Для защиты бытовых электрических цепей обычно используются автоматические выключатели модульной конструкции. Компактность, легкость монтажа и замены, в случае необходимости, объясняет их широкое распространение. Внешне такой автомат представляет собой корпус из термостойкой пластмассы. На лицевой поверхности расположена рукоятка включения и выключения, сзади – фиксатор-защелка для крепления на DIN-рейке, а сверху и снизу – винтовые клеммы. В данной статье рассмотрим принцип работы автоматического выключателя. В режиме штатной работы через автомат протекает ток, меньший или равный номинальному значению. Питающее напряжение от внешней сети подается на верхнюю клемму, соединенную с неподвижным контактом. С неподвижного контакта ток поступает на замкнутый с ним подвижный контакт, а от него, через гибкий медный проводник – на катушку соленоида. После соленоида ток подается на тепловой расцепитель и уже после него – на нижнюю клемму, с подключенной к ней сетью нагрузки. В аварийных режимах автоматический выключатель отключает защищаемую цепь за счет срабатывания механизма свободного расцепления, приводимого в действие тепловым или электромагнитным расцепителем. Причиной такого срабатывания является перегрузка или короткое замыкание. Тепловой расцепитель – это биметаллическая пластина, состоящая из двух слоев сплавов с различными коэффициентами термического расширения. При прохождении электрического тока пластина нагревается и изгибается в сторону слоя с меньшим коэффициентом термического расширения. При превышении заданного значения силы тока, изгиб пластины достигает величины, достаточной для приведения в действие механизма расцепления, и цепь размыкается, отсекая защищаемую нагрузку. Электромагнитный расцепитель состоит из соленоида с подвижным стальным сердечником, удерживаемым пружиной. При превышении заданного значения тока, по закону электромагнитной индукции в катушке наводится электромагнитное поле, под действием которого сердечник втягивается внутрь катушки соленоида, преодолевая сопротивление пружины, и вызывает срабатывание механизма расцепления. В нормальном режиме работы в катушке также наводится магнитное поле, но его силы недостаточно, чтобы преодолеть сопротивление пружины и втянуть сердечник. Режим перегрузки возникает, когда ток в подключенной к автомату цепи превышает номинальное значение, на которое рассчитан автоматический выключатель. При этом повышенный ток, проходящий через тепловой расцепитель, вызывает повышение температуры биметаллической пластины и, соответственно, увеличение ее изгиба вплоть до срабатывания механизма расцепления. Автомат отключается и размыкает цепь. Срабатывание тепловой защиты не происходит мгновенно, поскольку на разогрев биметаллической пластины потребуется некоторое время. Это время может варьироваться в зависимости от величины превышения номинального значения тока от нескольких секунд до часа. Такая задержка позволяет избежать отключения питания при случайных и непродолжительных повышениях тока в цепи (например, при включении электродвигателей которые имеют большие пусковые токи). Минимальное значение тока, при котором должен сработать тепловой расцепитель, устанавливается при помощи регулировочного винта на заводе-изготовителе. Обычно это значение в 1,13-1,45 раз превышает номинал, указанный на маркировке автомата. На величину тока, при котором сработает тепловая защита, влияет и температура окружающей среды. В жарком помещении биметаллическая пластина прогреется и изогнется до срабатывания при меньшем токе. А в помещениях с низкими температурами ток, при котором сработает тепловой расцепитель, может оказаться выше допустимого. Причиной перегрузки сети является подключение к ней потребителей, суммарная мощность которых превышает расчетную мощность защищаемой сети. Одновременное включение различных видов мощной бытовой техники (кондиционер, электрическая плита, стиральная и посудомоечная машина, утюг, электрочайник и т.д.) – вполне может привести к срабатыванию теплового расцепителя. В этом случае определитесь, какие из потребителей можно отключить. И не спешите снова включать автомат. Вы все равно не сможете взвести его в рабочее положение, пока он не остынет, а биметаллическая пластина расцепителя не вернется в свое исходное состояние. Теперь вы знаете как работает автоматический выключатель при перегрузках В случае короткого замыкания принцип работы автоматического выключателя иной. При коротком замыкании ток в цепи резко и многократно возрастает до значений, способных расплавить проводку, а точнее изоляцию электропроводки. Для того чтобы предотвратить такое развитие событий необходимо мгновенно разорвать цепь. Электромагнитный расцепитель именно так и срабатывает. Электромагнитный расцепитель представляет собой катушку соленоида, внутри которой