интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Триггер Шмидта. Подробное описание нессиметричного триггера. Схема триггера на транзисторе


Триггер Шмитта на транзисторах | HomeElectronics

Всем доброго времени суток. В прошлой статье я рассказывал о симметричных триггерах – RS- и T-триггерах. Сегодняшняя моя статья познакомит вас с ещё одной разновидностью триггеров – несимметричный триггер, который имеет более известное название – триггер Шмитта.

О триггерах Шмитта в интегральном исполнении я уже рассказывал в одной из предыдущих статей. Давайте вспомним чем, прежде всего, характеризуется данный тип триггера. Как мы помним из предыдущей статьи триггеры характеризуются несколькими устойчивыми состояниями. Так вот в триггере Шмитта переход из одного устойчивого состояния в другое осуществляется только при определённых значениях входного напряжения, которые называются уровнями срабатывания триггера или просто пороговыми уровнями. Таким образом, можно сказать, что несимметричный триггер имеет гистерезисный характер передаточной характеристики.

Передаточная характеристика триггера ШмиттаПередаточная характеристика триггера Шмитта.

Принцип работы триггера Шмитта

В идеальном случае передаточная характеристика триггера Шмитта имеет вид изображённый на рисунке выше. В случае если входное напряжение триггера не превышает напряжение срабатывания U1 (UВХ < U1), то триггер находится в одном из устойчивых состояний, а напряжение на выходе находится на уровне Е0 (UВЫХ = Е0). Когда же напряжение на входе превысит порог срабатывания (UBX > U1), то триггер моментально перейдёт в другое устойчивое состояние и напряжение на выходе станет равным рабочему напряжению триггера Е1 (UВЫХ = Е1). После этого напряжение на входе может изменяться в некоторых пределах, но на выходе останется постоянным и равным рабочему напряжению Е1.

Чтобы вернуть триггер Шмитта в исходное состояние, необходимо, чтобы напряжение на входе уменьшилось до некоторого уровня, называемого порогом отпускания триггера. Как только напряжение на входе уменьшится до некоторого уровня напряжения U2 (UВХ < U2), то триггер скачкообразно перейдёт в исходное состояние, при котором напряжение на выходе будет равным Е0 (UВЫХ = Е0).

Величины напряжений пороговых уровней срабатывания и отпускания триггера полностью определяются элементами электронной схемы данного типа триггера.

Как правило, в настоящее время триггеры Шмитта изготавливаются в интегральном исполнении, параметры которого удовлетворяют в большинстве случаев. Но в некоторых случаях имеет место изготовление данного типа триггеров и в дискретном исполнении, например, в экспериментальной или высоковольтной отраслях. Давайте рассмотрим схему триггера Шмитта в дискретном исполнении на транзисторах.

Схема триггера Шмитта на транзисторах и принцип её работы

Схема триггера Шмитта представлена на изображении ниже. Триггер Шмитта или несимметричный триггер имеет схожую структуру с симметричным триггером, отличие между ними заключается в том, что одна из коллекторно-базовой цепи симметричного триггера заменена на общую эмиттерную связь. В результате коллектор транзистора VT2 не связан с базовой цепью VT1 и нагрузка, подключённая к коллектору VT2, мало влияет на работу триггера.

Схема триггера Шмитта на биполярных транзисторахСхема триггера Шмитта на биполярных транзисторах.

В общем случае несимметричный триггер или триггер Шмитта состоит из следующих элементов: транзисторы VT1 и VT2, имеющие гальваническую связь между собой и через резистор R5 присоединены к общей шине питания; резисторы R1 и R2, обеспечивающие режим работы транзистора VT1 и исходное состояние схемы в целом; резисторы R3 и R7, являющиеся коллекторными нагрузками транзисторов VT1 и VT2 соответственно; резисторы R4 и R6, которые образуют делитель напряжения, тем самым определяя необходимые пороги срабатывания триггера; конденсатор C1, служащий для ускорения переключения триггера.

Временные диаграммы входных и выходных напряжений триггера ШмиттаВременные диаграммы входных и выходных напряжений триггера Шмитта (несимметричный триггер).

Рассмотрим принцип работы триггера Шмитта по его временным диаграммам изображенным выше. При подключении источника питания к триггеру, он переходит в исходное состояние, при котором транзистор VT1 закрыт, а транзистор VT2 открыт. В этом случае на выходе триггера присутствует некоторое напряжение Uэ, которое зависит от элементов обвязки транзистора VT2

В случае, когда входное напряжение превысит порог срабатывания, транзистор VT1 откроется, а VT2 соответственно закроется и напряжение на выходе триггера резко возрастёт до значения примерно равному напряжению источника питания.

Как я уже писал выше, триггер Шмитта имеет два уровня напряжения (пороги срабатывания), разность между которыми называется шириной петли гистерезиса. Ширина петли гистерезиса зависит от величины резистора, а порог срабатывания триггера от соотношения делителя напряжения, который образуется резисторами R4 и R6. Вследствие чего большой проблемой является отдельная регулировка, как ширины петли гистерезиса, так и порогов срабатывания триггера.

Триггер Шмитта с независимой регулировкой гистерезиса и уровней срабатывания

Для осуществления независимой регулировки параметров триггера Шмитта между транзисторами VT1 и VT2 включается буферный элемент (очень часто эмиттерный повторитель). В результате этого уменьшается влияние резистора R3 на делитель напряжения R4R6, а также повышается чувствительность схемы в целом.

Схема триггера Шмитта с буферным элементомСхема триггера Шмитта с буферным элементом.

Расчёт триггера Шмитта

Исходные данные: амплитуда импульсов Um = 10 В, максимальный выходной ток триггера Im = 10 мА, напряжение срабатывания триггера U1 = 5 В, напряжение отпускания триггера U2 = 3 В, частота следования импульсов fm = 5 МГц, длительность фронта и среза импульсов tf = ts ≤ 10 нс.

  1. Определение напряжения источника питания
  2. Выбор транзистора. Транзистор должен соответствовать следующим условиямДанным параметрам соответствует транзистор КТ315Д со следующими характеристиками:
  3. Определяем сопротивление коллекторных резисторов R3 и R7 транзистора VT1 и VT2.
  4. Вычисляем сопротивление резистора R5 в эмиттерных цепях транзисторов.
  5. Находим сопротивления резисторов R4 и R6. Для этого введём коэффициент пропорциональности λ, между резисторами.Сопротивление резистора R4 вычислим по следующей формулеТогда сопротивление резистора R6 будет равно
  6. Определяем сопротивление резисторов R2.
  7. Определяем сопротивление резистора R1.
  8. Вычисляем значение ёмкости ускоряющего конденсатора С1.

Выполненный расчёт является предварительным, так как из-за разброса параметров элементов схемы возможны некоторые отклонения от заданных условий схемы. После выбора номиналов элементов необходимо провести прямой проверочный расчёт пороговых уровней напряжения U1 и U2 по следующим формулам

Прямой проверочный расчёт важен, в случае если ширина петли гистерезиса (U2 – U1) находится в пределах нескольких долей вольта.

Теория это хорошо, но теория без практики - это просто сотрясание воздуха. Перейдя по ссылке всё это можно сделать своими руками

Скажи спасибо автору нажми на кнопку социальной сети

www.electronicsblog.ru

Триггер на электронных транзисторных ключах.

 Электронный триггер - устройство с двумя устойчивыми состояниями предназначенное для хранения одного бита информации. Триггеры могут быть построены на электронных ключах. В предыдущей статье описан электронный ключ на биполярном транзисторе кт940А если два таких ключа соединить каскадно (выход первого со входом второго) после чего выход второго ключа соединить со входом первого то получится система с двумя устойчивыми состояниями представляющая собой неинвертирующий усилитель охваченный глубокой положительной обратной связью. Рассмотрим схему на рисунке 1:

Рисунок 1 - Триггер на электронных транзисторных ключах

Предположим что после подачи питания на схему открылся транзистор VT2 следовательно потенциал базы транзистора VT1, относительно земли, понизился и транзистор VT1 стал удерживаться в закрытом состоянии. Если на некоторое время замкнуть перемычкой коллектор и эмиттер транзистора VT1 то потенциал базы транзистора VT2, относительно земли, понизится, транзистор VT2 закроется следовательно повысится потенциал базы транзистора VT1 и он будет удерживаться в открытом состоянии таким образом триггер перейдет в другое состояние. Чтобы перевести триггер обратно в первое состояние можно на некоторое время замкнуть перемычкой коллектор и эмиттер транзистора VT2 или замкнуть перемычкой коллектор транзистора VT1 и плюс питания. Данный триггер можно использовать для запуска и остановки маломощного электродвигателя (например двигателя RF-310T-11400 рассчитанного на напряжение 5.9В) при этом триггер будет хранить одно из двух состояний: 1) когда двигатель запущен и работает или 2) когда двигатель остановлен и не работает. Рисунок 2 - Схема триггера для запуска, остановки электродвигателя (например RF-310T-11400) Схема на рисунке 2 обладает недостатками: когда двигатель работает часть тока проходит через открытый транзистор VT1, когда двигатель не работает ток проходит через открытый транзистор VT2. Данный триггер можно использовать для управления более мощными элементами коммутации силовых цепей.

На рисунке 3 приведен более безопасный но менее удобный вариант схемы:

Рисунок 3 - Схема триггера для запуска, остановки электродвигателя 2

   

electe.blogspot.com

Триггеры на транзисторах (Шмитта) и реле (на логических элементах)

Что означает часто встречаемое в электронике название «триггер»? В Википедии есть около семи-восьми определений, многообразие которых обусловлено множеством назначений элемента. Пользуясь простым и доступным языком, сложный физический термин объяснить можно следующим образом. Триггером называют устройство с функциональной способностью быстро возвращаться в одно из двух своих стабильных состояний.

Функциональная схема

Иными словами, так называются устройства, находящиеся в состоянии или нуля, или единицы. В статье будут рассмотрены виды триггеров, работающих на транзисторах, реле и микросхеме.

Для информации. Trigger – это ячейка памяти размером всего в один бит. Если на вход устройства подать сигнал, то оно запомнит его. В дальнейшем этот сигнал используется и считывается.

Триггерные схемы

На транзисторах

Триггер Шмитта на транзисторах включает в себя в числе основных элементов два зеркально отраженных транзистора маломощной структуры NPN. Для зарядки полупроводниковых компонентов, согласно приведённой схеме, на вход подается напряжение порядка 16 В. В качестве коллекторных нагрузок применяют резисторы, база каждого из которых подключена через точку коллектора другого транзистора. Ввиду этого каскадная схема своеобразного подключения имеет вид крестообразного переплетения.

Транзисторы NPN и PNP

Главной особенностью триггера на транзисторах является то, что при подаче питания в нужный момент один из транзисторов открывается, а другой –закрывается. Схема с зеркальным отражением построена так, что одно плечо в точности повторяет другое. Обе части полноправные и равноценные. Принцип действия следующий: если на одном выходе будет напряжение, на втором выходе обязательно будет ноль.

Важно! Для того чтобы переключить состояние, нужно кратковременно замкнуть базу одного из транзисторов на массу. При этом устройство моментально переключится в другой режим.

Trigger на микросхеме

На микросхеме

Trigger на микросхемах – это устройство с расширенной входной логикой. К достоинствам блок-схемы можно также отнести управление памятью, возможность принудительного сброса и возвращения в исходное состояние.

В блок-схемах, собранных не на транзисторах, а на микросхеме, элемент триггера обозначают так, как показано на картинке:

  • Т – это trigger с двумя выходами;
  • два входа (R и S).

Графическое обозначение

Полый кружочек означает, что выход инверсный (противоположный другому выходу). Если на одном выходе «1», то на втором обязательно будет «0».

На реле

Несмотря на быстрый темп развития микроэлектроники, схемы с реле не теряют своей актуальности. Применение триггеров вместе с реле позволяет осуществлять логические операции для управления, как электроникой, так и электромагнитной техникой. Достичь высокой результативности получается благодаря простоте устройства, надежности действия, хорошему уровню электрических развязок, охватывающих входы и выходы на блок-схемах.

Электромагнитное реле работают на больших токах, что обеспечивает надежное срабатывание функциональных элементов схемы по сравнению с полупроводниковой и ламповой электроникой. Такой тип схемы часто используют в пусковом устройстве асинхронного электродвигателя. Это отличный вариант для автопереключений в схемах электроснабжения с АВР для жилищных и административных зданий.

Триггер на реле

Триггер Шмитта

Trigger Шмидта – двухпозиционный элемент с функцией переключения. Устройство представляет собой схему, которая формирует выходной сигнал в прямоугольные импульсы определенной скважности – четкие нули и единицы. Он может быть реализован на различных устройствах, однако чаще всего его моделируют следующие.

На операционном усилителе

Схемы с триггером Шмитта обеспечивают гистерезис. Положительная обратная связь вводится путем добавления в состав выходного напряжения к входному напряжению. Концепция заключается в том, что вместо одного порога для включения и выключения у устройства есть верхний и нижний порог.

Устройство обычно применяется для удаления сигнальных помех в цепях цифровых схем, особенно вызываемых механическими контактами в переключателях.

Для информации. Изначальная функция триггера Шмитта заключается в конвертации синусоидной волны с помехами на входе в чистые квадратные волны на выходе. Устройства могут быть построены с использованием транзисторов или компаратора путем добавления резисторов и положительной обратной связи.

На логических элементах

Триггером Шмитта на логических элементах называется электронное устройство, реализованное на двух аналоговых инвертирующих усилителях. Логические инверторы с последовательным подключением представляют собой аналоговый однопороговый компаратор, порог переключения которого равен примерно половине напряжения на входе системы.

Для информации. Trigger Шмитта – это своего рода компаратор, характеристика которого имеет вид петли Гистерезиса. Его также называют регенеративным компаратором, потому что он помнит свое прежнее состояние.

Преимущества применения

Trigger Шмитта используется в основном для преобразования очень медленно меняющегося входного напряжения. При этом резкий переход от одного уровня выходного напряжения к другому происходит при заданном значении входного сигнала.

Принцип работы триггера на транзисторах

Область применения:

  • счетчики;
  • разновидности преобразователей;
  • формирователи импульсов;
  • другие устройства с функциональной памятью.

Для информации. Приведение в действие или запуск электронных устройств осуществляют элементы, построенные на логике, – это триггеры.

Схема с реверсивным триггером имеет многочисленные приложения в области электронной обработки данных и связанных с ней сферах применения. Особенно они полезны в электронных счетно-вычислительных машинах. Схема с реверсивным триггером делает возможным значительно упростить проводку и тем самым влияет на снижение потребности в энергии, пространстве и излучении тепла в используемом оборудовании. Эти преимущества в совокупности оказывают очень существенное влияние на снижение стоимости оборудования.

Триггерная схема логики

Основное назначение триггеров Шмитта заключается в выявлении и реагировании на сигнал, который имеет большие колебания по амплитуде. Trigger – это, по сути, простое средство, с помощью которого пусковым путем можно управлять любым оборудованием.

Видео

Оцените статью:

elquanta.ru

8.5. Схема триггера на биполярных транзисторах

Состоит из двух ключей на транзисторах, между которыми организо-

ваны положительные обратные связи. Схема имеет два устойчивых состоя-

ния: на выходе есть напряжение (одно состояние), на выходе нет напряжения (другое состояние). Переход из одного состояния в другое осуществля-

ется под действием управляющих сигналов. После изменения состояния

на противоположное управляющие сигналы могут отсутствовать. Сохране-

ние состояния при этом обеспечивается за счёт положительных обратных

связей. Схема представлена на рис.158. При нарисовании триггерной схе-

мы сначала рисуются два ключа и добавляются обратные связи. Обратная связь - это связь с выхода на вход.

Работа схемы. Пусть VT2 закрыт. Под действием напряжения на его коллекторе через Rб3 протекает ток, удерживающий VT1 в открытом состоянии. В то же время открытый VT1 закорачивает базовую цепь транзистора VT2 с резистором Rб4. Закрытое состояние VT2 соответствует значению выхода Q=1. Открытое состояние VT1 - =0. Напряжение на коллекторе закрытого транзистора (Q=1) равно:

UQ=UпRб3/(RК2+Rб3) .

Для того, чтобы сменить состояние триггера на противоположное, необходимо подать сигналы на вход R или S. Входные сигналы обычно являются импульсными. Наличие напряжения на входе S (S=1) устанавливает Q=1, а наличие напряжения на входе R (R=1) устанавливает Q=0. Одновременная подача сигнала на входы S и R запрещена, т.к. триггер при этом перестаёт быть триггером (не будет противоположного состояния Q и ).

Диаграммы работы при наличии входных импульсных сигналов показаны на рис. 159. На интервале между импульсами на входах S и R триггер помнит то состояние, в которое он был установлен по этим входам, т.е. триггер -элемент памяти.

Расчет элементов схемы. Триггер в большинстве случаев является симметричной схемой, поэтому Rк1=Rк2, Rб3=Rб4 и можно рассчитывать половинку триггера. Уравнения для расчета:

Iб=Iк/(1,52) h31э,

где (1.52) -коэффициент насыщения;

Iк=Uп/Rк.

Сопротивления Rк1и Rк2обычно заданы, поэтому Iк известен, тогда

Rб=UQ/Iб.

Выражение для UQ -смотри выше.

8.6. Мультивибратор на транзисторах

Основное отличие мультивибратора от триггера состоит в замене резисторов положительных обратных связей на конденсаторы. Мультивибратор имеет два устойчивых состояния, но они меняются не под действием входных сигналов, а под действием сигналов через положительные обратные связи. Мультивибратор не имеет внешних входов. Это автоколебательное устройство. Схема мультивибратора представлена на рис.160, диаграммы работы - на рис.161.

Описание работы схемы. Примем за начальное состояние схемы ситуацию, когда транзистор VT1 - открыт, а VT2 - закрыт. При этом конденсатор С1 заряжен через Rк2(Rк2Rб). VT1 поддерживается в открытом состоянии за счет тока через Rб1 и базу VT1. Конденсатор С2 заряжается через Rб2 и открытый VT1. Полярность напряжения на С2 для этого процесса показана на схеме в скобках. Когда напряжение на С2 достигнет значения 0,6В, то к переходу Б-Э VT2 будет приложено положительное напряжение, открывающее этот переход. Переход Б-Э является диодом. Итак, VT2 открывается и напряжение на С1 через открывшийся VT2 прикладывается в обратном направлении к переходу Б-Э VT1, VT1 - закрывается. На этом заканчивается первый этап времени 0-t1. На втором этапе t1-t2 напряжение на конденсаторе С1 медленно изменяется, происходит разряд С1 по цепи Rб1, К-Э VT2. Одновременно конденсатор С2 быстро заряжается через RК1 и базовую цепь VT2 до напряжения питания +Uп, поддерживая VT2 в открытом состоянии. По окончании заряда С2 (раньше момента t2) открытое состояние VT2 поддерживается цепью через Rб2. Когда напряжение на конденсаторе С1 сменит свой знак и достигнет величины 0,6В, то откроется транзистор VT1. Это момент t2. Далее начинается этап t2-t3. Т.к. при закрывании транзистора параллельно К-Э подключен быстро заряжающийся через Rк конденсатор, то напряжение К-Э повторяет напряжение на конденсаторе. Половина периода работы схемы T/2 определяется постоянной времени =CRб. Обычно схема мультивибратора симметрична.

studfiles.net

Триггер Шмитта на транзисторах | joyta.ru

Триггер Шмитта на транзисторах, так же как и триггер Шмитта на  ОУ,  является системой двух устойчивых состояний, переход которого из одного состояния в другое связан с амплитудой запускающего импульса.

Подобные триггеры широко используются, в вычислительной технике и всевозможных промышленных приборах, где нужно менять форму сигнала, преобразовывать прямоугольные импульсы из синусоиды колебаний и регистрировать завышение сигнала определенного порога. Стандартная схема триггера Шмитта на двух биполярных транзисторах n-p-n   приводится ниже.

Для правильного уяснения работы триггера Шмитта сперва допустим, что на входе транзистора VT1 нет сигнала. Сопротивления R1, R2 и R3, подключены к минусу и плюсу питания, и создают своеобразный делитель напряжения. По отношению к эмиттеру транзистора VT2, падение напряжения на сопротивлении R3 окажется положительным, по причине этого данный транзистор будет открыт.

Схема триггера Шмитта на биполярных транзисторах

От источника питания на коллектор транзистора VT2 через резистор R4 идет положительный потенциал. Когда транзистор открыт, ток эмиттера, протекающий через R4, создает на нем падение напряжения. Сквозь вторичную обмотку трансформатора Тр1, имеющего малое сопротивление,  потенциал на резисторе R5 оказывается между базой и эмиттером VT1 и формирует обратное смещение на переходе Б-Э. В связи с этим VT1 закрыт. Данное устойчивое состояние схемы Шмитта является одним из двух вероятных состояний.

Вследствие падения напряжения на R4 по причине протекания через него тока, потенциал коллектора VT2 будет намного ниже напряжения питания. При поступлении на вход сигнала, он не окажет никакого воздействия на устойчивость триггера Шмитта, если его амплитуда будет меньше напряжения смещения между эмиттером и базой транзистора VT1, идущего с сопротивления R5.

В том случае если входной сигнал будет по амплитуде больше этого смещения, то произойдет открытие VT1. Из-за снижения потенциала на коллекторе VT1 снижается смещение на базе VT2, и в итоге его эмиттерный ток также снизится.

Из-за этого снизится падение напряжения на сопротивлении R5, а смещение на базе VT1 увеличится и инициирует последующий рост тока через VT1. Падение напряжения на R1 также значительно повысится, что в свою очередь уменьшит смещение на базе VT2 и снизит падения напряжения на R5. Этот алгоритм будет длиться до тех пор, пока VT1 до конца не откроется, а  транзистор VT2, не закроется.

Как только ток коллектора VT2 достигнет нуля и на сопротивлении R4  начнет падать напряжение, потенциал же на его коллекторе станет увеличиваться, который пройдя через конденсатор С2 становится выходным сигналом.

Величина и форма сигнала на выходе триггера Шмитта  находятся в прямой зависимости от постоянной времени (R4+Rн)C2 и сопротивления нагрузки Rн. Устойчивое положение, которое отвечает закрытому транзистору VT2 и открытому VT1, является вторым состоянием триггера Шмитта, и оно длится, пока есть входной сигнал. И как только входной сигнал пропадет, триггер Шмитта переходит в первоначальное состояние.

Если постоянная времени (R4+Rн)С2 существенно превышает продолжительность входного сигнала, то амплитуда сигнала на выходе триггера Шмитта практически оказывается стабильной, без изменений.

Источник: "200 избранных схем электроники",  Мэндел М.

www.joyta.ru

Rs-триггер на транзисторах

Лабораторная работа.

Тема:.RS - триггер.

Цель: исследование работы RS - триггера.

Приборы: 2 панели “Полупроводники и микросхемы”, блок питания на

5В БП-5, соединительные провода, 2 транзистора структуры

n-p-n КТ315.

Подготовка к работе:

1. Повторить ТБ.

2. Собрать схему RS - триггера.

3. Подсоединить провода питания 5В к выходу БП-5 и к входу панели

(“+” от БП-5 к “+” панели, “-” от БП-5 к ““ панели).

4. Показать схему преподавателю или лаборанту.

5. Подключить шнур питания БП-5 к сети.

6. Включить тумблер “Сеть” на БП-5.

Схема RS - триггера.

Номиналы элементов:

R1, R2  330 Ом; R3, R4  680 Ом; R5, R6  16 Ком; R7, R8  12 Ком; VT1, VT2  КТ315; HL1, HL2  АЛ307Б.

Ход работы:

1. Попеременно подавая на входы “S” и “R” сигналы “1” или “0”

зафиксировать сигналы на выходах “Q” и “”.

2. Составить таблицу истинности для данного RS – триггера (см. табл.1).

Таблица1.

Входы

Выходы

Вх. "S"

Вх. "R"

Вых. "Q"

Вых. ''''

1

0

0

0

0

1

1

1

Примечание:

Сигналу “1” на входах “S” и “R” соответствует напряжение +5В.

Сигналу “0” на входах “S” и “R” соответствует напряжение на общем

проводе ().

Горящий светодиод на выходе “Q” или “” указывает на сигнал “1” ,

погасший  на сигнал “0”.

studfiles.net

Что такое триггер Шмидта. Схемы шмидовских триггеров

Триггер

Что такое триггер Шмитта

Слово trigger, в переводе на русский, значит, спусковой крючок. Функциональность устройства заключается в быстром переходе из одного устойчивого состояния в другое под внешним воздействием.

Большинство подобных устройств имеют заданное одинаковое значение для нарастающего сигнала. Для быстрорастущих сигналов – это не проблема. Но для сигналов, которые имеют очень медленное нарастание (шумовые, например) – колебания назад и вперед из положения off в on и обратно могут вывести из строя прибор. Триггеры Шмитта применимы для медленно изменяющихся сигналов или шума.

Триггер Шмидта

Это решение для случаев, когда сигнал на входе колеблется вокруг заданной точки. Схема для получения петли гистерезиса – это значит, что есть два набора точек, одни на низкой стороне, другие на высокой. Допустим, что на стороне низкого заданное значение составляет 2,0 В, а на стороне высокого – 1,5 В. Как только нарастающий входной сигнал (шум) попадает в точку 2.0 В, триггер переключит выход на 1. И сигнал на выходе останется на 1 до тех пор, пока входной сигнал не упадёт обратно до 1,5 В. В зоне от 1,5 и 2.0 В сигнал не переключается.

Самым простым примером применения является однополюсный двухпозиционный тумблер.

Триггер Шмидта

Перемещением рычага вправо соединяются выступы в центре. Цифровые схемы работают на 1 и 0 (вкл. и выкл.) Серединных значений при этом нет.

Схемы триггеров Шмитта

Существует много схем, в которых необходимо включение элементов, имеющих фиксированные пороги на входе. Можно применять дискретные транзисторы, а также операционный усилитель (ОУ) с дополнительными компонентами, способствующими созданию петли гистерезиса.

На схеме изображено как устройство формирует импульс правильной конфигурации, при произвольном входном сигнале. Подобная схема применяется для преобразования медленно изменяющихся сигналов в импульсы с чётко очерченными краями. Это выполняется и на нескольких устройствах, и на одном ОУ.

Триггер Шмидта

Схема триггера Шмитта на транзисторах

Для несимметричного триггера характерно несколько устойчивых состояний, когда переход из одного в другое происходит лишь при пороговых уровнях. Поэтому для такого триггера характерна гистерезисная передаточная характеристика. В нижеприведённой схеме использованы биполярные транзисторы.Триггер ШмидтаНа данном чертеже показано, что триггер Шмитта включает в себя транзисторы VT1 и VT2, гальванически связанные между собой посредством резистора R5. Все элементы имеют общую питающую шину. R1 и R2 обеспечивают рабочий режим транзистора VT1. Организован делитель напряжения (два резистора). Конденсатор C1 служит для ускоренного переключения. Временные диаграммы входных и выходных напряжений устройства показаны на рисунке.Триггер ШмидтаПри подаче питания к устройству, он переходит в исходное состояние, когда транзистор VT1 закрыт, а VT2 открыт. В таком состоянии на выход устройства поступает некоторое напряжение Uэ, зависящее от элементов обвязки VT2. Имеются два порога срабатывания в триггере Шмитта (эта разность между напряжениями называется шириной петли гистерезиса).

Триггер Шмидта на логике

Это устройство особенное, потому что имеет по одному аналоговому входу и цифровому выходу. Самая простая схема триггера Шмитта основана на цифровых логических элементах, то есть последовательно включенных двух инверторах. Посредством резистивной обратной связи цифровой сигнал на выходе меняет входное напряжение переключения. Скорости нарастания сигнала на выходе и входе не зависят друг от друга, являясь для данной схемы постоянной величиной (зависящей от быстродействия логических вентилей). Схема триггера Шмитта, построенная на двух инверторах, изображена ниже.

Триггер Шмидта

Триггер Шмидта

Добавлена обратная связь, обеспеченная двумя резисторами, способствует быстрому изменению напряжения на выходе схемы при пересечении сигналом порогового напряжения. Соотношение между резисторами влияет на глубину этой связи. Тот факт, что часть сигнала с выхода схемы поступает на вход, приводит к тому, что вместо одного порога у схемы получается два. Один из них назван порогом срабатывания схемы (когда на выходе устройства формируется уровень «1»). Второй порог назван порогом отпускания (когда на выходе схемы формируется уровень «0»). Наличие двух порогов дало триггеру Шмитта второе название — схема с гистерезисом. Положительная обратная связь используется для того, чтобы установить лимит для достижения точки насыщения на выходе и, таким образом, можно изменить синусоидальное напряжение в цифровое.

Как определить низкие и высокие пороговые уровни на входе схемы? Логика определения этих пороговых уровней следующая. Необходимо выбрать верхний порог, который ниже минимального высокого уровня сигнала. Другими словами, это тот уровень, когда входной сигнал будет превышать каждый импульс на выходе. Аналогичным образом выбирается нижний порог, который соответственно выше низкого уровня сигнала. Разница между верхним и нижним уровнем является гистерезис. Чем больше гистерезис, тем больше будет восприимчивость схемы к шуму. Также необходимо учесть влияние времени.

На изображении хорошо видны два порога там, где на вход устройства подаётся синусоидальное напряжение.

Генератор на триггере Шмитта

Для построения генераторов применяются инверторы. Посему для обеспечения устойчивых сигнальных волн нужно вывести элемент на участок между «0» и «1». Далее, требуется обеспечить положительную обратную связь посредством конденсаторов.

Ниже изображена схема простейшего генератора импульсов.

Триггер Шмидта

Инвертор генерирует сигнал, который заряжает и разряжает конденсатор. Это работает, потому что на выходе инверторов «0» или «1» (низкие или высокие пороговые значения). Представим, что мы смотрим на цепи в какой-то случайный момент времени. По своей природе, триггера Шмитта на выходе инвертора или 0 В или 5 В (или переход между ними, который мы можем игнорировать). Если на выходе 0 В, а на выходе конденсатора выше, чем на выходе инвертора, конденсатор будет разряжаться через резистор до падения порогового напряжения триггера Шмитта. Конденсатор разряжается до тех пор, пока на входе инвертора сигнал достаточно низкий. При пересечении порогового значения, цикл начнётся заново.

Ключ, который делает эту работу на «гистерезис» в триггер Шмитта. В основном это означает, что точка поездки инвертора зависит оттого, что мы идем от высокого напряжения или низкого напряжения.

Заключение

Достоинство схем заключается в том, что входное напряжение меняется незначительно, когда выходное изменяется резко к высокому или низкому пороговому значению. Процесс проводится благодаря устройству обратной связи и делителя напряжения.

В чём польза триггера Шмитта? Они весьма востребованы тогда, где на входе присутствуют шумы. Применяется для преобразования входного сигнала в прямоугольные, пренебрегая высокочастотными помехами. Такая входная цепь осуществляет гистерезис, эффективно фильтрующий различные типы шумов. Использование устройства будет гарантировать, что на входе цифрового устройства всегда будет либо «один» или «ноль» и ничего между ними.

elektronchic.ru


Каталог товаров
    .