интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

Асинхронный двигатель: принцип работы, устройство и виды. Схема асинхронного двигателя


Асинхронный двигатель - принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Асинхронный двигатель - принцип работы и устройство

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель - это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

Устройство трехфазного асинхронного двигателя

 

На рисунке: 1 - вал, 2,6 - подшипники, 3,8 - подшипниковые щиты, 4 - лапы, 5 - кожух вентилятора, 7 - крыльчатка вентилятора, 9 - короткозамкнутый ротор, 10 - статор, 11 - коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Асинхронный двигатель - принцип работы и устройство

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется "беличьей клеткой". В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Короткозамкнутый ротор и беличья клетка

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье - асинхронный двигатель с фазным ротором.

Асинхронный двигатель - принцип работы и устройство

 

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s - это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр - критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме - 1 - 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению - однофазный асинхронный двигатель. 

electroandi.ru

Принцип работы асинхронного двигателя | Заметки электрика

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя

Здравствуйте, уважаемые посетители сайта http://zametkielectrika.ru.

Электрические машины переменного тока нашли широкое распространение, как в сфере промышленности (шаровые мельницы, дробилки, вентиляторы, компрессоры), так и в домашних условиях (сверлильный и наждачный станки, циркулярная пила).

Основная их часть является бесколлекторными машинами, которые в свою очередь разделяются на асинхронные и синхронные.

Асинхронные и синхронные электрические машины обладают одним замечательным свойством под названием обратимость, т.е. они могут работать как в двигательном режиме, так и в генераторном.

Но чтобы дальше перейти к более подробному их рассмотрению и изучению, необходимо знать принцип их работы. Поэтому в сегодняшней статье я расскажу Вам про принцип работы асинхронного двигателя. После прочтения данного материала Вы узнаете про электромагнитные процессы, протекающие в электродвигателях.

Итак, поехали.

Принцип работы трехфазного асинхронного двигателя

С устройством асинхронного двигателя мы уже знакомились, поэтому повторяться второй раз не будем. Кому интересно, то переходите по ссылочке и читайте.

При подключении асинхронного двигателя в сеть необходимо его обмотки соединить звездой или треугольником. Если вдруг на выводах в клеммнике отсутствует маркировка, то необходимо самостоятельно определить начала и концы обмоток электродвигателя.

При включении обмоток статора асинхронного двигателя в сеть трехфазного переменного напряжения образуется вращающееся магнитное поле статора, которое имеет частоту вращения n1. Частота его вращения определяется по следующей формуле:

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя

  • f — частота питающей сети, Гц
  • р — число пар полюсов

Это вращающееся магнитное поле статора пронизывает, как обмотку статора, так и обмотку ротора, и индуцирует (наводит) в них ЭДС (Е1 и Е2). В обмотке статора наводится ЭДС самоиндукции (Е1), которая направлена навстречу приложенному напряжению сети и ограничивает величину тока в обмотке статора.

Как Вы уже знаете, обмотка ротора замкнута накоротко, у электродвигателей с короткозамкнутым ротором, или через сопротивление, у электродвигателей с фазным ротором, поэтому под действием ЭДС ротора (Е2) в ней появляется ток. Так вот взаимодействие индуцируемого тока в обмотке ротора с вращающимся магнитным полем статора создает электромагнитную силу Fэм.

Направление электромагнитной силы Fэм можно легко найти по правилу левой руки.

Правило левой руки для определения направления электромагнитной силы

На рисунке ниже показан принцип работы асинхронного двигателя. Полюса вращающегося магнитного поля статора в определенный период обозначены N1 и S1. Эти полюса в нашем случае вращаются против часовой стрелки. И в другой момент времени они будут находится в другом пространственном положении. Т.е. мы как бы зафиксировали (остановили) время и видим следующую картину.

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя

Токи в обмотках статора и ротора изображены в виде крестиков и точек. Поясню. Если стоит крестик, то значит ток в этой обмотке направлен от нас. И наоборот, если точка, то ток в этой обмотке направлен к нам. Пунктирными линиями показаны силовые магнитные линии вращающегося магнитного поля статора.

Устанавливаем ладонь руки так, чтобы силовые магнитные линии входили в нашу ладонь. Вытянутые 4 пальца нужно направить вдоль направления тока в обмотке. Отведенный большой палец покажет нам направление электромагнитной силы Fэм для конкретного проводника с током.

На рисунке показаны только две силы Fэм, которые создаются от проводников ротора с током, направленным от нас (крестик) и к нам (точка). И как мы видим, электромагнитные силы Fэм пытаются повернуть ротор в сторону вращения вращающегося магнитного поля статора.

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен от нас (крестик).

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_3

Поясняющий рисунок для определения электромагнитной силы Fэм для проводника с током, который направлен к нам (точка).

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_4

Совокупность этих электромагнитных сил от каждого проводника с током создает общий электромагнитный момент М, который приводит во вращение вал электродвигателя с частотой n.

Эта частота называется, асинхронной.

Отсюда и произошло название асинхронный двигатель. Частота вращения ротора n всегда меньше частоты вращающегося магнитного поля статора n1, т.е. отстает от нее. Для определения величины отставания введен термин «скольжение», который определяется по следующей формуле:

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_5

Выразим из этой формулы частоту вращения ротора:

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_6

Пример расчета частоты вращения двигателя

Например, у меня есть двигатель типа АИР71А4У2 мощностью 0,55 (кВт):

  • число пар полюсов у него равно 4 (2р=4, р=2)
  • частота вращения ротора составляет 1360 (об/мин)

Вот его бирка.