расположен стальной сердечник, удерживаемый в фиксированном положении пружиной. Многократное возрастание тока в обмотке соленоида, происходящее при коротком замыкании в цепи, приводит к пропорциональному возрастанию магнитного потока, под действием которого сердечник втягивается в катушку соленоида, преодолевая сопротивление пружины, и нажимает на спусковую планку механизма расцепления. Силовые контакты автомата размыкаются, прерывая питание аварийного участка цепи. Таким образом, срабатывание электромагнитного расцепителя защищает от возгорания и разрушения электропроводку, замкнувший электроприбор и сам автомат. Время его срабатывания составляет порядка 0,02 секунды, и электропроводка не успевает разогреться до опасных температур. В момент размыкания силовых контактов автомата, когда по ним проходит большой ток, между ними возникает электрическая дуга, температура которой может достигать 3000 градусов. Чтобы защитить контакты и другие детали автомата от разрушительного воздействия этой дуги, в конструкции автомата предусмотрена дугогасительная камера. Дугогасительная камера представляет собой решетку из набора металлических пластин, которые изолированы друг от друга. Дуга возникает в месте размыкания контакта, а затем один ее конец движется вместе с подвижным контактом, а второй скользит сначала по неподвижному контакту, а потом по соединенному с ним проводнику, ведущему к задней стенке дугогасительной камеры. Там она делится (дробится) на пластинах дугогасительной камеры, слабеет и гаснет. В нижней части автомата предусмотрены специальные отверстия для отвода газов, образующихся при горении дуги. В случае отключения автомата при срабатывании электромагнитного расцепителя, вы не сможете пользоваться электричеством до тех пор пока не найдете и не устраните причину короткого замыкания. Вероятнее всего причина в неисправности одного из потребителей. Отключите все потребители и попробуйте включить автомат. Если вам это удалось и автомат не выбивает, значит, действительно – виноват один из потребителей и вам осталось выяснить какой именно. Если же автомат и с отключенными потребителями снова выбивает, значит все гораздо сложнее, и мы имеем дело с пробоем изоляции проводки. Придется искать, где это произошло. Вот таков принцип работы автоматического выключателя в условиях различных аварийных ситуаций. Если отключение автоматического выключателя стало для вас постоянной проблемой, не пытайтесь решить ее установкой автомата с большим номинальным током. Автоматы устанавливаются с учетом сечения вашей проводки, и, значит, больший ток в вашей сети просто не допускается. Найти решение проблемы можно только после полного обследования системы электроснабжения вашего жилища профессионалами. Похожие материалы на сайте: electricvdome.ru Устройство автоматического выключателя или автомата защиты вряд ли вам понадобиться на практике, даже если вы своими руками делаете электрику в квартире. Но для общего понимания процессов в электрической сети квартиры и отдельный групповых цепях квартиры эта информации имеет определенную ценность. Напомню, автоматический выключатель это электротехническое устройство, устанавливаемое между энергопотребителями квартиры и распределительными цепями дома, а также на входе групповых цепей квартиры. Назначение автоматов защиты в квартире это защита электропроводки квартиры от перегрузок и короткого замыкания, а также для механического отключения электрических цепей от электропитания. Косвенным образом автоматы защиты защищают и человека, так как отключает подачу электротока при аварийных ситуациях и защищает квартиру от пожаров из-за перегрузок. Устройство автоматического выключателя устроено таким образом, чтобы решать обе свои задачи защиты. Автоматический выключатель имеет пластиковый корпус. На передней части автомата защиты расположен рычаг управления автоматом. С его помощью можно механически отключить электропитание, а также включить электропитание после его автоматического отключения после аварийных ситуаций. Во внутреннее устройство автоматического выключателя входят: Тепловой расцепитель это биметаллическая пластина, которая при перегрузке прогибается и бьет по системе отключения. Получается своеобразный удар по спусковому курку. Электромагнитный расцепитель это катушка с сердечником. При коротком замыкании ток в цепи возрастает многократно, соответственно ток, протекающий по катушке, возрастает, соответственно возрастает магнитный поток, который и втягивает сердечник. Так как сердечник связан с подвижным контактом, а контакт находится в цепи контакт вход — электромагнитный расцепитель-тепловой расцепитель — контакт выход, то контакт размыкает эту цепь. Все защита сработала. ©Ehto.ru ehto.ru В данном материале будут описаны все основные нюансы подключения автоматических защитных