Омметр, пожалуй, самый необходимый и самый ходовой прибор как в практике радиолюбителя, так и в работе любого, кто хоть как-то мало-мальски в своей работе связан с ремонтом электрических устройств и цепей. Большинство самодельных омметров имеет нелинейную шкалу отсчета стрелочного индикатора, что обусловлено типом применяемых устройств, и что порою сильно мешает как изготовлению прибора, так и градуировке его шкалы. Значительно удобнее пользоваться омметром, имеющим линейную шкалу, так как значительно упрощается процесс наладки и калибровки прибора. Вообще, любой комбинированный измерительный прибор умеет мерить сопротивления. Но даже не всякий омметр имеет пределы измерения выше мегоома, хотя в практике радиолюбителя потребность в измерении сопротивлений больших величин очень часто просто необходима. Благодаря наличию специализированных микросхем можно собрать необходимый простой цифровой мегомметр. ?Радиолюбителям известны трудности при измерении малых величин сопротивлений. На показания прибора влияют ненадежность контактов и зажимов подключений, сопротивление соединительных проводов, которые увеличивают погрешность измерения и не обеспечивают необходимую точность считывания. В подобном случае необходимо реализовать мостовой метод измерения с четырех проводным подключением. Здесь приводится схема приставки к цифровому омметру, описанному в одной из приводимых публикаций ранее. Отдельно необходимо обратить внимание, что для питания приставки потребуется отдельный сетевой (стабилизированный) источник питания, в связи со значительным током потребления. Очень часто в радиолюбительской практике возникает потребность измерения малых величин электрического сопротивления: прозвонка моточных изделий, подбор шунтов различного назначения и др. Для этого необязательно конструировать самостоятельный измерительный прибор, а достаточно изготовить приставку к уже имеющимуся какому-либо измерителю. ?Схема простенького омметра, который может помочь при подборе шунтов и резисторов, так как способен измерять малые сопротивления на пределах 10, 25, 100 и 250 Ом, причем с отчетом по линейной шкале. ?Большинство омметров промышленного производства имеет нелинейную шкалу измерения, это обусловлено физикой явления. Пользоваться ею неудобно, но особых проблем нет. Но вот при самостоятельном изготовлении омметра возникнет проблема градуировки измерительного прибора. Другое дело, когда устройство имеет линейную шкалу считывания, тогда вообще может не потребоваться калибровка. Дополнительным преимуществом приводимой схемы является способность измерять величины от десятых долей Ома, что может пригодиться при прозвонке различных индуктивностей типа обмоток дросселей и трансформаторов. radio-shema.ru Электрическое сопротивление в цепях постоянного тока может быть определено косвенным методом при помощи вольтметра и амперметра. В этом случае: R = U / I Можно использовать омметр — прибор непосредственного отсчета. Существуют две схемы омметра: Рис. 1: а — последовательная; б — параллельная Уравнение шкалы последовательной схемы измерения:где Г — сопротивление цепи гальванометра. При U = const угол поворота подвижной части прибора определяется величиной измеряемого сопротивления Rx. Поэтому шкала прибора может быть непосредственно проградуирована в Омах. Ключ K используется для установки стрелки прибора в нулевое положение. Омметры параллельного типа удобнее применять для измерения небольших сопротивлений. Измерение сопротивлений можно также осуществлять логометрами. На рисунке 2 приведена принципиальная схема логометра. Рис. 2 Для этой схемы имеем: Отклонение подвижной части логометра: Таким образом, показание прибора не зависит от напряжения источника питания и определяется величиной измеряемого сопротивления Rx. www.mtomd.info категория материалы в категории Журнал Радио 1 номер 1998 годВ Сычев. Москва При изготовлении электроизмерительных приборов могут возникнуть некоторые трудности, связанные с изготовлением приборных шунтов. Эти шунты обычно низкоомные. и