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_7

Определим частоту вращения поля статора этого двигателя при частоте питающей сети 50 (Гц):

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_8

Найдем величину скольжения для этого двигателя:

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_9

Кстати, направление движения вращающегося магнитного поля статора, а следовательно, и направление вращения вала электродвигателя, можно изменить. Для этого необходимо поменять местами любые два вывода источника питающего трехфазного напряжения. Об этом я упоминал Вам в статьях про реверс электродвигателя и чередование фаз.

Принцип работы асинхронного двигателя. Выводы

Зная принцип работы асинхронного двигателя, можно сделать вывод, что электрическая энергия преобразуется в механическую энергию вращения вала электродвигателя.

Частота вращения магнитного поля статора, а следовательно и ротора, напрямую зависит от числа пар полюсов и частоты питающей сети. Если число пар полюсов ограничивается типом двигателя (р = 1, 2, 3 и 4), то частоту питающей сети можно изменить в большем диапазоне, например, с помощью частотного преобразователя.

Если в нашем примере частоту питающей сети увеличить всего на 10 (Гц), то частота вращения магнитного поля статора увеличится на 300 (об/мин).

Опыт по установке и монтажу частотных преобразователей у меня есть, но не большой. Несколько лет назад на городском водоканале мы проводили замену двух высоковольтных двигателей насосов холодной воды на низковольтные двигатели с частотными преобразователями. Но это уже отдельная тема для разговора. Сейчас покажу Вам несколько фотографий.

Вот фотография старого высоковольтного двигателя напряжением 6 (кВ).

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_10

А это новые двигатели напряжением 400 (В), установленные вместо старых высоковольтных.

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_11

Вот шкафы частотных преобразователей. На каждый двигатель свой шкаф. К сожалению, изнутри сфотографировать не успел.

princip_raboty_asinxronnogo_dvigatelya_принцип_работы_асинхронного_двигателя_12

Подписывайтесь на рассылку новостей с моего сайта, чтобы не пропустить самое интересное. В ближайшее время я расскажу Вам про пуск и способы регулирования частоты вращения трехфазных асинхронных двигателей двигателей, схемы их подключения и многое другое.

P.S. На этом статью про принцип работы асинхронного двигателя я завершаю. Спасибо за внимание.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

zametkielectrika.ru

Асинхронный двигатель - принцип работы устройства, схема частотного преобразователя

Современное промышленное производство, как постоянно динамично развивающаяся система, требует применения для решения различных задач новых и инновационных технических решений. Вместе с тем, многие производства и сейчас используют в качестве двигателей станков, машин и различных механизмов старых надежных асинхронных двигателей.

Асинхронный двигатель

Среди применяемых в производстве электронных систем и электрических машин, особое место занимает асинхронный двигатель – электрическая с электронным блоком управления машина, использующая переменный ток для преобразования электрической энергии в механическую.

Более глубокое раскрытие этого понятия основано на принципе использования магнитного поля для создания вращательного движения – статор создает магнитное поле, несколько большее по частоте, чем частота магнитного поля вращающегося ротора.

Магнитное поле заставляет вращаться ротор, при этом, его частота вращения несколько меньше, чем изменение магнитного поля статора, он как бы пытается догнать образовываемое статором поле.

Двигатели такого принципа являются наиболее распространенными видами электрических машин – это наиболее простой и экономичный тип преобразования электрической энергии переменного тока во вращательную механическую энергию.

Как и у большинства технически сложных механизмов, у таких моторов есть масса положительных сторон, главная из которых является отсутствие электрического контакта между подвижными и неподвижными частями машины.

Это достоинство асинхронников и является основным при выборе моделей двигателей в конструкторских разработках – отсутствие коллектора и щеток, контакта между статором и ротором значительно повышают надежность и удешевляют производство таких моторов.

Однако, следует заметить, что это правило справедливо только к одному из видов (хотя и наиболее распространенному виду) – двигателям с короткозамкнутым ротором.

Описание схемы

Принцип работы двигателя

Работу асинхронного электродвигателя, предназначенного для обычной электросети переменного электрического тока можно описать следующей схемой:

  1. На обмотки статора двигателя подается переменный электрический ток от каждой фазы (в случае, если двигатель трехфазный, если ток однофазный, то включение остальных обмоток происходит посредством включения в схему пусковых конденсаторов, играющих роль имитации трехфазной сети).
  2. В результате подачи напряжения, в каждой из имеющихся обмоток создается электрическое поле с частотой напряжения, и поскольку они имеют смещение на 120 градусов относительно друг друга, то происходит смещение подачи как во времени (даже ничтожно малого), так и в пространстве (тоже достаточно небольшого).
  3. Получившийся в результате вращающийся магнитный поток статора своей силой создает в роторе, вернее в его проводниках, электродвижущую силу.
  4. Созданный в статоре магнитный поток, взаимодействуя с магнитным полем ротора, создает пусковой момент – магнитное поле которого стремится повернуться в направлении магнитного поля статора.
  5. Магнитное поле постепенно нарастая и превышая так называемый тормозной момент, проворачивает ротор.

Таким образом, схемой работы асинхронного агрегата, является взаимодействие магнитного поля статора и токов, которые образуются этим самым магнитным полем в роторе двигателя.

Устройство

Устройство двигателя

Наиболее наглядно представить конструкцию агрегата можно на примере асинхронного двигателя, имеющего короткозамкнутый ротор, второй вид электромоторов имеет несколько иную конструкцию, это вызвано тем, что они используют промышленную сеть в 380 Вольт.

Основными составными частями такой электрической машины являются статор и ротор, которые не соприкасаются между собой и имеют воздушный зазор. Такая конструкция основных частей связана с тем, что в состав обеих основных частей электромотора входят так называемые активные части – состоящие из металлического проводника обмотка возбуждения.

Для каждой части имеются своя соответственно статорная и роторная обмотки и стальной сердечник – магнитопровод. Это основные части электродвигателя, принципиально необходимые для работы машины, все остальные части – корпус, подшипники качения, вал, вентилятор – это конструктивно необходимые, но абсолютно не влияющие на принцип работы прибора.

Они во многом играют важную роль, например, подшипники качения, обеспечивают возможность плавности хода, корпус защищает от механического воздействия на основные рабочие части, вентилятор обеспечивает обдув двигателя и отвод тепла, выделяемого при работе, но на принцип преобразования электрической энергии в механическую не влияют.

Итак, основными частями асинхронного электромотора, как электрической машины являются:

  1. Статор – основной элемент электромотора, состоящая из трехфазной (или многофазной) обмотки. Особенностью обмотки является определенный порядок расположения витков – проводники равномерно расположены в пазах, имеющих угол 120 градусов по всей окружности.
  2. Ротор – второй основной элемент агрегата, представляющий собой цилиндрический сердечник с залитыми алюминием пазами. Такая конструкция из-за своей особенности называется «беличья клетка» или короткозамкнутым типом ротора. В ней медные стержни замкнуты на концах кольцом с обеих сторон цилиндра.

Кроме самого простейшего вида асинхронного электромотора с простым ротором, к семейству асинхронных двигателей относятся и машины, которые имеют более сложную конструкцию, обмотки, у которых имеются как у статора, так и ротора.

Трехфазные обмотки, а конструктивно их по одной на каждую фазу, соединяются подобно обмоткам статора или «звездой» или «треугольником», и концы обмоток этих выводятся на контактные кольца, которые вращаются на валу, электрический ток на них передается через щетки из графита. Этот тип электродвигателей имеет большую мощность и применяется уже в промышленных машинах и станках.

Область применения

Асинхронный двигательВ виду особенности конструкции и простоты изготовления, подобные электромоторы нашли основное применение в машинах и механизмах в которых не требуется большое усилие и мощность при работе.

В основном, такие моторы устанавливаются практически на всех бытовых приборах:

  • мясорубки;
  • фены;
  • электрические миксеры;
  • бытовые вентиляторы;
  • небольшие маломощные бытовые станки;

Трехфазные асинхронные моторы имеют различную мощность, от 150 Вт до нескольких киловатт, и применяются в основном в промышленности в качестве моторов для машин и механизмов.

Применение подобного типа моторов обусловлено приемлемым с точки зрения соотношения мощность/производительность, к тому же, как и их простейшие собраться такие двигатели не требуют большого внимания и кропотливого обслуживания, в особенности те типы корпуса, которые специально разработаны для работы в тяжелых условиях производства.

Виды

В виду различных конструкторских задач, стоящих перед разрабатываемыми машинами и механизмами в промышленном, серийном производстве, нашли свое применение асинхронные линейные электромоторы основных четырех видов:

Моторы для однофазной сети

Однофазный асинхронный двигатель

С короткозамкнутым ротором.

Двигатели для двухфазной сети

Двухфазный асинхронный двигатель

С короткозамкнутым ротором.

Трехфазные асинхронные двигатели

Трехфазный асинхронный двигатель

С короткозамкнутым ротором.

Трехфазные двигатели

Трехфазный асинхронный двигатель с фазным ротором

С фазным ротором.

Особенностью конструкции является заложенный принцип работы однофазного асинхронного двигателя – у него только одна обмотка статора рабочая. А вот для пуска используется дополнительная обмотка, ее назначение — подключение к сети посредством конденсатора. Такое подключение используется для создания начального сдвига фаз и пускового момента, проще говоря, для того, чтобы вал начал вращаться.

Второй тип электрических моторов — двухфазные двигатели, имеют две рабочие обмотки. Такое техническое решение позволяет наиболее эффективно работать от однофазной сети, используя фазосдвигающий конденсатор для получения вращающегося магнитного поля.

Трехфазные асинхронники, имеют в своем составе по одной обмотке на каждую фазу подаваемого напряжения – три рабочие обмотки с соответствующим сдвигом относительно друг друга на 120 градусов. Это позволяет при включении в трехфазную сеть, получить электрическое поле, приводящее в движение короткозамкнутый ротор.

Для четвертого трехфазного асинхронника с фазным ротором, статор устроен таким же образом – три обмотки с соединением по типу звезда.

Ротор, в отличие от беличьих колес, имеет уже полноценную обмотку с выводами на щетки. Подключение обмотки, которого производится как напрямую, так и через реостаты. Такие машины имеют наибольший пусковой момент и наибольшую развиваемую мощность.

Принцип работы частотных преобразователей

Принцип работы частотного преобразователя

Вместе со всеми положительными качествами асинхронных двигателей, существует и неприятные моменты – слишком большой пусковой ток и невозможность регулировать скорость вращения ротора.

Решить эти проблемы можно, используя частотные преобразователи.

Принцип работы такого устройства в двух словах можно описать следующим образом: с помощью электронной схемы выпрямителя, сетевое напряжение сначала сглаживается, а после, фильтруется с помощью конденсаторов.

Использование таких частотных преобразователей при пуске, позволяет избежать обратного вращения вала двигателя, и существенно сократить (до 50%) потребляемую энергию.

househill.ru

Устройство асинхронного трехфазного двигателя

Без электрических двигателей совершенно нереально представить себе функционирование современной жизни. Наиболее популярным и востребованным является асинхронный трёхфазный электродвигатель с короткозамкнутым ротором в виду его простой и надёжной конструкции, которая обеспечивает отличные механические характеристики.

Внутреннее устройство электромотора и его принцип работы вызывает резонный интерес, как в познавательном плане, так и с практической точки зрения — знание конструктивных особенностей двигателя, влияющих на его параметры, поможет при выборе электродвигателя, его эксплуатации и обслуживании.

Составляющие электродвигателей

В любом электродвигателе есть две основные составляющие – неподвижный статор, закрепляемый на станине, и вращающийся ротор, через вал которого осуществляется передача механической энергии.

ротор двигателя

В отношении электродвигателей и трансформаторов катушки с проводом принято называть обмотками из-за технологических процессов при их создании. Магнитопровод статора (сердечника), в котором укладываются обмотки, помещается в защитный металлический кожух, служащий также теплоотводом с ребристой поверхностью.

Ротор нигде не соприкасается со статором и вращается на подшипниках, закрепляемых на торцевых крышках, или отдельно на станине. Торцевые крышки крепятся к кожуху при помощи болтов. Механическая энергия снимается с вала в передней части двигателя при помощи шкива, шестерни или муфты.

На вал ротора с тыльной стороны мотора крепится защищённый кожухом вентилятор для обдува ребристого корпуса, на котором находится клеммник подключения вводного кабеля, питающего электромотор.

Виды асинхронных двигателей

Узнав вкратце, из чего состоит большинство электродвигателей, можно перейти к рассмотрению асинхронных двигателей. Описание электромагнитных взаимодействий, происходящих в асинхронном двигателе, не входит в рамки данной статьи, но коротко можно сказать, что в статоре создаётся вращающееся магнитное поле, взаимодействующее с полем ротора.

Асинхронный – означает, что вал ротора не вращается синхронно с вращающимся магнитным полем статора. Широко используются две разновидности данного типа трехфазных электромоторов, которые имеют такие официальные названия:

  • асинхронный двигатель с короткозамкнутым ротором;
  • асинхронный двигатель с фазным ротором.

Конструкции статора данных типов электродвигателей являются идентичными, а различия заключаются в конструктивном исполнении ротора.

Устройство статора асинхронных двигателей

Для недопущения образования вихревых токов, возникающих при переменном электромагнитном поле, магнитопровод статора набирают из одинаковых колец специальной электротехнической стали методом шихтовки (от немецкого Schicht — набор). В кольцах с внутренней стороны на специальном оборудовании выбивают пазы сложной формы.

а) статор в сборе с обмотками , б) магнитопровод и кольцо эл. стали

При укладке колец в пакет статора добиваются полного совпадения данных пазов, предназначенных для укладки обмоток.

svarochnyyapparatizelektrodvigatelya3_311904649c8134e9bd235b6ba2203fc1

Набор сложенных пластинчатых колец фиксируют при помощи специальных скоб и запрессовывают в защитный кожух двигателя, который также несёт механические нагрузки и служит для охлаждения. Обмотки статора мотают на специальном станке в виде рамок, укладываемых в определённые пазы статорного магнитопровода.

Перед укладкой обмотки паз изолируют при помощи диэлектрической прокладки.

диэлектрическая прокладка в пазу

Рабочие осторожно помещают рамки обмоток в пазы, не допуская повреждения эмалированной изоляции проводов.

рамки статора

В зависимости от конструктивных особенностей статора, в один паз может быть помещено несколько рамок – в этом случае их также изолируют друг от друга диэлектрическими прокладками

продолговатый клин из стекловолокна

Уложенные обмотки в каждом пазу фиксируют при помощи специальной вставки в форме продолговатого клина из стекловолокна.

Соединения обмоток статора

Каждую уложенную в пазы обмотку проверяют на обрыв, пробой и межвитковое замыкание. После этого выводы рамок соединяют в фазные обмотки, в зависимости требуемого от количества пар полюсов.

Асинхронные электродвигатели с одной парой полюсов вращающегося магнитного поля имеют максимально возможные для частоты 50 Гц обороты идеального холостого хода – 3000 в минуту.

соединения проводов при помощи сварки

При помощи параллельных и последовательных подключений рамок обмоток определённым способом создают дополнительные полюсы вращающегося электромагнитного поля для уменьшения оборотов вала ротора. Все электрические соединения проводов обмоток выполняют при помощи сварки, реже – пайки.

Таким способом формируют фазные обмотки, геометрические оси которых располагаются под углом 120º. Выводы от фазных обмоток выводят в коробку подключения. По другому данный клеммник называется блоком распределения начал обмоток (БРНО). Петли обмоток, выходящие из пазов магнитопровода статора, называют лобовыми обмоточными частями.

Провода обмоток в лобовой части обматывают бандажными лентами для механической фиксации.

обмотка монтажной лентой проводов

После выполнения всех работ, статор погружают в лак, который высыхая, придает конструкции электрическую и дополнительную механическую прочность.

Устройство короткозамкнутого ротора

Короткозамкнутый ротор также состоит их шихтованных колец, в которых по внешней окружности пробивают пазы для укладки короткозамкнутых витков, которые делают из меди (для мощных двигателей более 50 кВт) и алюминия.

короткозамкнутый ротор

С торцов ротора данные витки замыкаются накоротко при помощи колец (медных или алюминиевых).

Визуально обмотка короткозамкнутого ротора без магнитопровода похожа на беличье колесо.

В данных витках благодаря трансформации индуцируется ток, возбуждающий электромагнитное поле ротора, взаимодействующее с вращающимся полем статора. Для упрощения процесса изготовления витков сложной формы используют заливку расплавленного алюминия в пазы ротора.

От формы поперечного сечения короткозамкнутых витков ротора зависит такая механическая характеристика асинхронного двигателя как начальный вращательный момент запуска, увеличения которого добиваются путём добавления дополнительных пусковых витков.

Используя особенности распределения силовых линий электромагнитного поля, добиваются больших токов в пусковых обмотках ротора при запуске двигателя, которые уменьшаются при наборе оборотов. Вал ротора запрессовывается в магнитопровод по его оси. Замыкающие кольца часто имеют лопатки, которые выполняют функцию внутреннего вентилятора, обеспечивающего циркуляцию воздуха внутри электромотора.

Из-за того, что роторная электрическая цепь не контактирует с внешними цепями, не требуется контактных узлов, что делает асинхронный двигатель с короткозамкнутым ротором наиболее износоустойчивым по сравнению с другими типами электродвигателей.

Устройство фазного ротора

В пазах фазного ротора укладываются фазные обмотки, соединённые звездой, и подключённые к контактным кольцам, через которые осуществляется включение в регулирующую внешнюю цепь.

фазный ротор

Асинхронный двигатель с фазным ротором, благодаря добавлению обмоток, в зависимости от внешней регулирующей цепи может использоваться:

  • Для плавного запуска электродвигателя и уменьшения пусковых токов при помощи реостатов, подключённых к контактным кольцам. По мере запуска двигателя сопротивление реостатов уменьшается одновременно для всех фаз ротора. При наборе оборотов реостаты отключаются и кольца замыкаются.
  • Для поддержания постоянных оборотов двигателя при включении в цепи фазных обмоток ротора дросселей, реактивное сопротивление которых увеличивается с увеличением оборотов, что уменьшает магнитное поле ротора и вращательный момент;
  • Для увеличения пускового момента на фазные обмотки подают постоянное или переменное напряжение в противофазе статору.

Характерные поломки асинхронных двигателей

От точности выполнения ротора и статора зависит воздушный магнитный зазор, увеличение которого негативно влияет на производительность и коэффициент полезного действия электродвигателя. Поэтому, стараются данный зазор максимально уменьшить.

поперечный разрез двигателя

Для предотвращения вибраций и биений ротора, его тщательно центрируют перед помещением в статор. Износ подшипников, и в частности, выход из строя сепаратора шарикоподшипников, приводит к перекосу ротора и его трению об магнитопровод статора.

укладка обмоток в пазы ротора

Как правило, после замены подшипников данные повреждения не имеют значительного влияния на работоспособность мотора, но увеличится вибрация из-за разбалансировки ротора.

Обмотки статора наиболее часто подвержены межвитковому замыканию, которое происходит из-за повреждения эмалевой изоляции проводов из-за перегрева. Можно самостоятельно прозвонить обмотки и даже выявить место пробоя между витками, но перемотать обмотки в кустарных условиях не представляется возможным, и при такой поломке двигатель нужно отдавать на перемотку.

Похожие статьи

infoelectrik.ru

Устройство и принцип действия асинхронных электродвигателей

Ustroystvo i printsip deystviya asinkhronnykh elektrodvigateleyВсем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: устройство и принцип действия асинхронных электродвигателей. Так же я бы хотел немного сказать о способах регулировки их частоты вращения, и перечислить их основные преимущества и недостатки.

Раньше, я уже писал статьи, касающиеся асинхронных электродвигателей. Если кому интересно, то можете почитать. Вот список:

Схема пуска асинхронного двигателя.

Расчёт тока электродвигателя.

Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором.

Ну а теперь давайте перейдём к теме сегодняшней статьи.

В нынешнее время, очень трудно представить, как бы существовали все промышленные предприятия, если бы не было асинхронных машин. Эти двигателя установлены практически везде. Даже дома у каждого человека есть такой двигатель. Он может стоять на вашей стиральной машинке, на вентиляторе, на насосной станции, в вытяжке и так далее.

Вообще асинхронный электродвигатель – это колоссальный прорыв в мировой промышленности. Во всём мире их выпускают более 90 процентов от количества всех выпускаемых двигателей.

asinkhronnyy elektrodvigatel

Асинхронный электродвигатель – это электрическая машина, которая преобразовывает электрическую энергию в механическую. То есть потребляет электрический ток, а взамен дают крутящий момент, с помощью которого можно вращать многие агрегаты.

А само слово «асинхронный» — означает неодновременных или не совпадающий по времени. Потому что у таких двигателей частота вращения ротора немного отстаёт от частоты вращения электромагнитного поля статора. Ещё это отставанием называют – скольжением.

Обозначается это скольжение буквой: S

А вычисляется скольжение по такой формуле: S = ( n1 — n2 )/ n1 — 100%

Где, n1 – это синхронная частота магнитного поля статора;

n2 – это частота вращения вала.

Устройство асинхронного электродвигателя.

Двигатель состоит из таких частей:

1. Статор с обмотками. Или станина внутри которой находится статор с обмотками.

2. Ротор. Это если короткозамкнутый. А если фазный, то можно сказать, что это якорь или даже коллектор. Я думаю, ошибки не будет.

3. Подшипниковые щиты. На мощных двигателях ещё спереди стоят подшипниковые крышки с уплотнителями.

4. Подшипники. Могут стоять скольжения или качения, в зависимости от исполнения.

5. Вентилятор охлаждения. Изготавливается из пластмассы или металла.

6. Кожух вентилятора. Имеет прорези для подачи воздуха.

7. Борно или клеммная коробка. Для подключения кабелей.

Это все его основные детали, но в зависимости от вида, типа и исполнения может немного изменяться.

dvigatel asinkhronnyy trekhfaznyy

Асинхронные электродвигателя в основном выпускают двух видов: трёхфазные и однофазные. В свою очередь трёхфазные ещё подразделяются на подвиды: с короткозамкнутым ротором или фазным ротором.

Самые распространённые – это трёхфазные с короткозамкнутым ротор.

Статор имеет круглую форму и набирается с листов специальной стали, которые изолированы между собой, и эта собранная конструкция образует сердечник с пазами. В пазы сердечника укладываются обмотки, со специального обмоточного, изолированного лаком провода. Провод это отливают в основном из меди, но также есть и с алюминия. Если двигатель очень мощный, то обмотки делаю шиной. Обмотки укладывают так, чтобы они были сдвинуты относительно друг друга на 120 градусов. Соединяются обмотки статора в звезду или в треугольник.

Ротор, как выше я уже писал выше, бывает короткозамкнутый или фазный.

Короткозамкнутый представляет собой вал, на который надеваются листы, из тоже специальной, стали. Эти наборные листы образую сердечник, в пазы которого заливают расплавленный алюминий. Этот алюминий равномерно растекается по пазам и образует стержни. А по краям эти стержни замыкают алюминиевыми кольцами. Получается своего рода «беличья клетка».

korotkozamknutyy rotor

Фазный ротор представляет собой вал с сердечником и тремя обмотками. Одни концы, которых обычно соединяют в звезду, а вторые три конца присоединяют к токосъемным кольцам. А на эти кольца, с помощью щёток подают электрический ток.

Если в цепь фазных обмоток добавить нагрузочный реостат, и при пуске двигателя увеличивать активное сопротивление, то таким способ можно уменьшить большие пусковые токи.

Принцип действия.

Когда на обмотки статора подаются электрический ток, то в этих обмотках возникает электрический поток. Как вы помните, из выше написанных слов, фазы у нас смещены относительно друг друга на 120 градусов. И вот этот поток в обмотках начинает вращаться.

И при вращении магнитного потока статора, в обмотках ротора появляется электрический ток, и своё магнитное поле. Два этих магнитных поля начинают взаимодействовать и заставляют вращаться ротор электродвигателя. Это если ротор короткозамкнутый.

По принципу роботы вот посмотрите видео ролик.

Ну а с фазным ротором, по сути, принцип тот же. Напряжение подаётся на статор и на ротор. Появляются два магнитных поля, которые начинают взаимодействовать и вращать ротор.

Достоинства и недостатки асинхронных двигателей.

Основные достоинства асинхронного электродвигателя с короткозамкнутым ротором:

1. Очень простое устройство, что позволяет сократить затраты на его изготовление.

2. Цена намного меньше по сравнению с другими двигателями.

3. Очень простая схема запуска.

4. Скорость вращения вала практически не меняется с увеличением нагрузки.

5. Хорошо переносит кратковременные перегрузы.

6. Возможность подключения трёхфазных двигателей в однофазную сеть.

7. Надёжность и возможность эксплуатировать практически в любых условиях.

8. Имеет очень высокий показатель КПД и cos φ.

Недостатки:

1. Не возможности контролировать частоту вращения ротора без потери мощности.

2. Если увеличить нагрузку, то уменьшается момент.

3. Пусковой момент очень мал по сравнению с другими машинами.

4. При недогрузе увеличивается показатель cos φ

5. Высокие показатели пусковых токов.

Достоинства двигателей с фазным ротором:

1. По сравнению с короткозамкнутыми двигателями, имеет достаточно большой вращающий момент. Что позволяет его запускать под нагрузкой.

2. Может работать с небольшим перегрузом, и при этом частота вращения вала практически не меняется.

3. Небольшой пусковой ток.

4. Можно применять автоматические пусковые устройства.

Недостатки:

1. Большие габариты.

2. Показатели КПД и cos φ меньше, чем у двигателей с короткозамкнутым ротором. И при недогрузе эти показатели имеют минимальное значение

3. Нужно обслуживать щёточный механизм.

На этом буду заканчивать свою статью. Если она была вам полезной, то поделитесь нею со своими друзьями в социальных сетях. Если есть вопросы, то задавайте их в комментариях и подписывайтесь на обновления. Пока.

С уважением Александр!

Читайте также статьи:

fazanet.ru

Асинхронный двигатель | Заметки электрика

asinxronnyj_dvigatel_асинхронный_двигатель

Здравствуйте, уважаемые читатели и посетители сайта «Заметки электрика».

Буквально перед этими выходными у меня вышел из строя асинхронный двигатель АОЛ 22-4 мощностью 400 (Вт), установленный в приводе переключения ступеней РПН силового трансформатора.

Причиной его выхода из строя стало межвитковое замыкание обмотки. Такая ситуация случается крайне редко, но все таки иногда случается. Условия эксплуатации дают о себе знать — повышенное содержание угольной пыли. Может дело даже не в условиях эксплуатации, а в поставляемом некачественном проводе для ремонта двигателя.

Опять задел тему некачественного производства кабельной и проводниковой продукции, поэтому напомню Вам еще раз как правильно купить кабель или провод в магазине, а также как самостоятельно определить сечение провода по его диаметру.

Ну, раз мне предстояло разбирать сгоревший электродвигатель, то я решил заодно написать статью об асинхронном двигателе (АД), его применении и устройстве.

asinxronnyj_dvigatel_асинхронный_двигатель

 

Применение и назначение АД

В последнее время асинхронные двигатели очень широко применяются, как в промышленности в виде электрических приводов дымососов, шаровых мельниц, транспортеров, насосов, дробилок, сверлильных и наждачных станков, так и в быту. Перечислить все области применения просто невозможно.

А почему они так широко применяются?

Да потому что они имеют ряд достоинств по сравнению с другими электрическими машинами, например, обладают высокой надежностью, простотой обслуживания и не менее важное, они могут работать непосредственно от сети переменного напряжения.

Устройство асинхронного двигателя (АД)

А теперь перейдем к устройству асинхронного двигателя на примере АОЛ 22-4 мощностью 400 (Вт).

asinxronnyj_dvigatel_асинхронный_двигатель

Я уже говорил чуть выше, что асинхронный двигатель АОЛ 22-4 устанавливается в приводе переключающего устройства РПН силового трансформатора (17 ступеней). Вот так выглядит сам привод.

asinxronnyj_dvigatel_асинхронный_двигатель

Питание двигателя осуществляется от сети с изолированной нейтралью с линейным напряжением 220 (В).

Кстати, этот двигатель специально был переделан под наши нужды.

Поэтому на его бирке Вы увидите обозначение, вместо 220/380 (В), 220/380 (В) (зачеркнуто на бирке 380 и треугольник), т.е. его обмотки перемотаны на напряжение 127 (В).

asinxronnyj_dvigatel_асинхронный_двигатель

Поэтому при линейном напряжении 220 (В) обмотки статора мы соединяем в звезду. Хотя в принципе мы и не собираем. Я попросил у мастера обмоточного отделения после ремонта собирать звезду внутри двигателя и выводить на колодку (клемму) всего 3 вывода, вместо 6.

asinxronnyj_dvigatel_асинхронный_двигатель

Переходите по ссылке и читайте более подробно про соединение обмоток статора в схему звезды или треугольника.

Итак, поехали дальше.

Асинхронный двигатель (АД) состоит из двух частей, разделенных между собою воздушным зазором. Первая часть – это неподвижный статор, а вторая часть – это подвижный или вращающийся ротор.

Что статор, что ротор состоят из сердечника и обмотки. Но обмотка статора является первичной обмоткой, т.е. включается в сеть, а обмотка ротора является вторичной. Более подробно об этом Вы сможете прочитать в статье про принцип действия асинхронного электродвигателя.

Конструктивно они делятся на 2 разновидности:

  • АД с короткозамкнутым ротором
  • АД с фазным ротором

Мой сгоревший двигатель марки АОЛ 22-4, как Вы уже догадались, относится именно к асинхронному двигателю с короткозамкнутым ротором.

 

Асинхронный двигатель с короткозамкнутым ротором

Статор у такого двигателя состоит из:

  • корпуса со станиной
  • сердечника
  • трехфазной обмотки

Сам корпус чаще всего изготавливают, либо из алюминиевого сплава, либо из чугуна. В моем примере АОЛ 22-4 имеет алюминиевый корпус с алюминиевой станиной.

asinxronnyj_dvigatel_асинхронный_двигатель

Сердечник статора выполняется шихтованным, т.е. набирается из тонких листов электротехнической стали, покрытыми изоляционным лаком. Толщина этих листов составляет примерно от 0,35 до 0,5 (мм). Так сделано с целью уменьшения вихревых токов, появляющихся во время перемагничивания «железа» сердечника под действием вращающегося магнитного поля.

С внутренней стороны сердечника статора асинхронного двигателя находятся продольные пазы, в которые укладывается обмотка.

asinxronnyj_dvigatel_асинхронный_двигатель

Обмотка может быть, как однослойная, так и многослойная.

asinxronnyj_dvigatel_асинхронный_двигатель

Часть обмотки, которая расположена в пазах, называется пазовой.

Пазовые части обмоток за пределами сердечника (с торца) соединяются с лобовыми частями обмоток.

asinxronnyj_dvigatel_асинхронный_двигатель

Это все, что касается статора. Теперь перейдем к тому, как устроен ротор. Как я уже говорил выше, ротор – это вращающаяся часть асинхронного двигателя. Состоит он из вала и сердечника с короткозамкнутой обмоткой.

Кстати, короткозамкнутую обмотку асинхронного двигателя еще называют «беличьем колесом».

Обмотка короткозамкнутого ротора состоит из ряда алюминиевых или медных (реже) стержней, которые расположены в пазах сердечника ротора. Эти стержни с двух сторон замыкаются короткозамыкающими кольцами.

Сердечник ротора, как и сердечник статора, имеет шихтованную конструкцию, но листы из электротехнической стали у него покрыты не лаком, а тонкой пленкой окисла. Этого вполне достаточно для ограничения вихревых токов малой величины из-за не частого перемагничивания сердечника.

В большинстве случаях короткозамкнутую обмотку ротора АД выполняют с помощью заливки собранного сердечника расплавленным алюминиевым сплавом. При этом одновременно отливаются и короткозамыкающие кольца и вентиляционные лопатки.

asinxronnyj_dvigatel_асинхронный_двигатель

Вал короткозамкнутого ротора вращается на двух подшипниках качения (их видно на рисунке выше), которые расположены в подшипниковых щитах.

asinxronnyj_dvigatel_асинхронный_двигатель

Несколько слов расскажу Вам об охлаждении асинхронного двигателя.

Охлаждение асинхронных двигателей мощностью до 15 (кВт) происходит методом обдува наружной поверхности двигателя с помощью центробежного вентилятора. Сам вентилятор прикрыт защитным кожухом с отверстиями для забора воздуха.

Фото другого типа двигателя.

asinxronnyj_dvigatel_асинхронный_двигатель

Охлаждение асинхронных двигателей мощностью более 15 (кВт), помимо вышеописанного способа, выполняется с внутренней вентиляцией. В подшипниковых щитах есть специальные отверстия, их называют «жалюзи», через которые воздух с помощью вентилятора проходит сквозь внутреннюю полость двигателя. В таком случае воздух пронизывает нагретые  части обмоток и сердечника, что приводит к более эффективному охлаждению.

Также асинхронные двигатели для увеличения площади охлаждения могут иметь поверхность из продольных ребер.

asinxronnyj_dvigatel_асинхронный_двигатель

Для защиты людей от поражения электрическим током асинхронный двигатель необходимо заземлять. Для этого имеются специальные болты (винты) для заземления. Обычно один болт (винт) находится на корпусе двигателя.

asinxronnyj_dvigatel_асинхронный_двигатель

А другой в клеммной колодке.

asinxronnyj_dvigatel_асинхронный_двигатель

АД с короткозамкнутым ротором имеет один существенный недостаток в виде ограниченного пускового момента из-за короткозамкнутых стержней, что нельзя сказать об АД с фазным ротором.

 

Асинхронный двигатель с фазным ротором

Конструкция статора асинхронного двигателя с фазным ротором аналогична конструкции статора асинхронного двигателя с короткозамкнутым ротором.

asinxronnyj_dvigatel_асинхронный_двигатель

А вот по конструктивному исполнению ротора есть большая разница.

Ротор такого двигателя имеет усложненную конструкцию. На его валу закреплен шихтованный  сердечник с трехфазной обмоткой. Начала обмоток соединяют звездой, а их концы соединяют к контактным кольцам. Эти кольца тоже расположены на валу ротора и изолированы от вала и между собой.

Для осуществления контакта с обмоткой вращающегося ротора на каждое кольцо предусмотрено две металлографитовые щетки. Щетка находится в щеткодержателе, который снабжен пружинами для обеспечения необходимой силы прижатия щетки к контактному кольцу.

asinxronnyj_dvigatel_асинхронный_двигатель

Таким образом, трехфазная обмотка ротора соединяется с внешним пусковым реостатом, создающим в цепи ротора добавочное сопротивление.

Зачем это нужно, Вы узнаете из следующих статей раздела «Электродвигатели». Подписывайтесь на получение уведомлений о выходе новых статей на сайте. Форма подписки находится в правой колонке сайта и внизу статьи.

 

Несколько слов о бирке

На корпусе каждого двигателя установлена пластина со следующими техническими данными:

  • тип двигателя (например, АОЛ 22-4 или  АИР71А4)
  • наименование страны и завода-изготовителя
  • год выпуска
  • номинальная полезная мощность на валу
  • номинальный напряжение (ток)
  • схема соединения обмоток (Y/∆)
  • коэффициент мощности
  • номинальная частота вращения (об/мин)
  • кпд
  • режим работы (например, S1)

Пример пластины асинхронного двигателя смотрите на фото ниже:

asinxronnyj_dvigatel_асинхронный_двигатель

Асинхронный двигатель. Что лучше?

Если сравнить асинхронный двигатель с короткозамкнутым ротором и с фазным ротором, то можно сделать следующий вывод.

Электродвигатель с фазным ротором имеет более сложную конструкцию, требует больше времени на обслуживание и менее надежен по сравнению с электродвигателем с короткозамкнутым ротором. Но самое главное его достоинство – это лучшие пусковые и регулировочные свойства.

В следующих статьях читайте про: (список будет пополняться по мере написания статей)

  1. Принцип работы асинхронного двигателя
  2. Определение начала и конца обмоток электродвигателя
  3. Соединение звездой и треугольником обмоток асинхронного двигателя
  4. Как рассчитать номинальный ток трехфазного двигателя
  5. Схема подключения магнитного пускателя (нереверсивного)
  6. Схема подключения магнитного пускателя (нереверсивного) с тепловыми реле
  7. Реверс двигателя
  8. Схема реверса асинхронного двигателя с КЗ ротором
  9. Подключение трехфазного двигателя к однофазной сети
  10. Реверс трехфазного двигателя, подключенного в однофазную сеть
  11. Подключение однофазного двигателя
  12. Реверс однофазного двигателя

P.S. На этом статью на тему асинхронный двигатель, его устройство и применение я завершаю. Спасибо за внимание. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

zametkielectrika.ru

Схема замещения асинхронного двигателя

  При практических расчетах вместо реального асинхронного двигателя, на схеме его заменяют эквивалентной схемой замещения, в которой электромагнитная связь заменена на электрическую. При этом параметры цепи ротора приводятся к параметрам цепи статора.

  По сути, схема замещения асинхронного двигателя аналогична схеме замещения трансформатора. Различие в том, что у асинхронного двигателя электрическая энергия преобразуется в механическую энергию (а не в электрическую, как это происходит в трансформаторе), поэтому на схеме замещения добавляют переменное активное сопротивление r2'(1-s)/s, которое зависит от скольжения. В трансформаторе, аналогом этого сопротивления является сопротивление нагрузки Zн.

  Величина скольжения определяет переменное сопротивление, например, при отсутствии нагрузки на валу, скольжение практически равно нулю s≈0, а значит переменное сопротивление равно бесконечности, что соответствует режиму холостого хода. И наоборот, при перегрузке двигателя, s=1, а значит сопротивление равно нулю, что соответствует режиму короткого замыкания.

  Как и у трансформатора, у асинхронного двигателя есть Т-образная схема замещения.

 Т-образная

  Более удобной при практических расчетах является Г-образная схема замещения.

 Г-образная

  В Г-образной схеме, намагничивающая ветвь вынесена к входным зажимам. Таким образом, вместо трех ветвей получают две ветви, первая – намагничивающая, а вторая – рабочая. Но данное действие требует внесение дополнительного коэффициента c1, который представляет собой отношение напряжения подводимого к двигателю, к ЭДС статора.

 

  Величина c1 приблизительно равна 1, поэтому для максимального упрощения, на практике принимают значение c1≈1. При этом следует учитывать, что значение коэффициента c1 уменьшается с увеличением мощности двигателя, поэтому более точное приближение будет соответствовать более мощному двигателю.

  Параметры схемы замещения рассматриваются подробнее в статье векторная диаграмма асинхронного двигателя

electroandi.ru


Каталог товаров
    .