интернет-магазин светодиодного освещения
Пн - Вс с 10:30 до 20:00
Санкт-Петербург, просп. Энгельса, 138, корп. 1, тк ''Стройдвор''

13. Катушки индуктивности и постоянный ток. Катушка индуктивности схема


Катушка индуктивности. Виды. Характеристики - Электроника, Микроэлектроника , Элементная база

У этого термина существуют и другие значения, см. Катушка (значения).

 

Катушка индуктивности (дроссель) наматеринской платекомпьютера

 

Обозначение на электрических принципиальных схемах

Катушка индуктивности — винтовая, спиральная или винтоспиральная катушка из свёрнутого изолированного проводника, обладающая значительной индуктивностью при относительно малой ёмкости и малом активном сопротивлении. Как следствие, при протекании через катушку переменного электрического тока, наблюдается её значительная инерционность.

Применяются для подавления помех, сглаживания пульсаций, накопления энергии, ограничения переменного тока, в резонансных(колебательный контур) и частотноизбирательных цепях, в качестве элементов индуктивности искусственных линий задержки с сосредоточенными параметрами, создания магнитных полей, датчиков перемещений и так далее.

 

Содержание

   

  • 1 Терминология
  • 2 Конструкция
  • 3 Свойства катушки индуктивности
  • 4 Характеристики катушки индуктивности
    • 4.1 Индуктивность
    • 4.2 Сопротивление потерь
      • 4.2.1 Потери в проводах
      • 4.2.2 Потери в диэлектрике
      • 4.2.3 Потери в сердечнике
      • 4.2.4 Потери на вихревые токи
    • 4.3 Добротность
    • 4.4 Паразитная емкость и собственный резонанс
    • 4.5 Температурный коэффициент индуктивности (ТКИ)
  • 5 Разновидности катушек индуктивности
  • 6 Применение катушек индуктивности
  • 7 См. также
  • 8 Примечания
  • 9 Литература
  • 10 Ссылки

 

Терминология

При использовании для подавления помех, сглаживания пульсаций электрического тока, изоляции (развязки) по высокой частоте разных частей схемы и накопления энергии в магнитном поле сердечника часто называют дросселем.

В силовой электротехнике (для ограничения тока при, например, коротком замыкании ЛЭП) называют реактором.

Цилиндрическую катушку индуктивности, длина которой намного превышает диаметр, называют соленоидом, магнитное поле внутри длинного соленоида однородно. Кроме того, зачастую соленоидом называют устройство, выполняющее механическую работу за счёт магнитного поля при втягивании ферромагнитного сердечника, илиэлектромагнитом. В электромагнитных реле называют обмоткой реле, реже — электромагнитом.

Нагревательный индуктор — специальная катушка индуктивности, рабочий орган установок индукционного нагрева.

При использовании для накопления энергии называют индукционным накопителем.

Конструкция

Конструктивно выполняется в виде винтовых, или винтоспиральных (диаметр намотки изменяется по длине катушки) катушек однослойных или многослойных намоток изолированного одножильного или многожильного (литцендрат) проводника на диэлектрическом каркасе круглого, прямоугольного или квадратного сечения, часто натороидальном каркасе или, при использовании толстого провода и малом числе витков — без каркаса. Иногда, для снижения распределённой паразитной ёмкости при использовании в качестве высокочастотного дросселя, однослойные катушки индуктивности наматываются с «прогрессивным» шагом, — шаг намотки плавно изменяется по длине катушки. Намотка может быть как однослойной (рядовая и с шагом), так и многослойная (рядовая, внавал, типа «универсал»). Намотка «универсал» имеет меньшую паразитную ёмкость. Часто, опять же, для снижения паразитной ёмкости, намотку выполняют секционированной, группы витков отделяются пространственно (обычно по длине) друг от друга.

Для увеличения индуктивности, катушки часто снабжают замкнутым или разомкнутым ферромагнитным сердечником. Дроссели подавления высокочастотных помех имеют ферродиэлектрические сердечники: ферритовые, флюкстроловые, из карбонильного железа. Дроссели, предназначенные для сглаживания пульсаций промышленной и звуковой частот, имеют сердечники из электротехнических сталей или магнитомягких сплавов (пермаллоев). Также сердечники (как правило, ферромагнитные) используют для изменения индуктивности катушек в небольших пределах путём изменения положения сердечника относительно обмотки. Насверхвысоких частотах, когда ферродиэлектрики теряют высокую магнитную проницаемость и резко увеличивают потери, применяются металлические (латунные) сердечники.