подобрать их нужно тщательно, так как от этого зависит точность измерителя. Для этого предлагается изготовить простой электронный омметр, которым можно измерить малые сопротивления при линейной шкале на четырех пределах: 10, 25.100 и 250 Ом. Схема прибора изображена на рисунке. Он состоит из источника стабилизированного тока на транзисторе VT1. режим работы которого задают стабилитрон VD1 и резисторы R3. R4, R5, и вольтметра (микроамперметр РА1 и резисторы R1, R2). Коллекторный ток транзистора VT1 создает на резисторе Rx напряжение, пропорциональное его сопротивлению. Поэтому, если откалибровать (т.е. установить стрелочный указатель микроамперметра на последнее деление шкалы) измерительную часть по определенному образцовому резистору Roop. то измеряемое сопротивление можно будет считывать по линейной шкале измерительного прибора. Работа с прибором сводится к следующему. К зажимам "Rx" присоединяют проверяемый резистор (например, изготавливаемый шунт), а к зажимам "Ro6p" -образцовый резистор, соответствующий выбранному пределу измерения. Переключатель SA2 переводят на соответствующий предел измерения, а переключатель SA1 - в положение "К" (калибровка). После подачи напряжения питания нажатием на кнопку SB1 подстроечным резистором R4 устанавливают стрелочный указатель на последнее деление шкалы. Затем переключатель SA1 переводят в положение "И" (измерение) и измеряют сопротивление Rx. Точность измерения в основном будет зависеть от точности образцовых резисторов. Если во вспомогательном приборе использовать источник питания с напряжением 8...9 В или менее чувствительную головку, то стабилитрон Д814А нужно заменить на КС139А или КС147А, сопротивление резистора R5 уменьшить до 100 Ом. a R4 - до 470 - 680 Ом. Кроме того, если сопротивление образцового резистора не соответствует точно необходимому пределу измерения, то калибровку измерителя допустимо произвести с установкой показания, соответствующего номинальному значению этого резистора, если оно составляет не менее 80% от предела. В приборе могут быть применены образцовые резисторы типов МТ, БЛП, С2-29В. С2-36. С2-14: резисторы МЛТ (R1. R3. R4. R5): резистор R2 типов СПО-0.5, CП3-4б или аналогичный; транзисторы серий КТ814. КТ816 с коэффициентом передачи тока базы более 50. В качестве микроамперметра РА1 применима измерительная головка, которая будет установлена в изготавливаемый прибор (например, 50 или 250 мкА). Переключатели SA1 и SA2 - тумблеры типа ТВ2-1. Вообще говоря, переключатель SA1 можно и исключить, оставив одну пару зажимов, к которым сначала подключить резистор Rocp. а после калибровки - резистор Rx. В случае применения в приборе более распространенных транзисторов структуры п-р-п следует изменить полярность включения источника питания стабили трона и микроамперметра. radio-uchebnik.ru 16 Измерение сопротивления. Схема включения омметра. Мегаомметр. Измерение методом амперметра и вольтметра. Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 339, а через амперметр проходит не только измеряемый ток Ix, но и ток Iv, протекающий через вольтметр. Поэтому сопротивление Rx = U / (I – U/Rv) (110) где Rv — сопротивление вольтметра. При включении приборов по схеме рис. 339, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра UA = IRА. Поэтому Rx = U/I – RА (111) где RА — сопротивление амперметра. В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 339,а, а при измерении больших сопротивлений — схемой рис. 339, б. При этом погрешность измерений, определяемая в первой схеме током Iv, а во второй — падением напряжения UА, будет невелика по сравнению с током Ix и напряжением Ux. Измерение сопротивлений электрическими мостами. Мостовая схема (рис. 340,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением Rx (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания — в другую (питающую). Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в та- Рис. 339. Схемы для измерения сопротивления методом амперметра и вольтметра Рис. 340. Мостовые схемы постоянного тока, применяемые для измерения сопротивлений ком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление Rx = (R1/R2)R3 (112) В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2. Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление Rx (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 — гальванометр, а к зажимам 5 и 6 — источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В). Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление Rx отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом. При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 340,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением Rx и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом. Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями Rx и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае Rx = R0R1/R4 (113) Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом. Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления Rx. Это позволяет проградуировать шкалу гальванометра в единицах сопротивления Rx или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами. Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости. Измерение омметром. Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением Rx (рис. 341) и добавочным резистором RД в цепь постоянного тока. При неизменных э. д. с. источника и сопротивления резистора RД ток в цепи зависит только от сопротивления Rx. Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности. Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением Rx подключают к различным зажимам. Измерение больших сопротивлений мегаомметрами. Для измерения сопротивления изоляции чаще всего применяют мегаомметры магнитоэлектрической системы. В качестве измерительного механизма в них использован логометр 2 (рис. 342), показания кото- Рис. 341. Схема включения омметра Рис. 342. Устройство мегаомметра рого не зависят от напряжения источника тока, питающего измерительные цепи. Катушки 1 и 3 прибора находятся в магнитном поле постоянного магнита и подключены к общему источнику питания 4. Последовательно с одной катушкой включают добавочный резистор Rд, в цепь другой катушки — резистор сопротивлением Rx. В качестве источника тока обычно используют небольшой генератор 4 постоянного тока, называемый индуктором; якорь генератора приводят во вращение рукояткой, соединенной с ним через редуктор. Индукторы имеют значительные напряжения от 250 до 2500 В, благодаря чему мегаомметром можно измерять большие сопротивления. При взаимодействии протекающих по катушкам токов I1 и I2 с магнитным полем постоянного магнита создаются два противоположно направленных момента М1 и М2, под влиянием которых подвижная часть прибора и стрелка будут занимать определенное положение. Как было показано в § 100, положение подвижной Рис. 343. Общий вид мегаомметра (а) и его упрощенная схема (б) части логометра зависит от отношения I1/I2. Следовательно, при изменении Rx будет изменяться угол ? отклонения стрелки. Шкала мегаомметра градуируется непосредственно в килоомах или мегаомах (рис. 343, а). Чтобы измерить сопротивление изоляции между проводами, необходимо отключить их от источника тока (от сети) и присоединить один провод к зажиму Л (линия) (рис. 343,б), а другой — к зажиму 3 (земля). Затем, вращая рукоятку индуктора 1 мегаомметра, определяют по шкале логометра 2 сопротивление изоляции. Имеющийся в приборе переключатель 3 позволяет изменять пределы измерения. Напряжение индуктора, а следовательно, частота вращения его рукоятки теоретически не оказывают влияние на результаты измерений, но практически рекомендуется вращать ее более или менее равномерно. При измерении сопротивления изоляции между обмотками электрической машины отсоединяют их друг от друга и соединяют одну из них с зажимом Л, а другую с зажимом 3, после чего, вращая рукоятку индуктора, определяют сопротивление изоляции. При измерении сопротивления изоляции обмотки относительно корпуса его соединяют с зажимом 3, а обмотку — с зажимом Л. studfiles.net У радиолюбителей, особенно начинающих, большой популярностью пользуются омметры с линейной шкалой, не требующие замены и градуировки шкалы стрелочного индикатора. Сравнительно простая конструкция такого омметра была разработана на операционном усилителе. Омметр позволяет измерять сопротивления от 1 Ом до 1 МОм, что вполне достаточно для многих практических целей. Принцип действия омметра на операционном усилителе поясняет рис. 1. Измеряемый резистор Rх включен в цепь обратной связи между выходом усилителя и его инвертирующим входом. В этой же цепи стоит и эталонный резистор R3. На неинвертируюший вход подается опорное напряжение от источника G1. В таком режиме выходное напряжение операционного усилителя будет зависеть от соотношения сопротивлений Rx и R3 цепи обратной связи. Его и измеряет относительно опорного напряжения вольтметр PV, показания которого прямо пропорциональны сопротивлению Rx. Рис. 1. Функциональная схема омметра с линейной шкалой Принципиальная схема омметра приведена на рис. 2. Опорное напряжение + 2 В на неинвертирующем входе усилителя создается делителем из резистора R10 и стабилизатора тока на транзисторе VI. Точное значение опорного напряжения подбирают переменным резистором R12. Поскольку при измерении малых сопротивлений ток в измерительной цепи, а значит, и выходной ток усилителя может превышать допустимый для ОУ, в омметр введен эмиттерный повторитель на транзисторе V3. Чтобы защитить стрелочный индикатор от перегрузок при случайном увеличении выходного напряжения усилителя изза неправильного положения переключателя S1, параллельно выводам индикатора подключен диод V2, Вольтметр состоит из миллиамперметра РА1 и резисторов R13, R14. В показанном на схеме положении кнопки S2 вольтметр рассчитан на измерение напряжений до 2 В. При замыкании контактов кнопки резистор R14 шунтируется и вольтметр измеряет напряжение до 0,2 В. Эталонные резисторы подключаются к инвертирующему входу ОУ переключателем S1. Сопротивление эталонного резистора определяет поддиапазон измерений омметра. Так, при включении резистора R1 прибором можно измерять сопротивления примерно от 100 кОм до 1 МОм. При следующем положении переключателя предельное измеряемое сопротивление может достигать 300 кОм, а при дальнейших положениях эти значения будут соответствовать 100 кОм, 30 кОм, 10 кОм, 3 кОм, 1 кОм, 300 Ом, 100 Ом. В итоге получается девять поддиапазонов измерения. Благодаря кнопке S2 пределы измеряемых сопротивлений можно уменьшить в 10 раз. Пользуются ею только на двух последних поддиапазонах. Таким образом, к имеющимся поддиапазонам добавляются еще два: до 30 Ом и до 10 Ом. Рис. 2. Принципиальная схема омметра с линейной шкалой Чтобы более экономно расходовать энергию источника питания, его подключают к прибору кнопкой S3 только во время измерения. Рис. 3. Размещение деталей на лицевой панели корпуса Детали омметра размещены в небольшом корпусе. На съемной лицевой панели из гетинакса размерами 190 X 130 мм (рис. 3) укреплены индикатор, переключатель поддиапазонов S1 и кнопочные выключатели S2, S3, резистор калибровки R12 и зажимы для подключения источника питания и проверяемого резистора (или другой детали, обладающей оммическим сопротивлением) . Эталонные резисторы подпаяны непосредственно к лепесткам переключателя, а операционный усилитель и транзисторы смонтированы на плате из стеклотекстолита (можно гетинакса) размерами 35 X 30 мм, которую можно прикрепить, например, к лицевой панели с внутренней стороны. Резисторы R1 — R9 могут быть МЛТ-0,125, МЛТ-0,25 или другие, подобранные с точностью ±1%, — от этого во многом зависит точность измерений. Переменный резистор R12 — СПЗ-4а или другой. Диод V2 может быть, кроме указанного на схеме, Д226 с любым буквенным индексом или другой с прямым напряжением 0,3…0,6 В. Транзисторы любые из серий К.