выключателей. Это под силу даже тем, у кого нет должного опыта, главное – не повторять распространенных ошибок. Единого мнения среди практиков, о порядке очередность подключения питания к подвижным и неподвижным контактам, нет. В пункте 3.1.6 Правил Устройств Электроустановок сказано, что почти все аналогичные устройств независимо от модификации, имеют следующее расположение: Наглядно убедиться в этом можно будет на примерах ниже. При внимательном прочтении указанного пункта можно легко убедиться, что указания порядка подключения являются рекомендациями, а не запретом, из-за чего на практике и происходят нарушения. Основа этой ошибки в том, что независимо от порядка подключения, автоматический выключателе все равно сработает, будь-то случится перегрузка или короткое замыкание. В контексте данной дилеммы можно выделить два нюанса: 1.Каждая пара разнотипных контактов имеет поверхностный слой из разнородных сплавов. В результате заводских испытаний было установлено, что при использовании выключателей в сети с переменным током, процесс выгорания равномерный и не критический, но при работе с постоянным током наблюдается перенос металла с одной поверхности на другую, что недопустимо. 2.Однотипное подключение всех защитных автоматов в жилом секторе значительно повышает уровень безопасности ремонтных и профилактических электромонтажных работ. Рассмотрим особенности подключения автоматов одно и двухполюсного типа. В электрических сетях с одной фазой используются и те, и другие автоматы. При системе заземления (ТИП 1), когда нулевой провод соединяется с заземляющим контуром, установленным обособленно от электрической подстанции и выполняет роль, и защитного, и рабочего проводника, ввод помещения производится с помощью двух проводов – нулевого и фазового. В таком случае подключение защитного автомата выполняется по следующему алгоритму: При системе заземления (ТИП 2), когда нулевой провод состоит из двух частей – рабочего нулевого и защитного провода, ввод помещения осуществляется уже тремя проводами. Алгоритм подключения в данном случае следующий: Для запитывания трехфазных электрических двигателей используются автоматические выключатели ВАМУ-10. Контакты 1, 3 и 5 являются неподвижными и соединяются с питающими фазами A, Bи C. Подвижные контакты 2, 4 и 6 подводятся к обмотке электродвигателя. В электросетях с тремя фазами и заземлением ТИП 2 допускается применения автоматических выключателей трехполюсного и четырехполюсного типа. Схема подключения предполагает использование дополнительного полюса N. Каждый автомат имеет технический паспорт, в котором указаны четкие требования к используемым проводникам: Например, при подключении автомата ВА 47-29 С10, изоляция с конца удаляется на 0,7-1 сантиметр. Затем жила вводится в зазор контактного зажима и фиксируется винтом. Прочность крепежа проверятся опытным путем – нужно как следует потянуть за провод с покачиваниями в разные стороны. При использовании гибкого провода, наконечники должны иметь соответствующее сечение. Важно! В зазоре зажима контакта не должно быть изоляционной оболочки. При излишнем усилии на фиксирующий винт, корпус выключателя может деформироваться, что может стать причиной изменения расположения токопроводящих деталей и, как следствие, устройство будет перегреваться и придет в негодность. Каким образом подключать автоматы, если они расположены в ряд? В случае, когда на распределительном щитке количество автоматов превышает один и они установлены в ряд, то для их соединения лучше всего использовать не отдельные куски провода, как это бывает на практике, а специальную медную шину. Она подгоняется под нужную длину и затем к ней подключаются фазы выключателей в порядке очередности. Вот в принципе и все, что нужно знать, чтобы не допустить ошибок при монтаже автоматических защитных выключателей и подключить их самостоятельно, без привлечения профессионального электрика. Для закрепления материала по теме «Как подключить автоматический выключатель» можно посмотреть соответствующие видео-материалы, которые можно найти в свободном доступе в сети Интернет. electrikagid.ru Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru. Сегодня я Вас познакомлю со статьей на тему прогрузка автоматических выключателей. После выполнения электромонтажа производят ряд приемо-сдаточных испытаний и измерений, согласно нормативным техническим документам, типа ПУЭ и ПТЭЭП. Один из видов испытаний — это проверка работоспособности коммутационных аппаратов защиты на соответствие номинальным данным. Аппараты защиты предназначены для защиты электрических цепей от коротких замыканий, соответственно, электромонтаж должен проводиться строго по проекту. Что же такое номинальные данные аппаратов защиты? Для автоматических выключателей основными данными (характеристиками) являются: Своими словами можно сказать, что прогрузка автоматических выключателей — это измерение основных характеристик автоматического выключателя. Измерение основных характеристик автоматических выключателей проводит персонал электролаборатории, прошедший специальную подготовку и имеющий высокую квалификацию. А сейчас от теории перейдем к практики, и я Вам наглядно продемонстрирую как произвести прогрузку автоматического выключателя. Для прогрузки (проверки) автоматических выключателей первичным током применяют специальные прогрузочные устройства. В настоящее время имеется широкий выбор этих устройств для разных типов и номинальных токов. В своей практики я применяю для прогрузки автоматических выключателей устройство со следующей схемой: В состав схемы устройства для прогрузки автоматических выключателей входит: Также в состав устройства входит секундомер. Но я его на схеме не обозначил. Данное устройство позволяет наводить во вторичной обмотке нагрузочного трансформатора ток до 50 (А). Для прогрузки автоматов с большим током, я применяю аналогичную схему, только с более мощным нагрузочным трансформатором и источником питания. Методику прогрузки автоматического выключателя я Вам покажу на примере автомата ВА47-29 с номинальным током 6 (А) и защитной характеристикой «С» российского производства IEK. Этот автоматический выключатель имеет 2 защиты: Проверять будем и электромагнитную защиту, и тепловую. Для этого в паспорте на наш автоматический выключатель находим график время-токовой характеристики срабатывания. Она выглядит следующим образом (более подробно о ней читайте в статье про время-токовые характеристики В, С и D — чем отличаются?): Что же мы видим по графику? А по графику мы видим абсолютно все характеристики срабатывания нашего испытуемого автомата. Ось Х — это кратность тока, т.е. отношение тока прогрузки к номинальному току. Ось У — это выдержка времени срабатывания автомата. Зона срабатывания электромагнитной защиты для данного автоматического выключателя находится в диапазоне 5-10 кратности к номинальному току. Т.е. в нашем случае электромагнитная защита сработает при токе от 30-60 (А) за время не превышающее 0,01-0,02 (сек.). Электромагнитную защиту будем проверять 8-кратным током 48 (А). При этом токе автомат должен отключиться за время не превышающее 0,01 (сек.) — смотрите желтую линию на графике. Зона срабатывания тепловой защиты ограничена 2 кривыми, которые показывают разное температурное состояние автомата (горячее и холодное состояние). Тепловую защиту будем проверять 3-кратным током 18 (А). При этом токе автомат должен отключиться за время от 3 — 80 (сек.) — смотрите красную линию на графике. Если любая из вышеперечисленных защит не отключает автоматический выключатель согласно отведенному ей времени, то такой автоматический выключатель считается неисправным и к дальнейшей эксплуатации запрещен. Для более удобного подключения к автоматическому выключателю устанавливаю на него удлиненные вывода из шпилек. Подключаем к шпилькам соединительные провода и проводим прогрузку. После проведения прогрузки автоматического выключателя первичным током (срабатывание электромагнитной и тепловой защиты), все данные по наводимому току и полученной выдержке времени заносим в протокол следующей формы. Итак, мы подробно рассмотрели статью про прогрузку автоматических выключателей. А ни слова не упомянули о периодичности проверки. Строгих норм по прогрузке автоматов в ПУЭ и ПТЭЭП нет. Периодичность проверки автоматических выключателей определяется нормами заводов-изготовителей. На предприятиях периодичность определяет технический руководитель. Это может быть 1 раз в 3 года, и 1 раз в 6 лет и того реже, все зависит от важности потребителя. Но я Вам рекомендую во избежании различных проблем, проводить прогрузку автоматических выключателей 1 раз в 3 года. Эта рекомендация относится к автоматическим выключателям, установленным, как на производстве, так и в быту. Рекомендую также прочитать статью о причинах отключения автоматических выключателей. P.S. И на десерт я Вам приготовил видео-урок о прогрузке автоматического выключателя. Если статья была Вам полезна, то поделитесь ей со своими друзьями: zametkielectrika.ru Автоматический выключатель (АВ) совсем не похож на обычный, который расположен в каждой комнате вашего уютного жилища для включения и выключения света. Его задача состоит немного в другом. Предназначен он для защиты электрических цепей от короткого замыкания, изменения напряжения, перегрузок и других нарушений режимов работы цепи, а также для ручного отключения и выключения линий и потребителей электроэнергии. Автоматические выключатели по времени срабатывания подразделяются на быстродействующие, нормальные и селекторные. В наше время, когда технический прогресс не стоит на месте, АВ из громоздкого, немного неудобного превратился в компактный (насколько это возможно) коммутационный аппарат. Автоматы (как принято называть данное устройство) чаще всего устанавливаются на входе в дом или в квартиру. И стараются их разместить в специальных боксах (щитах), которые могут быть как металлическими, так и пластиковыми. Существует достаточно много разновидностей АВ. Некоторые из них служат лишь в качестве выключателей цепи и для предохранения сети от перегрузки, а некоторые имеют дополнительные функции, например защиту от токов пониженной нагрузки. Все АВ по времени срабатывания на недопустимое напряжение подразделяются на три вида: Время срабатывания нормального автомата колеблется от 0,02 до 0,1 с. В селективных АВ это такое же время. Быстродействующие АВ работают немного быстрее: у них эта величина составляет всего 0,005 с. Пример автоматного ряда фирмы АВВ серии S230. Все АВ заключены в пластиковый небьющийся корпус со специальным креплением на задней стороне. Устанавливать автомат на это крепление очень легко, достаточно вставить его на рейку в щите до щелчка. Снимать автомат столь же просто – потянув отверткой за специальное ушко. По своему техническому исполнению АВ бывают различного вида, от однополюсных до четырехполюсных, с различными модификациями. Внутри автомата располагается так называемая начинка, то есть его главные предохранительные устройства – электромагнитный и тепловой расцепитель. Во всех автоматах главная контактная система должна: Схема устройства АВ. Для защиты от короткого замыкания в АВ имеется электромагнитный расцепитель. Электрический ток протекает через катушку электромагнита. Если сила тока превышает установленное значение, электромагнит притягивает к себе контакт, который приводит в действие размыкающий механизм. Быстродействующие расцепители реагируют на ток большей силы при КЗ. Для защиты от перегрузок предусмотрен термический расцепитель. Он представляет собой биметаллическую пластину, которая нагревается, когда по ней протекает ток. Если ток слишком велик, пластина перегревается и деформируется, тем самым размыкая электрическую цепь. Расцепители этого типа срабатывают не сразу, а с задержкой. Ток КЗ способен разрушить это устройство. Автоматы различают по степени чувствительности к срабатыванию отключения. В наиболее распространенных стандартных моделях чаще всего применяются АВ с пороговым значением, примерно равным 140% от номинального. АВ различают также по количеству полюсов. Что это значит? В одном автомате может быть несколько независимых друг от друга электрических линий, которые соединены между собой общим механизмом отключения. Например, двухполюсные или трехполюсные автоматы (о чем выше уже упоминалось). У АВ есть различия и по другим не менее важным показателям. Они отличаются по пороговой силе тока, которую они пропускают через себя. Чтобы автомат мог сработать и в аварийной ситуации отключить электросеть, он должен быть настроен на определенный порог чувствительности. Такую настройку обычно производит изготовитель, и поэтому на автомате сразу пишут числовое значение этого порога. Для бытовых нужд используют автоматы с показателями 3, 6, 10, 13, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125 и 160 А. Эти цифры означают суммарную мощность всех потребителей электрического тока, которые будут подключаться к цепи. Чувствительность автомата необходимо рассчитывать не только по суммарной мощности предполагаемых энергопотребителей, но и проводке, и электромонтажным изделиям – выключателям и розеткам. Ниже приведена таблица типов автоматов. Таблица типов автоматов. Диапазоны токов мгновенного расцепления автоматов разных типов Здесь приведен ряд графиков, которые вам будут интересны (буквы В, С, D обозначают области токов мгновенного расцепления). График 1. С областями токов мгновенного расцепления. Тип В – свыше 3 Iном до 5 Iном включительно. Тип С – свыше 5 Iном до 10 Iном включительно. Тип D – свыше 10 Iном до 20 Iном включительно. У отдельных производителей существуют дополнительные кривые отключения: Тип А – свыше 2 Iном до 3 Iном включительно. Тип К – свыше 8 Iном до 14 Iном включительно. Тип Z – свыше 2 Iном до 4 Iном включительно. Под номинальным током (I ном) понимается установленный изготовителем ток, который автомат способен проводить в продолжительном режиме при контрольной температуре 30°С. График 2. На высшей и низшей ступени расположены автоматы. При выборе автомата исходят из того, что его номинальное напряжение должно быть выше или равно номинальному напряжению сети. Определяют (при помощи математических расчетов) максимальную силу тока КЗ в зоне защиты, а предельно допустимую силу тока АВ выбирают больше этой величины. Номинальная сила тока расцепителя должна быть несколько больше значения силы тока длительной максимальной нагрузки, иначе автомат будет отключать цепь не только при отключении силы тока от своего заданного значения, но и при нормальном режиме работы (если сказать по-простому, будет срабатывать от каждого вашего чиха). Также необходимо обеспечить избирательность (селективность) действия автомата. Он должен отключать защищаемый объект раньше, чем другие автоматы защиты, расположенные ближе к источнику питания. Защиту считают избирательной, если характеристики срабатывания аппаратов защиты высшей и низшей ступени сети с учетом зон разброса характеристик не пересекаются. Ниже приведен график, где на высшей и низшей ступени расположены автоматы. Как вы видите по графику, в данном случае применяют на высшей ступени (цифра 1) сети АВ с повышенным регулируемым временем срабатывания (пунктирная кривая) или на низшей ступени сети токоограничивающий АВ (пунктирная кривая). Несколько советов, как приобрести АВ в магазине грамотно: В заключение – ряд полезных таблиц. Таблица 1. Двухжильный, проложенный в коробе медный кабель Таблица 2. Двухжильный, проложенный в коробе медный провод Поделитесь полезной статьей: fazaa.ru Автоматический выключатель, который в обязательном порядке должен использоваться в любых системах электроснабжения, существенно отличается от обычных устройств, предназначенных для включения-отключения освещения в доме. Он представляет собой защитное устройство, которое справляется с выполнением сразу нескольких важных функций: Устройство автоматического выключателя зависит от его типа, а также от целей, для которых используется данное электрического оборудование. Классификация всех устройств, применяемых в бытовой сфере и промышленности достаточно сложна и запутанна, поэтому мы приведем описания лишь нескольких типов оборудования, отличающихся друг от друга своей конструкцией. К ним относятся: Чтобы подробно описать устройство автоматического выключателя, мы выбрали именно последнюю разновидность оборудования, так как оно весьма распространена и знакома абсолютно всем. Все основные элементы устройства располагаются в корпусе, выполненном из материалов, не пропускающих электрический ток. На задней его части находится крепление, позволяющее установить выключатель на специальную DIN-рейку, а также объединить его с другими автоматами защиты, каждый из которых будет отслеживать работу своего участка электрической цепи. Помимо винтовых клемм и контактов, предназначенных для подключения к системе электроснабжения, устройство состоит из таких элементов: Читайте также: Выбор радиатора для системы отопления в частном доме Подключение прогрузного выключателя к сети осуществляется через предусмотренные в конструкции клеммы и контакты. В обычном режиме устройство просто пропускает через себя ток и направляет его на защищаемый участок электрической цепи. При этом по специальным гибким проводникам он подается сперва на электромагнитный, а затем и на тепловой расцепитель для отслеживания параметров. Если сила тока внезапно начинает превышать номинальные показатели автомата защиты, температура теплового расцепителя заметно увеличивается. Из-за этого биметаллическая пластина прогибается и воздействует на механизм отключения, благодаря чему подача тока на определенный участок цепи прекращается. Точно таким же образом соленоид электромагнитного соленоида реагирует на короткое замыкание. Он приводит в действие пружину, которая выключает автомат. Благодаря мгновенному срабатыванию соленоидной катушки, обеспечивается защита электроприборов, а также проводки, которая даже не успевает нагреться из-за слишком высоких токов. Как видите, схема и принцип действия автоматических выключателей являются весьма простыми. Несмотря на это, оборудование способно обеспечить надежную защиту либо всей цепи, либо отдельных ее участков, предотвратить такие опасные последствия короткого замыкания, как выход из строя дорогостоящей техники и электроники, возгорание, оплавление проводки и розеток. svoidomstroim.ru Выключатели автоматические быстродействующие (до настоящего времени это выключатели постоянного тока). Выключатели предназначены для защиты полупроводниковых преобразователей, электрических машин и линий постоянного тока при коротких замыканиях, перегрузках и обратных токах в промышленных установках (например, в электроприводах прокатных станов) и в установках магистрального, промышленного и городскрго электрифицированного транспорта. Рис. 4-2. Схема силективной защиты. В указанных современных установках, в частности в установках с полупроводниковыми преобразователями, токи КЗ достигают 200-300 кА. Полупроводниковые устройства в отличие от электрических машин не допускают перегрузок. В силу их природы интеграл Джоуля у них много ниже, чем у электрических машин и других электромеханических устройств. Все это требует ускоренного отключения аварийного участка и ограничения тока в цепи. Следует учесть еще одно весьма важное обстоятельство — наличие громадных электродинамических сил, возникающих при указанных токах. Например, в цепи, в которой ток КЗ может достигнуть установившегося значения 300 кА, при начальной скорости (крутизне) нарастания 4,5 • 106 А/с выключателю с временем отключения toткл = 0,08 с приходится отключать ток 280 кА, при tоткл = 0,04 с - ток 160 кА, а быстродействующему выключателю с tоткл = 0,005 с — ток около 22 кА. Электродинамические силы здесь ограничиваются в 50—150 раз. По защитным характеристикам нашими стандартами (ГОСТ 2585—81 Е) собственное время размыкания быстродействующего выключателя в зависимости от тока отключения и крутизны его нарастания регламентировано: 1-й класс—до 0,008 с, 2-й класс - до 0,005 с, 3-й класс - до 0,002 с. На переменном токе номинальные токи в установках ограничиваются за счет перехода на более высокое напряжение - на 220, 380 и 660 Вив настоящее время на 1140 В. Рост мощностей установок ставит задачу создания быстродействующих выключателей и на переменном токе. Привод. Привод служит для включения выключателя по чьей-либо команде (оператора, системы автоматического управления и др.). Выполняются выключатели с ручным или двигательным приводом либо с тем и другим. Под двигательным понимают привод, в котором сила создается любым видом энергии, кроме мускульной энергии оператора, например электромагнитом, электродвигателем, пневматикой, гидравликой и т. п. Отключение выключателя осуществляется пружинами после разъединения расцепляющего устройства. Рис. 4-3. Пример исполнения расцепляющего устройства автоматического выключателя Расцепляющее устройство. Это устройство предназначено: для исключения возможности удерживать контакты выключателя во включенном положении (рукояткой, дистанционным приводом) при наличии ненормального режима работы в защищаемой цепи; для обеспечения моментного отключения, т. е. не зависящей от оператора, рода и массы привода скорости расхождения контактов. Расцепляющее устройство представляет собой систему шарнирно-связанных рычагов, соединяющих привод включения с системой подвижных контактов, которые соединены с отключающей пружиной. Принцип работы устройства может быть пояснен схемой на рис. 4-3. Схема на рис. 4-3, а соответствует положению «Отключено вручную» и «Выключатель взведен». «Взведен» означает, что контакты 7 и 8 разомкнуты, а фигурный рычаг 9 поставлен под зацепление 4 отключающего валика 5; это осуществляется поворотом рукоятки 1 вправо. При повороте рукоятки влево отключающая пружина 2 переведет «ломающиеся» рычаги 3 и б через мертвое положение до упора шарнира О в рычаг 9 и замкнет контакты. Положение «включено» показано на рис. 4-3,6. В случае возникновения ненормальных условий работы в защищаемой цепи соответствующий расцепитель повернет отключающий валик и выведет его из зацепления с фигурным рычагом. Под действием отключающей пружины фигурный рычаг повернется и другим своим концом переведет «ломающиеся» рычаги вправо через мертвое положение. Отключающая пружина «изломит» рычаги и разомкнет контакты. Выключатель окажется в положении «Отключено автоматически» (рис. 4-3, в). Для повторного включения необходимо отвести рукоятку вправо и ввести в зацепление фигурный рычаг с отключающим валиком. Конструкции расцепляющих устройств весьма разнообразны, однако действие их подобно описанному. В дальнейшем расцепляющее устройство будем изображать схематично в виде двух сцепленных рычагов. Следует отметить одно весьма важное обстоятельство. Отключающие и контактные пружины в автоматических выключателях развивают силы в десятки и сотни ньютонов. Система рычагов расцепляющего устройства строится так, что для расцепления требуются незначительные усилия. Это позволяет иметь легкие и высокочувствительные расцепители. Расцепители. Это элементы, которые контролируют заданный параметр защищаемой цепи и, воздействуя на механизм расцепления, отключают выключатель при отклонении значения параметра от установленного. Они представляют собой реле или элементы реле, встроенные в выключатель с использованием его элементов или приспособленные к его конструкции. Расцепители выполняются на базе электромеханических реле. В настоящее время все большее применение находят расцепители на принципах или на базе статических реле и их элементов. При этом контролирующие и сравнивающие органы расцепителя выполняются на полупроводниковых элементах с выходом на независимый электромагнитный элемент (исполнительный орган), воздействующий на механизм расцепления. Автоматические выключатели, как правило, снабжаются расцепителем максимального тока для защиты в зоне токов перегрузки и токов короткого замыкания или только токов короткого замыкания. Электромеханические расцепители выполняются электромагнитными, электротепловыми или комбинированными. Расцепитель максимального тока на базе статических реле состоит из блока полупроводникового (БПР), измерительных элементов, встраиваемых в каждый полюс выключателя, и выходного электромагнитного элемента. Измерительными элементами служат на переменном токе трансформаторы тока, на постоянном токе — шунты или трансформаторы постоянного тока. Независимо от принципа устройства расцепители могут выполняться без выдержки времени при срабатывании, с независимой от тока выдержкой времени, с обратнозависимой от тока выдержкой времени. Типичная времятоковая характеристика современного выключателя приведена на рис. 4-4. Полупроводниковый расцепитель, более сложный по устройству, позволяет получить более благоприятные времятоковые характеристики. Пример схемы и устройства такого расцепителя рассмотрен ниже, в разделе 4. Выключатели могут дополнительно снабжаться расцепителями: независимым — для дистанционного отключения выключателя при подаче на расцепитель соответствующего напряжения; минимального или нулевого напряжения — для автоматического отключения выключателя при снижении ниже определенного уровня или исчезновении напряжения. Могут быть и другого вида расцепители. Схема выключателя с расцепителем максимального тока мгновенного действия показана на рис. 4-5, а. Токоведущую шину 1 полюса выключателя охватывает магнитопровод, состоящий из сердечника 2 и якоря 3. Когда ток станет выше определенного значения, тяговое усилие превысит усилие пружины 5, якорь притянется и повернет отключающий валик 4. Расцепляющее устройство освободится. Выключатель отключится. Регулирование тока срабатывания осуществляется натягом пружины 5. Рис. 4-5. Примеры схем некоторых электромеханических расципителей. Расцепитель минимального напряжения (рис. 4-5,б) состоит из электромагнита — сердечника 2, якоря 4 и катушки 3, подключенной на контролируемое напряжение. При нормальных режимах якорь притянут. При снижении контролируемого напряжения ниже определенного значения (уставки) якорь под действием регулировочной (она же и отключающая) пружины 5 отпадет и, воздействуя на расцепляющее устройство через защелку б, отключит выключатель. Магнитная система рас-цепителя выполняется так, что МДС катушки при номинальном напряжении недостаточна для притяжения якоря, но достаточна для его удержания. Якорь притягивается при подготовке выключателя к включению при помощи рычагов 1, связанных с валом выключателя. Расцепитель напряжения независимый (рис. 4-5, в) представляет собой электромагнит, который притягивает свой якорь при включении катушки на соответствующее напряжение. Своим концом якорь воздействует на расцепляющее устройство и отключает выключатель. Пример исполнения комбинированного (электротеплового и электромагнитного) расцепителя приведен на рис. 4-6. При перегрузках срабатывает электротепловой расцепитель: биметаллическая пластинка 2 вследствие нагрева изгибается и винтом 3 поворачивает отключающий валик 4. При коротком замыкании срабатывает электромагнитный расцепитель, состоящий из сердечника 7 и якоря 5, охватывающих токопровод 6. Электромагнитный расцепитель воздействует на тот же отключающий валик. Для ограничения тока через биметаллическую пластинку служит шунт 1. Рис. 4-6. Схема комбинированного (электротеплового и электромагнитного) расцепителя. www.eti.suОсобенности конструкции и принцип работы автоматических выключателей. Схема автоматического выключателя
Принцип работы автоматического выключателя. Как работает автоматический выключатель
Как работает автоматический выключатель?
Как работает автомат в режиме перегрузки
Как работает автомат в режиме короткого замыкания
Устройство автоматического выключателя | ehto.ru
Устройство автоматического выключателя в выключенном состоянии
Статьи по теме
Записи по теме:
Инструкция по подключению автоматического выключателя
Практика подключения защитного автомата
Схема подключения автоматических выключателей трехполюсного и четырехполюсного типа
Особенности подключения к защитному автомату
Прогрузка автоматических выключателей | Заметки электрика
Введение
Устройство для прогрузки автоматических выключателей
Методика прогрузки автоматических выключателей
Пример
Протокол прогрузки автоматических выключателей
Периодичность прогрузки автоматов
Автоматические выключатели: назначение, устройство, принцип действия
Основные требования к АВ
Устройство АВ
Принцип работы
Различия АВ
Выбор типа АВ
Покупка АВ
Устройство автоматического выключателя и принцип его работы
Виды автоматических выключателей
Конструкция модульных автоматических выключателей
Как работает автомат защиты
Выключатели автоматические. Типы, виды, устройство, работа автоматических выключателей.
Рис. 4-4. Времятоковая характеристика выключателя серии ВА51
Поделиться с друзьями: