенератор также может работать параллельно с электросетью. При избытке электроэнергии, она поступает в общую сеть, а при недостатке ее потребители электроэнергии работают от общей электросети.
Паралельная работа ветрогенератора с электросетью

Параллельная работа ветрогенератора с электросетью

Ветряные генераторы могут прекрасно работать с любыми видом автономного электроснабжения и общей электросетью. Создавая при этом единую систему энергоснабжения.

Тоже интересные статьи

electricavdome.ru

Ветрогенератор с вертикальным ротором | Синтезгаз

Самодельный ветрогенератор в сборе

Самодельный ветрогенератор в сборе

Группой умельцев была разработана конструкция ветрогенераторной установки с вертикально расположенной осью вращения. Ниже, представлено подробное руководство по изготовлению этой установки. Внимательно прочитав это руководство, вы сможете сделать подобный вертикальный ветрогенератор своими руками.

Конструкция ветрогенератора получилась достаточно надежной, с низкой стоимостью обслуживания, простой в изготовлении и не дорогой по комплектующим. Представленный ниже список деталей носит ознакомительный и ориентировочный характер. Соблюдать его не обязательно, можно внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Для изготовления этого ветрогенератора использовались недорогие и качественные детали.

Схема вертикального ветрогенератора

Схема вертикального ветрогенератора

НаименованиеКол-воПримечание
Список используемых деталей и материалов для ротора:
Предварительно вырезанный лист металла1Вырезан из стали толщиной 1/4" при помощи гидроабразивной, лазерной и др. резке
Ступица от авто (Хаб)1Должна содержать 4 отверстия, диаметр около 4 дюймов
2" x 1" x 1/2" неодимовый магнит26Очень хрупкие, лучше заказать дополнительно
1/2"-13tpi x 3“ шпилька1TPI – кол-во витков резьбы на дюйм
1/2" гайка16 
1/2" шайба16 
1/2" гровер16 
1/2".-13tpi колпачковая гайка16 
1" шайба4Для того, чтобы выдержать зазор между роторами
   
Список используемых деталей и материалов для турбины:
3" x 60" Оцинкованная труба6 
ABS пластик 3/8" (1.2×1.2м)1 
Магниты для балансировкиЕсли нужныЕсли лопасти не сбалансированы, то магниты прикрепляются для балансировки
1/4" винт48 
1/4" шайба48 
1/4" гровер48 
1/4" гайка48 
2" x 5/8" уголки24 
1" уголки12 (опционально)В случае, если лопасти не держат форму, то можно добавить доп. уголки
винты, гайки, шайбы и гроверы для 1" уголка12 (опционально) 
   
Список используемых деталей и материалов для статора:
Эпоксидка с затвердителем2 л 
1/4" винт нерж.3 
1/4" шайба нерж.3 
1/4" гайка нерж.3 
1/4" кольцевой наконечник3Для эл. соединения
1/2"-13tpi x 3“ шпилька нерж.1Нерж. сталь не является ферромагнетиком, поэтому не будет "тормозить" ротор
1/2" гайка6 
СтеклотканьЕсли нужна 
0.51мм эмал. провод 24AWG
   
Список используемых деталей и материалов для монтажа:
1/4" x 3/4" болт6 
1-1/4" фланец трубы1 
1-1/4" оцинк. труба L-18"1 
   
Инструменты и оборудование:
1/2"-13tpi x 36“ шпилька2Используется для поддомкрачивания
1/2" болт8 
АнемометрЕсли нужен 
1" лист алюминия1Для изготовления проставок, если понадобятся
Зеленая краска1Для покраски держателей пластика. Цвет не принципиален
Голубая краска бал.1Для покраски ротора и др. частей. Цвет не принципиален
Мультиметр1 
Паяльник и припой1 
Дрель1 
Ножовка1 
Керн1 
Маска1 
Защитные очки1 
Перчатки1 

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

Описание изготовления турбины ветрогенератора

Турбина ветрогенератора

Турбина ветрогенератора

  1. Соединяющий элемент – предназначен для соединения ротора к лопастям ветрогенератора.
  2. Схема расположения лопастей – два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.
Крепление лопастей уголками

Крепление лопастей уголками

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Общий вид расположения уголков, крепящих лопасти

Общий вид расположения уголков, крепящих лопасти

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Описание изготовления ротора ветрогенератора

Разметка роторов с помощью бумажных шаблонов

Разметка роторов с помощью бумажных шаблонов

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве “тестера полярности” можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Крепление магнитов на основании ротора

    Крепление магнитов на основании ротора

  5. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  6. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  7. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  8. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  9. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Описание изготовления статора ветрогенератора

Изготовление статора – это очень трудоемкая часть процесса изготовления ветрогенератора. Можно, конечно попробовать купить готовый статор (его еще надо найти у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Катушка статора

Катушка статора

Статор ветрогенератора – электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:

  • 320 витков, 0.51 мм (24AWG) = 100В * 120 об/мин.
  • 160 витков, 0.0508 мм (16AWG) = 48В * 140 об/мин.
  • 60 витков, 0.0571 мм (15AWG) = 24В * 120 об/мин.

Вручную наматывать катушки – это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки рекомендуется изготовить простое приспособление – намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособление для намотки катушек

Приспособление сделано из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Приспособление для намотки катушек, сделанное из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей

Приспособление для намотки катушек, сделанное из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Крупный вид приспособления для намотки катушек

Крупный вид приспособления для намотки катушек

Вы можете придумать свою конструкцию намоточного станка, или возможно у вас уже имеется готовый.

После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Подробный вид приспособления для намотки катушек

Подробный вид приспособления для намотки катушек

Схема соединения катушек статора

Внимание!

Категорически запрещается подключать домашние бытовые потребители напрямую к ветрогенератору во избежании выхода их из строя! Также соблюдайте меры безопасности при обращении с электричеством!

Схема соединения катушек статора

Схема соединения катушек статора

Последовательность действий соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:
  • А. Конфигурация «звезда». Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.
  • B. Конфигурация «треугольник». Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.
  • C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  1. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  2. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  3. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Изготовление статора

Изготовление статора

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше – места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Вокруг катушек помещается стеклоткань

Вокруг катушек помещается стеклоткань

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор, залитый эпоксидкой с кронштейном

Статор, залитый эпоксидкой с кронштейном

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Изготовление кронштейна статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

Крепление оси

Крепление оси

Эскиз (чертеж) кронштейна

Эскиз (чертеж) кронштейна

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

Шпилька с гайками и втулкой

Шпилька с гайками и втулкой

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами . Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Окончательная сборка генератора

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

Сборочный чертеж генератора

Сборочный чертеж генератора

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).

На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Ротор и статор

Ротор и статор

Процесс сборки:

  1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место.
  2. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.
  3. Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.
  4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.
  5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.
  6. Установите хаб (ступицу) и прикрутите его.
Этапы сборки генератора

Этапы сборки генератора

Генератор готов!

Генератор будущего ветрогенератора в сборе

Генератор будущего ветрогенератора в сборе

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так, ка на рисунке выше.

Установка и крепление клемм

Установка и крепление клемм

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Установка клемм

Установка клемм

Колпачковые гайки и шайбы служат для крепления соединительной платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

Мостовой выпрямитель

Мостовой выпрямитель

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Рекомендации по выбору места установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора – достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы «любят» когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.

Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Немного о механике ветрогенератора

Как известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия.

Скачать схему расположения магнитов

---

Комментарии:

---

Что такое газ БраунаХронология водородных топливных элементов

sintezgaz.org.ua

как правильно подсоединять трехфазный контроллер?

уже прочитали: 527

Эксплуатация устройства

Порядок подключения является важным моментом эксплуатации устройства, от которого зависит возможность выполнения комплектом своих функций, сохранность оборудования в рабочем состоянии и долговечность аппаратуры. Неправильное подключение может вывести из строя отдельные узлы, аккумуляторные батареи. Для того, чтобы исключить возможность ошибки, надо заранее уяснить себе схему присоединения элементов комплекса друг к другу, правильное подключение балласта и нагрузки.

Как правильно подключить ветрогенератор?

Прежде, чем начинать рассмотрение правил подключения, надо определиться с составом комплекта. представляет собой целую систему оборудования, из которого вращающийся ветряк — только преобразователь энергии ветра во вращательное движение, заставляющее функционировать генератор.

Дальше напряжение подается на контроллер сигнала. Это прибор, следящий за состоянием аккумуляторных батарей. Если они загружены полностью, контроллер переключает их с режима зарядки на режим потребления, параллельно включая балластное сопротивление (потребитель) для снятия лишнего заряда.

Напряжение с аккумуляторов идет на инвертор, который преобразует постоянный ток аккумуляторов в стандартные 220 В, 50 Гц, которые питают бытовую технику, освещение и прочие приборы потребления.

Основные схемы

Возможны различные схемы подключения ветрогенератора. Основная коммутация остается неизменной, варианты касаются только присутствия дополнительного источника энергии. Различают:

  • питание только от ветроустановки
  • ветрогенератор работает в паре с сетевым электричеством. При разряде аккумуляторов происходит переключение на сетевые ресурсы, после зарядки батарей установка вновь переключается на обеспечение потребителей
  • подключение параллельно с бензогенератором. Разряд батарей инициирует запуск бензогенератора, затем обратное подключение ветряка
  • параллельное подключение с солнечными батареями. Один из наиболее часто встречающихся комплектов. Используются солнечные батареи, работающие параллельно с ветряком и, по необходимости, берущие на себя основное обеспечение потребителей
  • на Западе излишки выработанной энергии сбрасываются в сеть, за что владелец ветряка получает некоторую плату. В России такого оборудования пока не имеется, поэтому излишки попросту утилизируются с помощью балластных сопротивлений.

Сетевая схема подключения

Сетевая схема представлена в двух вариантах:

  • сетевая схема . Выработанная энергия отдается в сеть, а потребители питаются из нее. Владелец платит только за разницу между выработанной и потребленной энергией. В России такой вариант не реализован
  • сетевая схема с аккумуляторами. В данном случае подключение к сети используется только при разряде аккумуляторов, т.е. сетевые ресурсы используются как гарантия.

Такая схема подключения имеет свои достоинства и недостатки, но для того, чтобы она была действительно выгодной, надо, чтобы выработанной энергии хватало на обеспечение большого количества потребителей, а оборудование стоило довольно дешево. В противном случае проще постоянно пользоваться сетевой энергией, а ветряк держать на случай внезапных перебоев. Так будет надежнее, проще и появится возможность увеличить срок службы ветрогенератора.

Как подключить контроллер к ветрогенератору?

 — это самый первый прибор, на который подается напряжение, выработанное генератором. Подключение контроллера производится посредством специальных клемм. Генератор подключается ко входу, а выходные клеммы соединяются с аккумуляторными батареями.

Мнение эксперта

Специалист портала Energo.House

Функции контроллера могут быть значительно расширены, он способен производить мониторинг состояния аккумуляторов, следить за напряжением от генератора и вовремя переключать систему на сетевое питание.

Функционал контроллера полностью зависит от того, кто его собирал (заводское исполнение или самоделка), от типа конструкции, модели и т.д.

Существует множество схем для самостоятельного изготовления, в которых всего несколько простых деталей. Такие схемы легко реализуются даже людьми с начальной подготовкой, они надежны и нетребовательны. При самостоятельном изготовлении ветряка такие схемы обеспечивают полноценное функционирование, а отсутствие каких-то дополнительных возможностей не является значительным минусом. Чем меньше элементов в схеме, тем она надежнее и меньше подвержена отказам или поломкам, поэтому вариант наиболее удачный.

Подключение ветряка к аккумулятору

Подключение аккумулятора к генератору производится через выпрямитель — диодный мост. Аккумуляторные батареи нуждаются в постоянном токе, а генератор ветряка выдает переменку, причем, весьма нестабильную по амплитуде. Выпрямитель изменяет переменный ток, модифицируя его в постоянный. Если генератор трехфазный, то необходимо использовать трехфазный выпрямитель, на это надо обращать особенное внимание.

Мнение эксперта

Специалист портала Energo.House

Прямое подключение ветряка к аккумулятору — опасное решение, поскольку параметры напряжения, выдаваемого ветряком, не имеют стабильности. Резкое повышение напряжения, выходящее за пределы номинала батарей, способно вывести их из строя.

Аккумуляторы обычно не новые, они способны закипеть. Поэтому настоятельно рекомендуется использовать хотя бы простенький контроллер, изготовленный из реле-регулятора. Он вовремя отключит зарядку и сохранит работоспособность аккумуляторных батарей. В любом случае не следует экономить на оборудовании и сокращать состав комплекта, так как от него зависит полноценная работа всей ветроустановки.

Подключение однофазного ветрогенератора к трехфазному контроллеру

Однофазный генератор может быть подключен к трехфазному контроллеру либо на одну фазу, либо параллельно на все три. Более правильным вариантом считается использование одной фазы, т. е. ветряк подключается к двум контактам — защемляющему и одному фазному. Это обеспечит правильную обработку напряжения и выдачу его на приборы потребления.

В целом, использование таких разнородных устройств нецелесообразно. Кроме того, путаница с вариантами подключения способна создать значительную угрозу целостности оборудования, что недопустимо. При сборке комплекта надо сразу определиться с его составом и типом смежных приборов, чтобы не допустить использования разноплановых устройств в единой связке. Допускать рискованные соединения можно только подготовленным людям, являющимися специалистами в электротехнике, хотя сами они подобные действия решительно отвергают.

energo.house

Схема подключения ветрогенератора | Сам Себе Строитель

подключение ветрогенератора

Рабочие схемы подключения ветрогенератора. Как правильно подключить ветрогенератор, варианты подключения, схемы, фото.

При установке ветрогенератора очень важно его правильно подключить к потребителям.

Существует несколько вариантов схем подключения в зависимости от дополнительного оборудования системы.

 

 

 

Минимальный комплект ветроустановки состоит из комплектующих:

  • Ветрогенератор.
  • Контроллер.
  • Аккумулятор.
  • Инвертор.
  • Кабеля и предохранители.

Ветрогенератор – используется для заряда аккумуляторных батарей, генератор вырабатывает переменный ток. Напряжение и сила тока генератора зависят от мощности генератора и силы ветра. Высота мачты, на которой расположен генератор, также играет важную роль, чем выше мачта, тем стабильней воздушный поток и больше вероятность работы ветрогенератора при слабом ветре.

Контроллер – преобразовывает переменный ток, в постоянный который необходим для заряда аккумуляторных батарей.

Аккумуляторы – служат накопителями энергии, потребление энергии идёт от аккумуляторов.

Инвертор – преобразователь постоянного тока в переменный. На вход инвертора поступает постоянный ток от аккумуляторов 12V или 24 V, а на выходе переменный 220V который потребляют большинство бытовых электроприборов.

В свою очередь инверторы бывают нескольких типов:

Модифицированная синусоида – низкое качество выходного напряжения, применяется для потребителей не чувствительных к качеству напряжения (лампочки, телевизоры, отопительные приборы, зарядные устройства).

Чистая синусоида – высокое качество выходного напряжения, подходит для всех потребителей, в том числе и для электродвигателей и точного оборудования.

Трехфазный – преобразовывает постоянный ток в переменный трёхфазный 380 V.

Сетевой – применяется на мощных ветростанциях для выхода электроэнергии в общественную сеть.

Это основное оборудование необходимое для работы ветростанции, из дополнительного оборудования можно отметить автоматический переключатель источника питания (АВР).

АВР – переключатель, позволяет переключить в автоматическом режиме источник питания для потребителей. При отключении основного источника электроэнергии в данном случае ветроустановки переключает потребителей на аварийный генератор или бытовую электросеть.

Общая схема подключения ветрогенератора.

На рисунке схематически показан принцип подключения компонентов установки.

Схема подключения ветрогенератора

Схема подключения однофазного ветрогенератора.

Общая схема подключения ветрогенератора

В данном случае потребители энергии полностью зависят от работы ветряка и ёмкости аккумуляторов.

Гибридная система подключения с солнечной панелью.

В данном случае в систему дополнительно подключена солнечная панель, что повышает производительность установки.

схема подключения ветрогенератора и солнечной панели

В отличие от первого варианта система не зависит полностью от работы ветрогенератора, и аккумуляторы также заряжаются от солнечной панели.

Схема подключения ветрогенератора с резервным генератором.

Вариант подключения с резервным бензиновым (дизельным) генератором, в данном случае при снижении заряда аккумуляторов АВР (автоматический переключатель источника питания) запускает резервный генератор.

Схема подключения ветрогенератора с резервным генератором

Схема подключения ветрогенератора с резервным питанием из сети.

Следующий вариант системы с подключением к сети. В этом случае, когда ветра нет, и генератор не может набрать рабочую скорость, АВР переключает потребителей на сеть. При отключении электроэнергии в сети, АВР переключает потребителей на питание от аккумуляторов установки.

Схема подключения ветрогенератора с резервным питанием из сети

Это основные примеры схем подключения ветрогенератора.

Популярные самоделки из этой рубрики

Как сделать солнечную батарею для зарядки телефона...

Самодельный солнечный коллектор своими руками...

Ветрогенератор своими руками...

Солнечный водонагреватель своими руками...

Ветрогенератор из мотор колеса: фото с описанием...

Самодельный ветрогенератор своими руками...

Солнечная батарея своими руками: фото изготовления...

Как подключить солнечную батарею...

Самодельный ветрогенератор из генератора от тракто...

Солнечный коллектор из бутылок...

Ветрогенератор из шуруповёрта...

Бензогенератор своими руками...

sam-stroitel.com

Самодельный ветрогенератор: фото сборки, видео

ветрогенератор

Самодельный ветрогенератор на 0,5 кВт/ч, изготовление ветрогенератора на неодимовых магнитах: фото, видео

В большинстве регионов страны большую часть времени года преобладают умеренные ветра, для таких регионов рекомендуется устанавливать тихоходные ветрогенераторы вырабатывающие достаточно энергии при сравнительно небольших оборотах генератора.

При проектировании ветряка, нужно в первую очередь определиться с основной деталью – генератором. Его можно изготовить самостоятельно, в качестве генератора можно использовать, например электродвигатель от беговой дорожки или автомобильный генератор.

Если говорить об автомобильном генераторе, то он не совсем подходит в качестве ветрогенератора, ведь он предназначен для высоких оборотов более 1000 об/мин, и при слабом ветре автогенератор не будет заряжать аккумулятор, к тому же его обмотка также потребляет энергию. Поэтому генератор от авто требует существенной доработки.

В этом ветрогенераторе за основу взят самодельный генератор аксиального типа с неодимовыми магнитами на роторе. На фото схема аксиального генератора.

схема генератора для ветряка

Сделать такой генератор не сложно, но его изготовление потребует времени.

Сборка ветрогенератора.

Для изготовления генератора аксиального типа с постоянными магнитами понадобится:

самодельный ветрогенератор

  • Ступица от автомобиля, можно использовать б/у ступицу от ВАЗа.
  • Неодимовые магниты круглые – 40 шт. размером 25 х 8 мм или больше.
  • Проволока медная – диаметром 0,7 – 0,8 мм.
  • Эпоксидная смола.
  • Суперклей.
  • Крепёжные элементы (болты, гайки, шайбы).

Схема генератора в разрезе.

изготовление генератора для ветряка

Изготовление ротора.

Размечаем места под магниты на диске ступицы и наклеиваем магниты на диск ротора, магниты нужно разместить на диске в точной последовательности с чередованием полюсов.

изготовление ветрогенератора

Клеить магниты можно суперклеем, затем чтобы хорошо закрепить их нужно залить эпоксидной смолой. Нужно изготовить две таких части для ротора.

Изготовление ротора ветрогенератора

Изготовление статора.

Для более эффективной работы генератора лучше изготовить 3 фазный статор, чем однофазный.

Схема подключения катушек трёхфазного статора.

схема ветрогенератора

 

Поскольку это будет тихоходный ветрогенератор, и давать зарядку на аккумулятор (12 V) он должен уже при 100 оборотах в минуту, то общее количество витков во всех катушках должно быть примерно 1200.

В этой конструкции используется 15 катушек по 80 витков в каждой. Для катушек лучше не использовать слишком тонкую проволоку, чем сопротивление меньше, тем больше ток.

изготовление статора ветрогенератора

Размер катушек зависит от размеров магнитов, внутренний диаметр катушек должен быть равен диаметру магнитов.

как самому сделать ветрогенератор

Чтобы повысить магнитный поток в катушки устанавливаются сердечники из трансформаторной стали.

как сделать домашний ветрогенератор

Катушки крепятся на статоре и заливаются эпоксидной смолой. Выходы от катушек генератора подключаются к выпрямителю (диодный мост).

сделать ветрогенератор в домашних условиях

Изготовление лопастей.

Для изготовления лопастей можно использовать полихлорвиниловую (ПВХ) трубу с толщиной стенки 5 – 6 мм, диаметром 200 мм.

лопасти из пвх трубы

Размечаем трубу и разрезаем её электролобзиком на полосы заготовки, затем из заготовок выпиливаем лопасти. Края лопастей зачищаем наждачной бумагой. Лопасти крепятся к ротору генератора болтами и гайками.

Как сделать лопасти

Количество и размер лопастей напрямую влияют на скорость вращения вала генератора. Чем больше количество и площадь лопастей, тем больше вероятность, что лопасти будут вращаться при слабом ветре. Но при сильном ветре такой винт не сможет набрать высокую скорость вращения.

И наоборот если количество лопастей небольшое (2 – 3) и площадь их поверхности также небольшая, то при сильном ветре такой винт будет вращаться быстрее, но при слабом ветре винт практически не будет вращаться.

Для тихоходного ветряка оптимально использовать 6 лопастей длиной по 1 метру. Размер лопастей нужно подбирать индивидуально под каждый генератор.

Мачта.

Чем выше, расположен ветрогенератор, тем больше вероятность, что его лопасти поймают воздушный поток, поэтому для эффективной работы генератора понадобится хорошая мачта.

мачта на растяжках для ветрогенератора

На рисунке показано как правильно установить мачту.

выбрать место установки ветрогенератора

Существует несколько разновидностей конструкций мачт, тут каждый проектирует в зависимости от своих возможностей, но рекомендуется использовать мачту высотой не менее 8 — 10 метров.

Для защиты генератора при сильном ветре можно использовать складывающийся хвостовик, его схема и принцип работы показаны на рисунках.

Схема складывающегося хвоста ветрогенератора

 

Защита ветрогенератора от сильного ветра

Чертежи хвостовика.

При сильном порыве ветра хвостовик складывается и вырывает ветроколесо из воздушного потока.

Мощность такого ветрогенератора при скорости ветра 8 м/с, достигает 0,5 кВт/ч, при слабом ветре мощность будет около 0, 2 Вт/ч. При изготовлении самоделки всё делается на глаз, поэтому работу генератора нужно тестировать и усовершенствовать.

как сделать ветрогенератор своими руками

Схема подключения трёхфазного ветрогенератора к потребителям.

подключение ветрогенератора

Также рекомендую прочитать статью с примерами схем подключения ветрогенератора.

Рекомендую посмотреть видео где показано как сделать генератор на неодимовых магнитах.

Популярные самоделки из этой рубрики

Самодельный ветрогенератор своими руками...

Тепловая мини электростанция: генератор на элемент...

Солнечный коллектор из банок: чертежи, фото...

Солнечные коллекторы для дома...

Как подключить солнечную батарею...

Как самому сделать солнечную батарею...

Схема подключения ветрогенератора...

Cамодельный генератор для ветряка...

Солнечная электростанция своими руками: фото сборк...

Как сделать солнечную батарею для зарядки телефона...

Солнечный коллектор своими руками: фото сборки с о...

Солнечный коллектор из бутылок...

sam-stroitel.com

Электросхема для ветрогенератора - Блоги Выживальщиков

Изготавливая своими руками ветрогенератор для дома, проще всего использовать электросистему автомобиля или трактора. Исходя из ее мощности, определяются эксплуатационные возможности ВЭУ. Поэтому необходимо применять электроузлы таких достаточно мощных автомашин, как автобус или трактор. Важно помнить, что использовать подобные узлы необходимо комплектно: аккумулятор, реле-генератор, генератор. Например, для генератора Г 250-Г 1 вполне подойдут реле-регулятор РР 362, а также аккумулятор 6 СТ 75.

Рис. 1. Схема электрооборудования ВЭУ, взятое от автомобильного генератора на 12 В:1 — генератор, 2 — реле-регулятор, 3 — аккумулятор, 4 — амперметр, 5 — выключатель генератора от разряда аккумулятора в безветренную погоду, 6 — выключатель освещения, 7 — предохранитель, 8 — лампочки освещения.

В случае, если ветряк укомплектован автогенератором на 24 В, лучше использовать марку Г-228 с мощностью1000 Вт. Подобные генераторы имеют более надежное реле напряжения, особенно в сравнениис интегральными регуляторами напряжения марки Я-120. Вместе с тем, постоянное напряжение 12 В, получаемое с автогенератора,не очень удобно для освещения, т. к. необходимо учитывать специфику цоколей автолампы и патронов.Хоть лампочки на 12 В бывают и с обычным цоколем Ц-27, их трудно найти в продаже.

Рис. 2. Схема электрооборудования ВЭУ от автомобильного генератора на 24 В:1 — генератор Г-288, 2 — регулятор напряжения 11.3702, 3 — аккумуляторы 6СТ75, амперметр АП-170, 4 — амперметр, 5 — выключатель генератора от разряда аккумуляторов в безветренную погоду, 6 — выключатель освещения, 7 — предохранитель, 8 — лампочки освещения.

Чтобы перейти от постоянного тока к переменному, нужно изготовить преобразователь напряжения. При необходимости переменный ток без проблем можно превращать в постоянный, используя мостовой выпрямитель.

Преобразователь мощностью 100 Вт позволяет включать две лампочки накала или дневного света по 40 Вт на 220 В. Схема преобразователя довольно проста. Он не требует настройки, достаточно надежен в работеи имеет внушительный КПД (более 80%).

Вы можете ознакомиться с видео,на котором показан пример самодельного ветрогенератора. Так же, Вы можете воспользоваться специальным калькулятором для расчета ветрогенератора.

Схема роторного ветрогенератора:

Рис. 1. Схема роторной ветроэлектроустановки:1 — лопасти, 2 — крестовина, 3 —вал,4 —подшипникис корпусами,5 — соединительная муфта, 6 — силовая стойка (швеллер № 20), 7 — коробка передач, 8 — генератор, 9 — растяжки (4 шт.), 10 — ступени лестницы.

Важная деталь: ротор необходимо поднять достаточно высоко – на 3–4 метра над уровнем земли. Тогда ротор окажется в зоне свободного ветра, а зона завихрений от обтекаемых ветром строений останется ниже его.

В конструкции, предложенной В. Самойловым, ротор ветрогенератора имеет 4 лопасти, что обеспечивает ему более равномерное вращение. Ротор – важнейшая часть ветряка. Его формаи размеры лопастей играют особую роль – от них зависит мощность, а также скорость вращения вала ветрового двигателя. Чем больше будет общая поверхность лопастей, которые образуют ометаемую поверхность, тем меньшим будет число оборотов ротора.

Рис. 3. Двухъярусное роторное колесо:1 — подшипник, 2 — корпус подшипника, 3 — дополнительное крепление вала четырьмя растяжками, 4 — вал.

Ротор вращается благодаря аэродинамической несимметричности. Поток ветра, набегающий поперек оси ротора, соскальзывает с округлой стороны лопасти и затем попадает на ее противоположный карман. Разность давлений на округлуюи вогнутую поверхности создает тягу, которая, раскручивая ротор, приводит его в движение. Такой ротор имеет большой крутящий момент. Мощность ротора диаметром 1 м соответствует пропеллеру с тремя лопастями диаметром 2,5 м.

При резких колебаниях ветра роторные ветродвигатели обеспечивают более стабильную работу, чем винтовые. К тому же, роторы имеют тихий ход, работают при любом направлении ветра, но при этом могут развивать лишь от 200 до500 об/мин.При сильных порывах ветра роторные ветроколеса в разносне идут. Повышение количества оборотов асинхронного генератора не дает рост напряжения на выходе. Поэтому мы не рассматриваем автоматическое изменение угла лопастей ротора при разных скоростях ветра.

Существуют разные виды роторных ветрогенераторов на вертикальном валу. Вот некоторыеиз них:1. Четырехлопастое роторное ветряное колесо тихоходное, имеет КПД до 15%.2. Двухъярусное роторное колесо немного проще, и имеет более высокое КПД (до 19%), а также развивает большее по сравнению с четырехлопастным, число оборотов. Но, чтобы сохранить прочность и жесткость установки, целесообразно увеличивать диаметр вала.3. Ротор Савониуса развивает меньшее количество оборотов по сравнению с двухлопастным. Коэффициент применения ветровой энергии не выше 12%. В основном используется для привода поршневых насосов.

4. Карусельное ветряное колесо — простейшая конструкция. Колесо развивает малые обороты, а также, имея низкую удельную мощность, обладает КПД — до 10%

vizhivai.com

Схема работы и подключения ветрогенераторов

Для питания электроприемников от ветроустановки необходимо осуществить подключение ее к нагрузке. Бывают не сетевые (без подключения к общественной сети) и сетевые (с подключением к общественной сети) схемы подключения инверторов напряжения. Рассмотрим их.

Не сетевая схема подключения

Данная схема подключения позволит частично или полностью использовать автономное электропитание. При такой схеме подключения совершенно неважно наличие общественной электросети.

Несетевая схема подключения ветроэлектростанции

В данной системе питание потребителей осуществляется с помощью инвертора напряжения или тока напрямую от ветряной электростанции или аккумуляторных батарей.

Сетевая схема подключения

Подключение таких систем целесообразно выполнять при большой мощности ветроустановки или довольно малой мощности потребителей. Такое подключение позволяет не только питать приемники электроэнергии от общественной сети, но и при излишней выработке энергии ветряной электростанции (солнечной электростанции или их комбинаций)  продавать электроэнергию по так называемому «зеленому тарифу».

Сетевая схема подключения ветроэлектростанции

 Аккумуляторные батареи

Как их часто еще обозначают  АБ или АКБ – накапливают выработанную ветрогенератором электроэнергию. Их главной задачей есть хранение энергии в промежутке между ее выработкой и потреблением. Если емкость аккумуляторной батареи будет мала, то она быстро зарядится и последующая выработка энергии будет бессмысленна, так как хранить ее будет негде. При питании от такой батареи потребителей возникнет обратная ситуация – она слишком быстро разрядится, соответственно не позволит питать от нее нагрузку длительное время. Поэтому следует выбирать аккумуляторные батареи большой емкости, для устранения перечисленных выше недостатков. Если купить аккумуляторы огромной емкости, то они никогда не будут заряжаться на полную емкость. Также емкость аккумуляторов влияет на их стоимость и габариты. При длительном хранении электрической энергии аккумуляторные батареи саморазряжаются, что также нужно учитывать. Поэтому для правильного выбора данных устройств необходимо проанализировать все варианты, чтоб подобрать наиболее оптимальный вариант именно для вашей системы, в зависимости от требований, которые вы задаете для вашей системы.

Емкость аккумуляторной батареи

Емкость должна быть такой, чтоб при работе солнечной или ветряной электростанции при максимальной мощности заряда (или потребления) электроэнергии заряд – разряд аккумуляторной батареи  должен составлять не менее 10 часов (что является обязательным условием для AGM, кислотных, щелевых, гелевых и свинцовых батарей).  Как пример, если мощность ветряка будет 5 кВт, то емкость аккумулятора должна составить не менее 50 кВт-часов.

Инвертор напряжения

Это устройство необходимо чтоб преобразовать постоянный ток аккумулятора в переменный промышленной частоты (для бытовых потребителей 220 В 50 Гц). Именно к инвертору подключаются потребители электрической энергии.

Немаловажным фактором является и правильный выбор инвертора напряжения или тока по мощности. Если мощность инвертора 5 кВт, то вы не можете подключить к нему нагрузку в 7 кВт. То есть максимальная суммарная нагрузка  на инвертор не должна превышать 5 кВт. Если, к примеру, вам необходимо подключить бойлер мощностью 4 кВт и чайник 2 кВт то у вас есть два выхода – либо увеличить мощность инвертора (до 6-7 кВт) или же подключать  нагрузку поочередно – сначала бойлер, а потом чайник, или наоборот. Если в инверторов слишком большой разброс в мощностях (например, 7 кВт и следующий 14 кВт) можно использовать параллельную работу частотных преобразователей.

Не следует также забывать, что в инверторов есть еще и напряжение собственных нужд, которые в нашем случае составляют примерно 5-10% электроэнергии. Если же мощность на выходе инвертора составляет 5 кВт, то необходимая мощность аккумуляторной батареи возрастет до 5,2 – 5,5 кВт. Поэтому необходим инвертор или группа инверторов тока или напряжения, которые смогут обеспечить нормальное подключение всех потребителей.

Основные характеристики ветроустановки

Данную систему можно охарактеризовать следующим образом:

  • Силой ветра;
  • Мощностью ветрогенератора;
  • Мощностью аккумуляторных батарей;
  • Мощностью инвертора;

Каждый из компонентов системы работает независимо от других компонентов, но оказывает важное влияние на работоспособность системы в целом. Для правильного расчета и, как следствие, успешной работы системы необходимо четко сформулировать задачи, которые необходимо решить при проектировании, а также собрать правильные исходные данные для расчета.

elenergi.ru


Каталог товаров
    .