Т312, КТ315. Стрелочный индикатор может быть с током полного отклонения стрелки 1 мА и внутренним сопротивлением 82 Ом. Тогда резистор RI3 должен иметь сопротивление 118 Ом, a R14 — 1,8 кОм. Подойдет и микроамперметр М24 с током полного отклонения стрелки 100 мкА и внутренним сопротивлением 783 Ом. (такой индикатор показан на рис. 3), он удобен тем, что имеет шкалу на 100 делений, облегчающую отсчет измеряемых сопротивлений. Но в этом случае необходимо зашунтировать индикатор резистором сопротивлением около 92 Ом, чтобы стрелка индикатора отклонялась на конечное деление при токе 1 мА. Сопротивления резисторов R13, R14 для такого варианта остаются неизменными. В случае же использования индикатора с другим внутренним сопротивлением придется пересчитать сопротивление резисторов так, чтобы с резистором R14 стрелка индикатора отклонялась на конечное деление шкалы при напряжении 0,2 В, а с последовательно соединенными резисторами R13, R14 — npи напряжении 2 В. Налаживание прибора начинают с проверки правильности монтажа. Затем подключают к зажимам питания источник напряжением 9 В, например две последовательно соединенные батареи 3336Л. К зажимам «Rх» подключают выводы точно измеренного резистора, например, сопротивлением 100 кОм. Движок переменного резистора R12 устанавливают в среднее положение, а ручку переключателя S1 — в положение «.300 к». Только после этого нажимают кнопку S3. Стрелка индикатора должна отклониться примерно на треть шкалы. Добиваются этого переменным резистором R12 «Калибр». Затем переключателем устанавливают поддиапазон «100 к» и переменным резистором добиваются точного отклонения стрелки индикатора на конечное деление шкалы. Проверяют калибровку на других поддиапазонах, подключая к зажимам «Rx» резисторы сопротивлением 30 кОм, 10 кОм, 3 кОм и так далее. При значительных расхождениях в показаниях индикатора и сопротивлении измеряемого резистора следует подобрать точнее соответствующий эталонный резистор. Чтобы избегать зашкаливания стрелки индикатора при работе с омметром, нужно всегда начинать измерения в положении переключателя «1 М», а затем, по мере отклонения стрелки индикатора, постепенно переходить на другие поддиапазоны. nauchebe.net Начинающим радиолюбителя можно рекомендовать изготовить не сложный прибор, наиболее часто используемым при ремонте или настройки радиотехнических устройств. Авометр объединяет в себе многопредельные амперметр и вольтметр постоянного и переменного тока, омметр, а иногда еще и испытатель маломощных транзисторов. Принципиальная схема подобного упрощенного измерительного прибора показана на рис. ниже. Он позволяет измерять постоянные токи до 100мА, постоянные напряжения до 30 В и сопротивления от 50 Ом до 50 кОм. Переключение видов и пределов измерения осуществляется включением одного из щупов в гнезда Гн1—Гн10. Второй щуп, вставленный в гнездо Гн11 «Общ.», общий для всех видов и пределов измерения. Омметр однопредельный. В него входят: микроамперметр ИП1, источник питания Э1 напряжением 1,5 В и добавочные резисторы R1 «Уст. 0» и R2. Перед измерением щупы прибора соединяют, и переменным резистором R1 стрелку микроамперметра устанавливают на конечную отметку шкалы, являющуюся нулем омметра. Затем щупами касаются выводов резистора, обмотки трансформатора или проводников участка цепи, сопротивление которых надо измерить, и по шкале омметра определяют результат измерения. Четырехпредельный вольтметр образуют тот же микроамперметр ИП1 и добавочные резисторы R3—R6. С резистором R3 (при включении второго Щупа в гнездо Гн2) отклонение стрелки микроамперметра на всю шкалу соответствует напряжению 1 В, с резистором R4—3 В, с резистором R5— 10 В, с резистором R6—30 В. Миллиамперметр пятипредельный: 0—1, 0—3, 0—10, 0—30 и 0—100 мА. Его образует универсальный шунт составленный из резисторов R7—R11, к которому кнопкой Кн1 подключают микроамперметр ИП1. Так сделано для того, чтобы при измерении микроамперметр подключался к шунту, через который течет большая часть измеряемого тока, а не наоборот. Конструкция рекомендуемого комбинированного измерительного прибора показана на рис. Микроамперметр типа М49 на ток полного отклонена стрелки 300 мкА с сопротивлением рамки 300 Ом. Переменный резистор R1 (СПО-0,5), кнопка КН (КМ1-1) и все