На печатных платах электронных устройств так же иногда делают плоские «катушки» индуктивности: геометрия печатного проводника выполняется в виде круглой или прямоугольной спирали, волнистой линии или в виде меандра. Такие «катушки индуктивности» часто используются в сверхбыстродействующих цифровых устройствах для выравнивания времени распространения группы сигналов по разным печатным проводникам от источника до приемника, например, в шинах данных и адреса[1].

Свойства катушки индуктивности

Свойства катушки индуктивности:

  • Скорость изменения тока через катушку ограничена и определяется индуктивностью катушки.
  • Сопротивление (модуль импеданса) катушки растет с увеличением частоты текущего через неё тока.
  • Катушка индуктивности при протекании тока запасает энергию в своём магнитном поле. При отключении внешнего источника тока катушка отдаст запасенную энергию, стремясь поддержать величину тока в цепи. При этом напряжение на катушке нарастает, вплоть до пробоя изоляции или возникновения дуги на коммутирующем ключе.

Катушка индуктивности в электрической цепи для переменного тока имеет не только собственное омическое сопротивление, но имеет реактивное сопротивлениепеременному току, нарастающее при увеличении частоты, поскольку при изменении тока в катушке возникает ЭДС самоиндукции, препятствующая этому изменению.

Катушка индуктивности обладает реактивным сопротивлением, модуль которого , где  — индуктивность катушки,  — циклическая частота протекающего тока. Соответственно, чем больше частота тока, протекающего через катушку, тем больше её сопротивление.

Катушка с током запасает энергию в магнитном поле, равную работе, которую необходимо совершить для установления текущего тока . Эта энергия равна:

 

Векторная диаграмма в видекомплексных амплитуд для идеальной катушки индуктивности в цепи синусоидального напряжения

 

Катушка индуктивности в переменном напряжении — аналог тела с массой, подверженному механическим колебаниям. .

При изменении тока в катушке возникает ЭДС самоиндукции, значение которой:

.

Для идеальной катушки индуктивности (не имеющей паразитных параметров) ЭДС самоиндукции равна по модулю и противоположна по знаку напряжению на концах катушки:

.

При замыкании катушки с током на резистор ток в цепи экспоненциально уменьшается в соответствие с формулой:

,

где :  — ток в катушке,

 — начальный ток катушки, — текущее время, — постоянная времени.

Постоянная времени выражается формулой:

,

где :  — сопротивление резистора,

 — омическое сопротивление катушки.

При закорачивании катушки с током процесс характеризуется собственной постоянной времени :  катушки:

.

При стремлении  к нулю, постоянная времени стремится к бесконечности, именно поэтому в сверхпроводящих контурах ток течёт «вечно».

В цепи синусоидального тока, ток в катушке по фазе отстаёт от фазы напряжения на ней на π/2.

Явление самоиндукции аналогично проявлению инертности тел в механике, если аналогом индуктивности принять массу, тока — скорость, напряжения — силу, то многие формулы механики и поведения индуктивности в цепи принимают похожий вид:

 ↔  , где ↔  ↔  ;  ↔  ;  ↔  ↔ 

Характеристики катушки индуктивности

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к силе протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки-соленоида[источник не указан 133 дня]:

,где  — магнитная постоянная, — относительная магнитная проницаемость материала сердечника (зависит от частоты), — площадь сечения сердечника, — длина средней линии сердечника, — число витков.

 

Схема последовательного соединения катушек индуктивности. Ток через каждую катушку один и тот же.

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

.

 

Электрическая схема параллельного соединения нескольких катушек индуктивности. Напряжение на всех катушках одинаково

При параллельном соединении катушек общая индуктивность равна:

.

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

где  — потери в проводах, — потери в диэлектрике, — потери в сердечнике, — потери на вихревые токи
Потери в проводах

Потери в проводах вызваны тремя причинами:

  • Провода обмотки обладают омическим (активным) сопротивлением.
  • Сопротивление провода обмотки возрастает с ростом частоты, что обусловлено скин-эффектом. Суть эффекта состоит в вытеснении тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растет сопротивление.
  • В проводах обмотки, свитой в спираль, проявляется эффект близости, суть которого состоит в вытеснении тока под воздействием вихревых токов и магнитного поля к периферии намотки. В результате сечение, по которому протекает ток, принимает серповидную форму, что ведёт к дополнительному возрастанию сопротивления провода.
Потери в диэлектрике

Потери в диэлектрике (изоляции проводов и каркасе катушки) можно отнести к двум категориям:

  • Потери от диэлектрика межвиткового конденсатора (межвитковые утечки и прочие потери, характерные для диэлектриков конденсаторов).
  • Потери, обусловленные магнитными свойствами диэлектрика (эти потери аналогичны потерям в сердечнике).

В общем случае можно заметить, что для современных катушек общего применения потери в диэлектрике чаще всего пренебрежимо малы.

Потери в сердечнике

Потери в сердечнике складываются из потерь на вихревые токи, потерь на перемагничивание ферромагнетика — на «гистерезис».

Потери на вихревые токи

Переменное магнитное поле индуцирует вихревые ЭДС в окружающих проводниках, например в сердечнике, экране и в проводах соседних витков. Возникающие при этом вихревые токи (токи Фуко) становятся источником потерь из-за омического сопротивления проводников.

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

 

Векторная диаграмма потерь и добротности реальной катушки индуктивности. Обозначения: Z — импеданс; Xc — ёмкостная составляющая импеданса; Xl — индуктивная составляющая импеданса; X — реактивная составляющая импеданса; Ri — активная составляющая импеданса.

Иногда потери в катушке характеризуют тангенсом угла потерь (величина, обратная добротности) — сдвигом фаз тока и напряжения катушки в цепи синусоидального сигнала относительно π/2 — для идеальной катушки.

Практически добротность лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

Паразитная емкость и собственный резонанс

 

Эквивалентная схема и некоторые формулы реальной катушки индуктивности без ферромагнитного сердечника

Межвитковая паразитная емкость проводника в составе катушки индуктивности превращает катушку в сложную распределенную цепь. В первом приближении можно принять, что реальная катушка эквивалентно представляет собой идеальную индуктивность, включенной последовательно с резистором активного сопротивления обмотки с присоединенной параллельно этой цепочкепаразитной ёмкостью (см. рис). В результате этого катушка индуктивности представляет собой колебательный контур с характерной частотой резонанса. Эта резонансная частота легко может быть измерена и называется собственной частотой резонанса катушки индуктивности. На частотах много ниже частоты собственного резонанса импеданс катушки индуктивный, при частотах вблизи резонанса в основном активный (на частоте резонанса чисто активный) и большой по модулю, на частотах много выше частоты собственного резонанса — ёмкостный. Обычно собственная частота указывается изготовителем в технических данных промышленных катушек индуктивности, либо в явном виде, либо косвенно — в виде рекомендованной максимальной рабочей частоты.

 

Зависимость модуля импеданса и активной составляющей импеданса от частоты для реальной катушки индуктивности

.

На частотах ниже собственного резонанса этот эффект проявляется в падении добротности с ростом частоты.

Для увеличения частоты собственного резонанса используют сложные схемы намотки катушек, разбиение одной обмотки на разнесённые секции.

Температурный коэффициент индуктивности (ТКИ)

ТКИ — это параметр, характеризующий зависимость индуктивности катушки от температуры.

Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.

Разновидности катушек индуктивности

Контурные катушки индуктивности, используемые в радиотехникеЭти катушки используются совместно с конденсаторами для организации резонансных контуров. Они должны иметь высокую термо- и долговременную стабильность, и добротность, требования к паразитной ёмкости обычно несущественны.Катушки связи, или трансформаторы связиВзаимодействующие магнитными полями пара и более катушек обычно включаются параллельно конденсаторам для организации колебательных контуров. Такие катушки применяются для обеспечения трансформаторной связи между отдельными цепями и каскадами, что позволяет разделить по постоянному току, например, цепь базы последующего усилительного каскада от коллектора предыдущего каскада и т. д. К нерезонансным разделительным трансформаторам не предъявляются жёсткие требования на добротность и точность, поэтому они выполняются из тонкого провода в виде двух обмоток небольших габаритов. Основными параметрами этих катушек являются индуктивность и коэффициент связи (коэффициент взаимоиндукции).ВариометрыЭто катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется степень взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.ДросселиЭто катушки индуктивности, обладающие высоким сопротивлением переменному току и малым сопротивлением постоянному. Дроссели включаются последовательно с нагрузкой для ограничения переменного тока в цепи, они часто применяются в цепях питания радиотехнических устройств в качестве фильтрующего элемента, а также в качестве балласта для включения разрядных ламп в сеть переменного напряжения. Для сетей питания с частотами 50-60 Гц выполняются на сердечниках из трансформаторной стали. На более высоких частотах также применяются сердечники из пермаллоя или феррита. Особая разновидность дросселей — помехоподавляющие ферритовые бочонки (бусины или кольца), нанизанные на отдельные провода или группы проводов (кабели) для подавления синфазных высокочастотных помех.

 

Сдвоенный дроссель Сдвоенные дросселиЭто две намотанных встречно или согласованно катушки индуктивности, используются в фильтрах питания. За счёт встречной намотки и взаимной индукции более эффективны для фильтрации синфазных помех при тех же габаритах. При согласной намотке эффективны для подавления дифференциальных помех. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания; в дифференциальных сигнальных фильтрах цифровых линий, а также в звуковой технике.[2][3] Предназначены как для защиты источников питания от попадания в них наведённых высокочастотных сигналов из питающей сети, так и во избежание проникновения в питающую сеть электромагнитных помех, генерируемых устройством. На низких частотах используется в фильтрах цепей питания и обычно имеет ферромагнитный сердечник (из трансформаторной стали). Для фильтрации высокочастотных помех — сердечник ферритовый.

Применение катушек индуктивности

 

Балластный дроссель. Конструкция, применяющаяся в качестве реактивного сопротивления для разрядных ламп на частоте 50 — 60 Гц. В связи с заметной зависимостью сопротивления дросселя от режима работы и от частотного спектра тока сопротивление дросселя определяется как отношение напряжения к току при замкнутой лампе и токе через дроссель, равный рабочему току лампы. В электронном пуско-регулирующем аппарате для люминесцентной лампы, работающем на частоте 20 — 50 кГц, дроссель изготавливается на ферритовом сердечнике и имеет существенно меньшие размеры.
  • Катушки индуктивности (совместно с конденсаторами и/или резисторами) используются для построения различных цепей с частотно-зависимыми свойствами, в частности, фильтров, цепей обратной связи, колебательных контуров и т. п.
  • Катушки индуктивности используются в импульсных стабилизаторах как элемент, накапливающий энергию и преобразующий уровни напряжения.
  • Две и более индуктивно связанные катушки образуют трансформатор.
  • Катушка индуктивности, питаемая импульсным током от транзисторного ключа, иногда применяется в качестве источника высокого напряжения небольшой мощности в слаботочных схемах, когда создание отдельного высокого питающего напряжения в блоке питания невозможно или экономически нецелесообразно. В этом случае на катушке из-за самоиндукции возникают выбросы высокого напряжения, которые можно использовать в схеме, например, выпрямив и сгладив.
  • Катушки используются также в качестве электромагнитов — исполнительных механизмов.
  • Катушки применяются в качестве источника энергии для нагрева индуктивно-связанной плазмы, а также её диагностики.
  • Для радиосвязи — приёма электромагнитных волн, редко — для излучения:
    • Ферритовая антенна
    • Рамочная антенна, кольцевая антенна
    • DDRR
    • Индукционная петля
  • Для разогрева электропроводящих материалов в индукционных печах.
  • Как датчик перемещения: изменение индуктивности катушки может изменяться в широких пределах при перемещении ферромагнитного сердечника относительно обмотки.
  • Катушка индуктивности используется в индукционных датчиках магнитного поля в индукционных магнитометрах[4]
  • Для создания магнитных полей в ускорителях элементарных частиц, магнитного удержания плазмы, в научных экспериментах, в ядерно-магнитной томографии. Мощные стационарные магнитные поля, как правило, создаются сверхпроводящими катушками.
  • Для накопления энергии.

См. также

  • Соленоид
  • Катушка Румкорфа, катушка зажигания
  • Катушка Пупина
  • Катушка Ерохина
  • Ферритовый фильтр
  • Трансформатор
  • Электрический импеданс
  • Переходный процесс (электроника)

intellect.ml

Катушка индуктивности своими руками |

Катушка индуктивности как радиоэлектронный элемент, достаточно  распространена. Порой не заменима, для настройки многих радиоприёмников и применяется во многих устройствах. Следует отметить, что для эксклюзивных вещей, порой не достать эксклюзивных катушек, потому необходимо знать не только устройство катушки индуктивности, и формулы её расчёта, но и уметь мастерить катушки индуктивности самостоятельно. В этой статье любой начинающий радиолюбитель найдёт для себя пару полезных советов.

Катушка индуктивности:

По своей конструкции катушки индуктивности очень сильно разнятся, толщина провода, количество витков, способ намотки, наличие сердечника – всё это влияет на индуктивность катушки рисунок №1,2.

Рисунок №1 – Пример катушки индуктивности

В случае, когда вам необходима маленькая индуктивность, можно даже сделать её плоской рисунок№2. Например, вытравить её непосредственно на плате.

Рисунок №2 – Пример плоской катушки индуктивности

Как залить катушку индуктивности воском:

Собирая схему, в которой есть колебательный контур, настраивая радиоприёмник или передатчик (что угодно) или делая любую другую схему (наматывая, например, высоковольтные катушки). Вам необходимо регулировать расстояние между витками катушки. Когда вы настроили вашу схему, то для исключения не желательного изменения параметров катушки из-за механического смещения витков, вам достаточно просто залить катушку обыкновенным воском или парафином (если катушка не греется) рисунок №3.

Рисунок №3 – Пример залитой воском катушки

Можно заливать катушки эпоксидной смолой или силиконом – всё зависит от того в каких условиях должна работать ваша катушка индуктивности. И что находится у вас под рукой. В случае с воском (парафином), вам достаточным будет растопить его и просто дождаться его остывания предварительно опустив в него катушку индуктивности.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт http://bip-mip.com/ 

bip-mip.com

13. Катушки индуктивности и постоянный ток

ЭКСПЕРИМЕНТ 13 Катушки индуктивности и постоянный ток

Цели

После проведения данного эксперимента. Вы сможете продемонстрировать и сформулировать эффект индуктивности в цепи постоянного тока.

Необходимые принадлежности

* Цифровой мультиметр

* Источник постоянного напряжения (от 9 до 15 В)

* Силовой трансформатор

* Неоновая лампа (NE-2) с проволочными выводами

ВВОДНАЯ ЧАСТЬ

Индуктивность — это свойство электронного компонента противодействовать изменениям тока, протекающего через данный компонент.

Индуктивностью обладают компоненты, которые называются катушками индуктивности, соленоидами или дросселями. Если ток, протекающий в катушке индуктивности, изменяется, свойство индуктивности противодействует такому изменению тока. Если ток увеличивается, катушка индуктивности препятствует росту тока. Если ток уменьшается, катушка индуктивности снова пытается сохранить ток без изменения. Эффект индуктивности заметен в первую очередь в тех схемах, где используется переменный ток. Противодействие переменному току, оказываемое катушкой индуктивности, называется индуктивным сопротивлением. Подобно сопротивлению резистора индуктивное сопротивление оказывает фиксированное противодействие, которое контролирует уровень тока в схеме.

В схемах постоянного тока, в которых ток обычно имеет фиксированное значение, определяемое сопротивлениями и напряжениями, катушки индуктивности обычно имеют лишь незначительный эффект или вообще не имеют никакого эффекта. Тем не менее, они оказывают влияние на постоянный ток, и важно ясно представлять себе это явление.

Катушки индуктивности в схемах постоянного тока

Первичным назначением катушки индуктивности в схеме постоянного тока является оказание противодействия в форме сопротивления. Катушки индуктивности обычно представляют собой проволочные спирали, которые создают сопротивление. Хотя резистивное сопротивление катушки индуктивности обычно низко, катушка создает противодействие. В дополнение мощность рассеивается сопротивлением катушки индуктивности.

Эффекты индуктивности проявляются, когда изменяется ток в цепи постоянного тока. Хотя ток обычно имеет фиксированную величину в работающей схеме постоянного тока, не забывайте также, что необходимо еще включать и выключать

схему. Когда ток первоначально подается в схему или удаляется их схемы, имеет место его значительное изменение. Такое изменение тока заставляет катушку индуктивности противодействовать этому изменению. В результате появляется наведенное (индуктированное) напряжение, которое, как и в схеме переменного тока, противодействует изменению тока.

Наиболее значительный эффект достигается в том случае, когда ток через катушку индуктивности внезапно подавляется. Магнитное поле вокруг катушки индуктивности исчезает, индуцируя очень высокое напряжение в катушке. Это напряжение может даже приводить к повреждениям компонентов в некоторых случаях. В других применениях, наоборот, используется преимущество этого эффекта с целью формирования очень высокого напряжения для питания тех или иных специальных компонентов или цепей. Примерами могут служить трансформаторы строчной развертки в телевизионных приемниках и катушки зажигания в системах зажигания автомобилей.

Краткое содержание

В данном эксперименте Вы будете знакомиться с эффектами катушки индуктивности в схеме постоянного тока.

ПРОЦЕДУРА

1. Для данного эксперимента Вы будет использовать первичную обмотку трансформатора. Эта обмотка идентифицируется двумя черными выводами. Все другие выводы игнорируйте.

Измерьте сопротивление катушки индуктивности. Запишите полученное значение.

Сопротивление постоянному току = _____ Ом

2. Предскажите, какой величины ток может быть в катушке индуктивности, если к ней приложить напряжение 15В от источника питания. Ток = ____ мА

3. Подключите источник питания 15 В к катушке индуктивности и измерьте постоянный ток, протекающий через катушку. Обратитесь к рисунку 13-1. Запишите величину протекающего тока.

Измеренный ток = _____ мА

1-131.jpg

Рис. 13-1. Первичная обмотка, используемая в качестве катушки индуктивности.

4. Какой эффект оказывает источник на катушку индуктивности, и какой эффект оказывает катушка индуктивности на ток в цепи?

5. Рассмотрите неоновую лампу. Это маленькая стеклянная лампочка с тонкими проволочными выводами. Подключите неоновую лампу параллельно с катушкой индуктивности, как показано на рисунке 13-2. Неоновая лампа загорится только в том случае, если напряжение на ее выводах превышает приблизительно 70—90В.

6. Приложите напряжение 15В от источника питания к катушке индуктивности, как показано

на рисунке 13-2. Заметьте состояние неоновой лампы. Включена или выключена неоновая лампа?

Состояние лампы________________

1-132.jpg

Рис. 13-2.

7. Отсоедините один вывод катушки индуктивности от источника питания и снова заметьте состояние неоновой лампы.

Состояние лампы ________________

8. Повторите шаги 6 и 7 несколько раз, чтобы наверняка увидеть, что происходит.

9. Объясните эффект, который Вы наблюдаете в шагах 7 и 8.

ОБЗОРНЫЕ ВОПРОСЫ

I. Катушка индуктивности противодействует изменениям;

а) напряжения,

б) тока,

в) сопротивления,

г) индуктивности.

2. Другое название для катушки индуктивности:

а) трансформатор,

б) магнит,

в) соленоид,

г) дроссель.

3. Все катушки (соленоиды) имеют сопротивление:

а) высказывание истинно,

б) высказывание ложно.

4. Противодействие постоянному току, оказываемое катушкой индуктивности, называется:

а) индуктивностью,

б) сопротивлением,

в) реактивным сопротивлением,

г) полным сопротивлением.

5. Напряжение 30 вольт подается на 90-вольтовую неоновую лампу. Лампа:

а) включается,

б) не включается.

lib.qrz.ru


Каталог товаров
    .