гнезда прибора укреплены непосредственно на лицевой панели, выпиленной из листового текстолита толщиной 2 мм. Роль гнезд Гн1—Гн11 выполняет гнездовая часть десятиконтактного разъема. Низкоомные резисторы R9-R11 типа МОИ (или проволочные), остальные МЛТ на мощность рассеяния 0,5 или 0,25 Вт. Необходимые сопротивления резисторов подбирают при налаживании путем их замены, параллельным или последовательным соединением нескольких резисторов. В описываемом приборе каждый из резисторов R3 и R6, например, составлен из двух последовательно соединенных резисторов, каждый из резисторов R5 и R11 также из двух резисторов, но соединенных параллельно. Калибровка вольтметра и миллиамперметра заключается в подгонке сопротивлений добавочных резисторов и универсального шунта под максимальные напряжения и токи соответствующих пределов измерения, а омметра — к разметке шкалы по образцовым резисторам. Калибровку вольтметра производите по схеме, показанной на рис. Параллельно батарее Б1 напряжением 13,5 В (или от БП) подключите переменный резистор Rp сопротивлением 2—3 кОм, который будет выполнять роль регулировочного, а между его движком и нижним (по схеме) выводом,— параллельно соединенные самодельный калибруемый (VK) и образцовый (V0) вольтметры. Образцовым может быть вольтметр заводского авометра. Предварительно движок регулировочного резистора поставьте в крайнее нижнее (по схеме) положение, а калибруемый вольтметр включите на первый предел измерений — до 1 В. Постепенно увеличивая напряжение, подаваемое от батареи на вольтметры, установите на них по образцовому вольтметру напряжение, точно равное 1 В. Если при этом стрелка калибруемого вольтметра не доходит до конечной отметки шкалы, это укажет на то, что сопротивление добавочного резистора R3 оказалось больше, чем надо, а если уходит за пределы шкалы, то — меньше. Подбирая этот резистор, добейтесь, чтобы при напряжении 1 В стрелка вольтметра устанавливалась точно против конечной отметки шкалы. Точно так же, но при напряжениях 3 и 10 В, фиксируемых образцовым вольтметром, подгоняйте добавочные резисторы R4 и R5 следующих двух пределов измерений. Для калибровки четвертого предела измерений не обязательно подавать на вольтметры напряжение 30 В. Можно подать 10 В и подбором резистора R6 установить стрелку калибруемого вольтметра на отметку, соответствующую первой третьей части шкалы. При этом отклонение его стрелки на всю шкалу будет соответствовать напряжению 30 В. Для калибровки миллиамперметра потребуются: миллиамперметр на ток до 100 мА, свежий элемент 343 или 373 и два переменных резистора — пленочный (СП, СПО) сопротивлением 5—10 кОм и проволочный сопротивлением 50—100 Ом. Первый из этих регулировочных резисторов будете использовать при подгонке резисторов R7—R9, второй — при подгонке рези-, сторов R10 и R11 универсального шунта. Первым подгоняйте резистор R7 шунта. Для этого соедините последовательно (рис. б): образцовый миллиамперметр мА0, калибруемый мАк, включенный на первый предел измерений (до 1 мА), элемент Э1 и переменный резистор Rp. Нажмите кнопку Кн1 «/» (см. рис. 17) авометра и, плавно уменьшая вводимое сопротивление регулировочного резистора Rv, установите в цепи ток, равный 1 мА. Сопротивление резистора R7 должно быть таким, чтобы при таком токе в цепи стрелка калибруемого миллиамперметра была против конечной отметки шкалы. Аналогично подгоняйте: резистор R8 — на пределе 3 мА, резистор R9— на пределе 10 мА, а затем, заменив пленочный регулировочный резистор проволочным, резистор R10 — на пределе 30 мА и, наконец, резистор R11— на пределе 100 мА. Подбирая сопротивление очередного резистора шунта, уже подогнанные не трогайте — можно сбить калибровку прибора на первых пределах измерения. Разметить шкалу омметра проще всего с помощью постоянных резисторов с допуском от номинала ±5%. Делайте это так. Сначала замкните Щупы и регулировочным резистором R1 «Уст. О» установите стрелку микроамперметра на конечную отметку шкалы, соответствующую нулю омметра. Затем разомкните щупы и подключайте к ним резисторы с номинальными сопротивлениями: 50, 100, 200, 300, 400, 500 Ом, 1 «Ом и т. д. примерно до 50—60 кОм, замечая всякий раз на шкале точку, до которой отклоняется стрелка прибора. И в этом случае резисторы нужных сопротивлений составляйте из резисторов других номиналов. Например, резистор сопротивлением 40 Ом можно составить из двух резисторов по 20 Ом, резистор на 50 кОм из резисторов сопротивлением 20 и 30 кОм. По точкам отклонений стрелки, соответствующим разным сопротивлениям образцовых резисторов, размечайте (градуируйте) шкалу омметра. Шкалы самодельного комбинированного измерительного прибора должны иметь вид, показанный на рис. Верхняя из них — шкала омметра, нижняя — общая шкала вольтметра и миллиамперметра. Их надо возможно точнее начертить на плотной лакированной бумаге по форме шкалы микроамперметра. Затем осторожно извлечь магнитоэлектрическую систему прибора из корпуса и наклеить новую шкалу, точно совместив дугу шкалы омметра с прежней шкалой. Чтобы не разбирать микроамперметр, шкалы самодельного прибора можно начертить на плотной бумаге в соответствующем масштабе прямолинейными и наклеить ее на лицевую или переднюю боковую стенку ящика прибора. В описанном комбинированном приборе использован микроамперметр на ток Iи=300 мкА с сопротивлением рамки Rи, равным 300 Ом. При таких параметрах микроамперметра относительное входное сопротивление вольтметра не превышает 3,5 кОм/В. Увеличить относительное входное сопротивление и тем самым уменьшить влияние вольтметра на режим в измеряемой цепи можно только использованием более чувствительного микроамперметра. Так, например, с микроамперметром на ток I=200 мкА относительное входное сопротивление вольтметра будет 5, а с микроамперметром на ток I =100мка — 10кОм/В. С такими приборами расширится и предел измерения омметром. Но при замене микроамперметра более чувствительным надо с учетом его параметров I и К пересчитать сопротивление всех сопротивлений авометра. Таким способом можно проверить или откалибровать любой стрелочный или цифровой вольтметр (амперметр). В качестве образцового рекомендуется использовать цифровой прибор заводского исполнения. Такой прибор можно также положить в бардачок автомобиля. В поездке он может пригодиться для отыскания повреждений электропроводки, не годных ламп, соответствия бортового напряжения автомобиля. Литература: В.Г.Борисов. Радиотехнический кружок и его работа. А.Зотов Подробнее… В последнее время стало применение светодиодных автомобильных ламп. Они более долговечные и потребляют меньше тока. Последнее как раз и влияет на работу реле поворотов, изменяя его частоту. Периодичность работы реле привязана к сопротивлению нагрузки, то есть к установленным лампам. При увеличении сопротивления нагрузки, что именно и происходит при перегорании или размыкании одной из ламп реле начинает срабатывать наиболее часто. Тот же самый эффект наблюдается и при установке светодиодов в указатели поворотов, так как их потребляемая мощность меньше, а это значит сопротивление значительно больше. Изучив материал данной статьи, вы сможете доработать штатное реле указателей поворотов для светодиодов, чтобы оно срабатывало с нужной вам периодичностью. Подробнее… «Семёрка», купленная по программе утилизации, наконец вышла из гарантии. Руки «чесались» давно, но внутренний голос твердил: «Низзя!». После 2-х «шестёрок» впечатления о ВАЗ-2107 были, мягко говоря, достаточно средние. Особо раздражали плохая вентиляция, печка и зеркало заднего вида (в отличие от 2106 — без рычажка). С зеркалом проще – покупаем (у нас -150р) «шестёрочное» и ставим. Поэтому серьёзные переделки решено было начать с переделки печки и установки предпускового подогревателя. Подробнее… Популярность: 12 692 просм. www.mastervintik.ru С давних пор в электротехнике и радиоэлектронике используются элементы, известные под названием сопротивления. Позднее, это наименование было заменено термином резистор. Как правило, все данные и характеристики наносятся на корпус каждой такой детали. Поэтому, когда нужно ответить на вопрос, что измеряет прибор омметр, ответ не вызывает сомнений. Всем известно, что с помощью этих измерительных устройств определяется значение сопротивления. Тем не менее, данные приборы в чистом виде не используются в повседневной жизни. Они обладают повышенной точностью и применяются в заводских условиях, для того, чтобы точно определить номинал выпускаемых резисторов. Для обычных измерений существуют тестеры или мультиметры, соединяющие в себе функции амперметра, вольтметра и омметра. Отдельные конструкции этих приборов позволяют проверять диоды или измерять температуру. Устройства данного типа изготавливаются в цифровом или стрелочном варианте, каждый из которых обладает определенными достоинствами и недостатками. До того, как появились универсальные приборы, непосредственное измерение сопротивления производилось с помощью омметра. Принцип действия данного устройства заключается в том, что в цепь самого магнитоэлектрического измерителя дополнительно включается резистор с переменным сопротивлением, а также источник постоянного тока в виде обычной батарейки. Всем известно, что малое сопротивление напрямую связано с большим током и, наоборот. Поэтому, чтобы найти на шкале нулевое деление, производится короткое замыкание зажимов. При этом, движок резистора перемещается таким образом, чтобы отклонение стрелки было максимальным. Находясь в таком положении, она будет означать нулевой показатель на шкале. После этого, к зажимам по очереди подключаются сопротивления с известным значением, которое отмечается на шкале. В конечном итоге, появляется шкала, где каждая метка определенному значению тока и соответствующему сопротивлению. Отсчет полученных данных производится справа налево. В соответствии с законом Ома сила тока и сопротивление находятся в обратной пропорциональной зависимости. Поэтому, деления на шкале прибора нанесены неравномерно. Они сильно сжимаются в конце, где обозначены большие значения сопротивлений. В омметрах, выпускаемых в заводских условиях, все основные детали расположены внутри корпуса, в том числе, источник тока и переменный резистор. Перед началом измерений, зажимы, подключаемые к сопротивлению, необходимо замкнуть, а стрелку с помощью движка резистора выставить на нулевую отметку. Это связано со снижением электродвижущей силы источника тока в процессе эксплуатации устройства. При ремонте электрических проводов, электро- и радиотехники, прежде всего, устанавливаются места возможных коротких замыканий. В этом случае сопротивление имеет нулевое значение. Если же в проводниках нарушен контакт, то показатель сопротивления будет стремиться к бесконечности. На основании показаний сопротивления, омметр дает возможность точно установить поврежденные места. В особых случаях, он применяется не только для стандартных измерений. С помощью омметра можно проверять другие измерительные приборы, измерять сопротивление изоляции, выполнять другие необходимые операции. При проведении измерений нужно соблюдать основные правила: electric-220.ruРадиосхемы Схемы электрические принципиальные. Схема омметра
Омметр схема
Омметр с линейной шкалой
Простой цифровой мегоомметр
Широкодиапазонный омметр
Приставка для измерения малых сопротивлений
Электронный омметр на скорую руку
Омметр с линейной шкалой
Измерение электрического сопротивления. Приборы: омметр и логометр.
Измерение электрического сопротивления
Приборы для измерения электрического сопротивления
Схемы включения омметра
Логометр
Схема логометра
Радиосхемы. - Простейший Ом-метр
Простейший Ом-метр
Самодельные измерительные приборы
Схема прибора
16
ОММЕТР С ЛИНЕЙНОЙ ШКАЛОЙ | Техника и Программы
Упрощенный авометр своими руками для начинающего радиолюбителя
П О П У Л Я Р Н О Е:
Схема антирадара.
>>
ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:
Что измеряет прибор омметр: измерение сопротивления омметром
Содержание: Устройство и принцип действия омметра
Измерение сопротивления омметром
Как работают электроизмерительные приборы
Поделиться с друзьями: